1
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Periasamy VS, Athinarayanan J, Alshatwi AA. Understanding the Interaction between Nanomaterials Originated from High-Temperature Processed Starch/Myristic Acid and Human Monocyte Cells. Foods 2024; 13:554. [PMID: 38397531 PMCID: PMC10888307 DOI: 10.3390/foods13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
High-temperature cooking approaches trigger many metabolically undesirable molecule formations, which pose health risks. As a result, nanomaterial formation has been observed while cooking and reported recently. At high temperatures, starch and myristic acid interact and lead to the creation of nanomaterials (cMS-NMs). We used a non-polar solvent chloroform to separate the nanomaterials using a liquid-liquid extraction technique. The physico-chemical characterization was carried out using dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). To determine the biological impact of these nanomaterials using different in vitro assays, including a cell viability assay, microscopic staining, and gene expression analysis, we adopted the THP-1 cell line as an in vitro monocyte model in our study. The TEM images revealed that fabricated cMS nanomaterials are smaller than 100 nm in diameter. There were significant concerns found in the cytotoxicity assay and gene expression analysis. At concentrations of 100-250 µg/mL, the cMS-NMs caused up to 95% cell death. We found both necrosis and apoptosis in cMS-NMs treated THP-1 cells. In cMS-NMs-treated THP-1 cells, we found decreased expression levels in IL1B and NFKB1A genes and significant upregulation in MIF genes, suggesting a negative immune response. These findings strongly suggest that cMS-NMs originated from high-temperature food processing can cause adverse effects on biological systems. Therefore, charred materials in processed foods should be avoided in order to minimize the risk of health complications.
Collapse
Affiliation(s)
| | | | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (V.S.P.); (J.A.)
| |
Collapse
|
3
|
Ummarino A, Pensado-López A, Migliore R, Alcaide-Ruggiero L, Calà N, Caputo M, Gambaro FM, Anfray C, Ronzoni FL, Kon E, Allavena P, Torres Andón F. An in vitro model for osteoarthritis using long-cultured inflammatory human macrophages repeatedly stimulated with TLR agonists. Eur J Immunol 2023; 53:e2350507. [PMID: 37713238 DOI: 10.1002/eji.202350507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Osteoarthritis (OA) is characterized by an abundance of inflammatory M1-like macrophages damaging local tissues. The search for new potential drugs for OA suffers from the lack of appropriate methods of long-lasting inflammation. Here we developed and characterized an in vitro protocol of long-lasting culture of primary human monocyte-derived macrophages differentiated with a combination of M-CSF+GM-CSF that optimally supported long-cultured macrophages (LC-Mϕs) for up to 15 days, unlike their single use. Macrophages repeatedly stimulated for 15 days with the TLR2 ligand Pam3CSK4 (LCS-Mϕs), showed sustained levels over time of IL-6, CCL2, and CXCL8, inflammatory mediators that were also detected in the synovial fluids of OA patients. Furthermore, macrophages isolated from the synovia of two OA patients showed an expression profile of inflammation-related genes similar to that of LCS-Mϕs, validating our protocol as a model of chronically activated inflammatory macrophages. Next, to confirm that these LCS-Mϕs could be modulated by anti-inflammatory compounds, we employed dexamethasone and/or celecoxib, two drugs widely used in OA treatment, that significantly inhibited the production of inflammatory mediators. This easy-to-use in vitro protocol of long-lasting inflammation with primary human macrophages could be useful for the screening of new compounds to improve the therapy of inflammatory disorders.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Nicholas Calà
- IRCCS Humanitas Research Hospital, Milan, Italy
- Etromapmacs Pole, Agorà Biomedical Sciences, Foggia, Italy
| | - Michele Caputo
- IRCCS Humanitas Research Hospital, Milan, Italy
- Etromapmacs Pole, Agorà Biomedical Sciences, Foggia, Italy
| | | | | | - Flavio L Ronzoni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Fernando Torres Andón
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Oncology, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario de A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
4
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
5
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
6
|
Li X, Li D, Zhang G, Zeng Y, Monteiro-Riviere NA, Chang YZ, Li Y. Biocorona modulates the inflammatory response induced by gold nanoparticles in human epidermal keratinocytes. Toxicol Lett 2022; 369:34-42. [PMID: 36057382 DOI: 10.1016/j.toxlet.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
The functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells. Here, we show that primary human epidermal keratinocytes (HEK) exposed in culture to branched polyethyleneimine (BPEI)-AuNPs, but not to lipoic acid (LA)-AuNPs, show potent particle uptake, decreased viability and enhanced production of inflammatory factors, while the presence of a human plasma-derived biocorona decreased NPs uptake and rescued cells from BPEI-AuNP-induced cell death. The mechanistic study revealed that the intracellular oxidative level greatly increased after the BPEI-AuNPs treatment, and the transcriptomic analysis showed that the dominant modulated pathways were related to oxidative stress and an antioxidant response. The stress level measured by flow cytometry also showed a significant decrease in the presence of a biocorona. Further anaylsis discovered that nuclear factor erythroid-2 related factor (Nrf2), a major regulator of anti-oxidant and anti-inflammatory gene, as the key factor related to the AuNPs induced oxidative stress and inflammation. This study provides futher understanding into the mechanisms on how NPs-induced cellular stress and reveals the protective effects of a biocorona on inflammatory responses in HEK at the molecular level, which provides important insights into the biological responses of AuNPs and their biocorona.
Collapse
Affiliation(s)
- Xuejin Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Dongjie Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, 66506 USA
| | - Yan-Zhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China.
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
7
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Cubadda F, Macaluso GM, Bussolati O. The TLR4/NFκB-Dependent Inflammatory Response Activated by LPS Is Inhibited in Human Macrophages Pre-Exposed to Amorphous Silica Nanoparticles. NANOMATERIALS 2022; 12:nano12132307. [PMID: 35808143 PMCID: PMC9268534 DOI: 10.3390/nano12132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Correspondence:
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Francesco Cubadda
- Istituto Superiore di Sanità-Italian National Institute of Health, 00161 Rome, Italy;
| | - Guido M. Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Centro di Odontoiatria, University of Parma, 43126 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
8
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
9
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
10
|
Ferrari E, Barbero F, Busquets-Fité M, Franz-Wachtel M, Köhler HR, Puntes V, Kemmerling B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3161. [PMID: 34947510 PMCID: PMC8707008 DOI: 10.3390/nano11123161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
The global economic success of man-made nanoscale materials has led to a higher production rate and diversification of emission sources in the environment. For these reasons, novel nanosafety approaches to assess the environmental impact of engineered nanomaterials are required. While studying the potential toxicity of metal nanoparticles (NPs), we realized that gold nanoparticles (AuNPs) have a growth-promoting rather than a stress-inducing effect. In this study we established stable short- and long-term exposition systems for testing plant responses to NPs. Exposure of plants to moderate concentrations of AuNPs resulted in enhanced growth of the plants with longer primary roots, more and longer lateral roots and increased rosette diameter, and reduced oxidative stress responses elicited by the immune-stimulatory PAMP flg22. Our data did not reveal any detrimental effects of AuNPs on plants but clearly showed positive effects on growth, presumably by their protective influence on oxidative stress responses. Differential transcriptomics and proteomics analyses revealed that oxidative stress responses are downregulated whereas growth-promoting genes/proteins are upregulated. These omics datasets after AuNP exposure can now be exploited to study the underlying molecular mechanisms of AuNP-induced growth-promotion.
Collapse
Affiliation(s)
| | - Francesco Barbero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.P.)
- Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | | | | | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, 72076 Tübingen, Germany;
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Vall d’Hebron Institut de Recerca (VHIR), 08032 Barcelona, Spain
| | | |
Collapse
|
11
|
Boraschi D, Li D, Li Y, Italiani P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211769. [PMID: 34831525 PMCID: PMC8623312 DOI: 10.3390/ijerph182211769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
The immunological safety of drugs, nanomaterials and contaminants is a central point in the regulatory evaluation and safety monitoring of working and public places and of the environment. In fact, anomalies in immune responses may cause diseases and hamper the physical and functional integrity of living organisms, from plants to human beings. In the case of nanomaterials, many experimental models are used for assessing their immunosafety, some of which have been adopted by regulatory bodies. All of them, however, suffer from shortcomings and approximations, and may be inaccurate in representing real-life responses, thereby leading to incomplete, incorrect or even misleading predictions. Here, we review the advantages and disadvantages of current nanoimmunosafety models, comparing in vivo vs. in vitro models and examining the use of animal vs. human cells, primary vs. transformed cells, complex multicellular and 3D models, organoids and organs-on-chip, in view of implementing a reliable and personalized nanoimmunosafety testing. The general conclusion is that the choice of testing models is key for obtaining reliable predictive information, and therefore special attention should be devoted to selecting the most relevant and realistic suite of models in order to generate relevant information that can allow for safer-by-design nanotechnological developments.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy;
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence:
| | - Dongjie Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
| | - Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; (D.L.); (Y.L.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy;
| |
Collapse
|
12
|
The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. NANOMATERIALS 2021; 11:nano11112991. [PMID: 34835755 PMCID: PMC8621168 DOI: 10.3390/nano11112991] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
The immune system contributes to maintaining the body’s functional integrity through its two main functions: recognizing and destroying foreign external agents (invading microorganisms) and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this context, it is expected that nanostructured materials in the size range of proteins, protein aggregates, and viruses with different molecular coatings can engage in a sophisticated interaction with the immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses. This paper describes the different modes of interaction between nanoparticles, especially inorganic nanoparticles, and the immune system, especially the innate immune system. This perspective should help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.
Collapse
|
13
|
Swartzwelter BJ, Michelini S, Frauenlob T, Barbero F, Verde A, De Luca AC, Puntes V, Duschl A, Horejs-Hoeck J, Italiani P, Boraschi D. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front Immunol 2021; 12:751683. [PMID: 34804037 PMCID: PMC8600232 DOI: 10.3389/fimmu.2021.751683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Sara Michelini
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Tobias Frauenlob
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Duschl
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
14
|
Vuković B, Cvetić Ž, Bendelja K, Barbir R, Milić M, Dobrošević B, Šerić V, Vinković Vrček I. In vitro study on the immunomodulatory effects of differently functionalized silver nanoparticles on human peripheral blood mononuclear cells. J Biol Inorg Chem 2021; 26:817-831. [PMID: 34476609 PMCID: PMC8412400 DOI: 10.1007/s00775-021-01898-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
The interaction of silver nanoparticles (AgNPs) with the immune system has not yet been sufficiently elucidated even though they belong to the most investigated and exploited group of nanomaterials. This study aimed to evaluate immunomodulatory effect of four different AgNPs on human peripheral blood mononuclear cells (hPBMCs). Fresh hPBMCs were exposed to the small sized (~ 10 nm) AgNPs immediately after isolation from the whole blood of healthy volunteers. The study considered coating-, time- and dose-dependent response of hPBMSc and stimulation of both early and intermediate activation of lymphocytes and monocytes using flow cytometry. The AgNPs differed in surface charge and were stabilised with polyvinyl pyrrolidone (PVP), poly-L-lysine (PLL), bis(2-ethylhexyl) sulfosuccinate sodium (AOT) or blood serum albumin (BSA). Response of hPBMCs to coating agents and ionic Ag form was evaluated to distinguish their effect from the AgNPs action as they may be released from the nanosurface. There was no significant effect of any tested AgNPs on relative count of hPBMCs subpopulations. The T-cells and monocytes were not activated after treatment with AgNPs, but the highest concentration of PLL- and BSA-AgNPs decreased density of CD4 and CD8 markers on T-helper and T-cytotoxic cells, respectively. The same AgNPs activated B- and NK-cells. Ionic Ag activated T-, B- and NK-cells, but at very higher concentration, whereas only PLL exhibited immunomodulatory activity. This study evidenced immunomodulatory activity of AgNPs that may be fine-tuned by the design of their surface functionalization.
Collapse
Affiliation(s)
- Barbara Vuković
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Željko Cvetić
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Milić
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Blaženka Dobrošević
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112272. [PMID: 34474831 DOI: 10.1016/j.msec.2021.112272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Integrating multiple materials with different functionalities in a single nanostructure enables advances in many scientific and technological applications. However, such highly sophisticated nanomaterials usually require complex synthesis processes that complicate their preparation in a sustainable and industrially feasible manner. Herein, we designed a simple general method to grow a mesoporous silica shell onto any combination of hydrophilic nanoparticle cores. The synthetic strategy, based on the adjustment of the key parameters of the sol-gel process for the silica shell formation, allows for the embedment of single, double, and triple inorganic nanoparticles within the same shell, as well as the size-control of the obtained nanocomposites. No additional interfacial adhesive layer is required on the nanoparticle surfaces for the embedding process. Adopting this approach, electrostatically stabilized, small-sized (from 4 to 15 nm) CeO2, Fe3O4, Gd2O3, NaYF4, Au, and Ag cores were used to test the methodology. The mean diameter of the resulting nanocomposites could be as low as 55 nm, with high monodispersity. These are very feasible sizes for biological intervention, and we further observed increased nanoparticle stability in physiological environments. As a demonstration of their increased activity as a result of this, the antioxidant activity of CeO2 cores was enhanced when in core-shell form. Remarkably, the method is conducted entirely at room temperature, atmospheric conditions, and in aqueous solvent with the use of ethanol as co-solvent. These facile and even "green" synthesis conditions favor scalability and easy preparation of multicomponent nanocomposite libraries with standard laboratory glassware and simple benchtop chemistry, through this sustainable and cost-effective fabrication process.
Collapse
|
16
|
Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021; 12:692165. [PMID: 34421901 PMCID: PMC8377278 DOI: 10.3389/fimmu.2021.692165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.
Collapse
Affiliation(s)
- Giacomo Della Camera
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Yang Li
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Benjamin J Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Gergö Sipos
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), National Research Council (CNR), Milano, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy.,Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| |
Collapse
|
17
|
Zhang Y, Zhang G, Wang G, Wu L, Monteiro-Riviere NA, Li Y. The synergistic strategies for the immuno-oncotherapy with photothermal nanoagents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1717. [PMID: 33825343 DOI: 10.1002/wnan.1717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Immuno-oncotherapy has shown great promise for the cure of late-stage and metastatic cancer. Great efforts have tried to improve the overall response rate (ORR) and to reduce the immune-related adverse events (irAEs). Antigen presentation, T cell activation and killing are interlocking and distinct steps to initiate effective anti-tumor immune responses. Aiming to overcome the tumor immune evasion whose mechanisms include limited release of neoantigen, suppressed infiltration of antigen-presenting cells (APCs) and T cells, and the expression of immune checkpoints (ICPs), combinational therapeutic strategies have shown great potential by activating the anti-tumor immune responses together with deactivating immunosuppressive conditions simultaneously. In this direction, photothermal therapy (PTT) has attracted attention due to the efficient ablation of tumor cells, of which the released immunogenic tumor debris can activate host immune responses. The combination of immunoadjuvants and/or ICP inhibitors can boost the anti-tumor immune responses, realizing PTT-synergized immuno-oncotherapy. In this regard, numerous multifunctional nanomaterials have been designed with integration of photothermal and immuno-oncotherapeutic agents into one package via well-designed surface modification and functionalization. This review summarizes the recent studies on the synergistic strategies for the immuno-oncotherapy based on photothermal nanoagents and the mechanisms that trigger the systemic anti-tumor immune responses and PTT-synergized immuno-oncotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guocheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas, USA
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
18
|
Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:207. [PMID: 33467414 PMCID: PMC7830034 DOI: 10.3390/nano11010207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Understanding the modes of interaction between human monocytes/macrophages and engineered nanoparticles is the basis for assessing particle safety, in terms of activation of innate/inflammatory reactions, and their possible exploitation for medical applications. In vitro assessment of nanoparticle-macrophage interaction allows for examining the response of primary human cells, but the conventional 2D cultures do not reproduce the three-dimensional spacing of a tissue and the interaction of macrophages with the extracellular tissue matrix, conditions that shape macrophage recognition capacity and reactivity. Here, we have compared traditional 2D cultures with cultures on a 3D collagen matrix for evaluating the capacity gold nanoparticles to induce monocyte activation and subsequent innate memory in human blood monocytes in comparison to bacterial LPS. Results show that monocytes react to stimuli almost in the same way in 2D and 3D cultures in terms of production of TNFα and IL-6, but that notable differences are found when IL-8 and IL-1Ra are examined, in particular in the recall/memory response of primed cells to a second stimulation, with the 3D cultures showing cell activation and memory effects of nanoparticles better. In addition, the response variations in monocytes/macrophages from different donors point towards a personalized assessment of the nanoparticle effects on macrophage activation.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Laura Rehak
- Athena Biomedical Innovations, 00100 Roma, Italy;
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Victor. F. Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain;
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
19
|
Della Camera G, Lipsa D, Mehn D, Italiani P, Boraschi D, Gioria S. A Step-by-Step Approach to Improve Clinical Translation of Liposome-Based Nanomaterials, a Focus on Innate Immune and Inflammatory Responses. Int J Mol Sci 2021; 22:E820. [PMID: 33467541 PMCID: PMC7830677 DOI: 10.3390/ijms22020820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as "case-studies", three passed the physical-chemical characterization ( in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.
Collapse
Affiliation(s)
- Giacomo Della Camera
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy; (P.I.); (D.B.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.D.C.); (D.L.); (D.M.)
| |
Collapse
|
20
|
The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. Int J Mol Sci 2020; 21:ijms21249695. [PMID: 33353206 PMCID: PMC7766945 DOI: 10.3390/ijms21249695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system evolved to detect and react against potential dangers such as bacteria, viruses, and environmental particles. The advent of modern technology has exposed innate immune cells, such as monocytes, macrophages, and dendritic cells, to a relatively novel type of particulate matter, i.e., engineered nanoparticles. Nanoparticles are not inherently pathogenic, and yet cases have been described in which specific nanoparticle types can either induce innate/inflammatory responses or modulate the activity of activated innate cells. Many of these studies rely upon activation by agonists of toll-like receptors, such as lipopolysaccharide or peptidoglycan, instead of the more realistic stimulation by whole live organisms. In this review we examine and discuss the effects of nanoparticles on innate immune cells activated by live bacteria. We focus in particular on how nanoparticles may interfere with bacterial processes in the context of innate activation, and confine our scope to the effects due to particles themselves, rather than to molecules adsorbed on the particle surface. Finally, we examine the long-lasting consequences of coexposure to nanoparticles and bacteria, in terms of potential microbiome alterations and innate immune memory, and address nanoparticle-based vaccine strategies against bacterial infection.
Collapse
|
21
|
Islam Y, Ehtezazi P, Cashmore A, Marinsalda E, Leach AG, Coxon CR, Fatokun AA, Sexton DW, Khan I, Zouganelis G, Downing J, Pluchino S, Sivakumaran M, Teixido M, Ehtezazi T. The Inclusion of a Matrix Metalloproteinase-9 Responsive Sequence in Self-assembled Peptide-based Brain-Targeting Nanoparticles Improves the Efficiency of Nanoparticles Crossing the Blood-Brain Barrier at Elevated MMP-9 Levels. J Pharm Sci 2020; 110:1349-1364. [PMID: 33333144 DOI: 10.1016/j.xphs.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
This study investigated whether the inclusion of a matrix metalloproteinase-9 (MMP-9) responsive sequence in self-assembled peptide-based brain-targeting nanoparticles (NPs) would enhance the blood-brain barrier (BBB) penetration when MMP-9 levels are elevated both in the brain and blood circulation. Brain-targeting peptides were conjugated at the N-terminus to MMP-9-responsive peptides, and these were conjugated at the N-terminus to lipid moiety (cholesteryl chloroformate or palmitic acid). Two constructs did not have MMP-9-responsive peptides. NPs were characterised for size, charge, critical micelle concentration, toxicity, blood compatibility, neural cell uptake, release profiles, and in vitro BBB permeability simulating normal or elevated MMP-9 levels. The inclusion of MMP-9-sensitive sequences did not improve the release of a model drug in the presence of active MMP-9 from NPs compared to distilled water. 19F NMR studies suggested the burial of MMP-9-sensitive sequences inside the NPs making them inaccessible to MMP-9. Only cholesterol-GGGCKAPETALC (responsive to MMP-9) NPs showed <5% haemolysis, <1 pg/mL release of IL-1β at 500 μg/mL from THP1 cells, with 70.75 ± 5.78% of NPs crossing the BBB at 24 h in presence of active MMP-9. In conclusion, brain-targeting NPs showed higher transport across the BBB model when MMP-9 levels were elevated and the brain-targeting ligand was responsive to MMP-9.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Parinaz Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Andrew Cashmore
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Elena Marinsalda
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Christopher R Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Georgios Zouganelis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Muttuswamy Sivakumaran
- Department of Haematology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate Peterborough, PE3 9GZ, Peterborough, UK
| | - Meritxell Teixido
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
22
|
Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Indexed: 05/06/2023]
Abstract
The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Suzanne M Castenmiller
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| |
Collapse
|
23
|
Ferretti AM, Usseglio S, Mondini S, Drago C, La Mattina R, Chini B, Verderio C, Leonzino M, Cagnoli C, Joshi P, Boraschi D, Italiani P, Li Y, Swartzwelter BJ, Sironi L, Gelosa P, Castiglioni L, Guerrini U, Ponti A. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci 2020; 582:678-700. [PMID: 32911414 DOI: 10.1016/j.jcis.2020.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Iron oxide and other ferrite nanoparticles have not yet found widespread application in the medical field since the translation process faces several big hurdles. The incomplete knowledge of the interactions between nanoparticles and living organisms is an unfavorable factor. This complex subject should be made simpler by synthesizing magnetic nanoparticles with good physical (relaxivity) and chemical (colloidal stability, anti-fouling) properties and no biological activity (no immune-related effects, minimal internalization, fast clearance). Such an innocent scaffold is the main aim of the present paper. We systematically searched for it within the class of small-to-medium size ferrite nanoparticles coated by small (zwitter)ionic ligands. Once established, it can be functionalized to achieve targeting, drug delivery, etc. and the observed biological effects will be traced back to the functional molecules only, as the nanosized scaffold is innocent. EXPERIMENTS We synthesized nine types of magnetic nanoparticles by systematic variation of core composition, size, coating. We investigated their physico-chemical properties and interaction with serum proteins, phagocytic microglial cells, and a human model of inflammation and studied their biodistribution and clearance in healthy mice. The nanoparticles have good magnetic properties and their surface charge is determined by the preferential adsorption of anions. All nanoparticle types can be considered as immunologically safe, an indispensable pre-requisite for medical applications in humans. All but one type display low internalization by microglial BV2 cells, a process strongly affected by the nanoparticle size. Both small (3 nm) and medium size (11 nm) zwitterionic nanoparticles are in part captured by the mononuclear phagocyte system (liver and spleen) and in part rapidly (≈1 h) excreted through the urinary system of mice. FINDINGS The latter result questions the universality of the accepted size threshold for the renal clearance of nanoparticles (5.5 nm). We suggest that it depends on the nature of the circulating particles. Renal filterability of medium-size magnetic nanoparticles is appealing because they share with small nanoparticles the decreased accumulation-related toxicity while performing better as magnetic diagnostic/therapeutic agents thanks to their larger magnetic moment. In conclusion, many of our nanoparticle types are a bio-compatible innocent scaffold with unexpectedly favorable clearance.
Collapse
Affiliation(s)
- Anna M Ferretti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sandro Usseglio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Sara Mondini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Carmelo Drago
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Rosa La Mattina
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Bice Chini
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Claudia Verderio
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Marianna Leonzino
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cinzia Cagnoli
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Pooja Joshi
- Istituto di Neuroscienze (IN), Consiglio Nazionale delle Ricerche, Via L. Vanvitelli 32, 20129 Milano, Italy
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Yang Li
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Benjamin J Swartzwelter
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Napoli, Italy
| | - Luigi Sironi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Paolo Gelosa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; Centro Cardiologico Monzino IRCCS, Via C. Parea 3, 20138 Milano, Italy
| | - Laura Castiglioni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
24
|
Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020; 19:465-477. [PMID: 32306785 PMCID: PMC7196924 DOI: 10.1080/14760584.2020.1758070] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Vaccination remains very effective in stimulating protective immune responses against infections. An important task in antibody and vaccine preparation is to choose an optimal carrier that will ensure a high immune response. Particularly promising in this regard are nanoscale particle carriers. An antigen that is adsorbed or encapsulated by nanoparticles can be used as an adjuvant to optimize the immune response during vaccination. a very popular antigen carrier used for immunization and vaccination is gold nanoparticles, with are being used to make new vaccines against viral, bacterial, and parasitic infections. AREAS COVERED This review summarizes what is currently known about the use of gold nanoparticles as an antigen carrier and adjuvant to prepare antibodies in vivo and design vaccines against viral, bacterial, and parasitic infections. The basic principles, recent advances, and current problems in the use of gold nanoparticles are discussed. EXPERT OPINION Gold nanoparticles can be used as adjuvants to increase the effectiveness of vaccines by stimulating antigen-presenting cells and ensuring controlled antigen release. Studying the characteristics of the immune response obtained from the use of gold nanoparticles as a carrier and an adjuvant will permit the particles' potential for vaccine design to be increased.
Collapse
Affiliation(s)
- Lev A. Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
25
|
Gold Nanoparticles Modulate BCG-Induced Innate Immune Memory in Human Monocytes by Shifting the Memory Response towards Tolerance. Cells 2020; 9:cells9020284. [PMID: 31979412 PMCID: PMC7072314 DOI: 10.3390/cells9020284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.
Collapse
|
26
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
27
|
Differential toxicity of processed and non-processed states of CoCrMo degradation products generated from a hip simulator on neural cells. Nanotoxicology 2018; 12:941-956. [PMID: 30251573 DOI: 10.1080/17435390.2018.1498929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Physico-chemical characteristics of the CoCrMo degradation products have played an important role in cytotoxicity and clinical complications on the orthopedic patients who have metal implants. Previous studies have limited reflection on the physicochemical characteristics of the degradation products generated in vivo, which are very different from individual metal particles and/or ions obtained from different commercial sources. In this study, we aimed to understand the differences in toxicity induced by the degradation products in as-synthesized form as well as those obtained after post-processing. The degradation products were generated using a hip-simulator by maintaining physiological conditions closer to in vivo and separated into two batches, one with processing by washing and drying called processed degradation products (PDP) and another batch as 'as-synthesized' degradation product (DP). We studied the dose-dependent toxicity response by neural cells derived from induced pluripotent stem cells. The results of the study show that as-synthesized DPs are more toxic to neural cells even at lower concentrations studied with evident low TC50 (1-5 μg/ml) concentrations compared to PDP (25 μg/ml). Flow cytometric analysis showed a significant (p<.01) increase in uptake of the particles after 24 h and corresponding ROS production in DP-treated cells. RT-PCR analysis of oxidative specific gene expression showed, elevated mRNA levels of NADPH oxidase-1, nuclear transcription factor, superoxide dismutase-2 and glutaredoxin-2 in DP-treated cells after 6 h. The results of the study provided a clear evidence of the differential response of neural cells on the degradation products as a function of concentrations and their chemical nature.
Collapse
|
28
|
Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 2018; 13:5419-5431. [PMID: 30271138 PMCID: PMC6149906 DOI: 10.2147/ijn.s168808] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The application of nanotechnology to emerging medicinal products is a crucial parameter for the implementation of personalized medicine. For example, sophisticated drug delivery systems can target the diseased tissue by recognizing patient-specific biomarkers while carrying pharmacologically active molecules. However, such nanomedicines can be recognized by the immune system as foreign triggering unexpected biological reactions. The anticipation of the immunogenic potential of emerging nanotechnology-based products in the preclinical phase is challenging due to high interspecies variations between the immune systems of laboratory animals and humans. A close monitoring of the scientific literature is required to better understand the relationship between various immune reactions and the diversity of nanomedicines currently in the development pipeline. We have reviewed the most frequent immune reactions induced by the nanomaterials in vivo and have identified the main effects triggered by lipid-based, polymer-based and inorganic nanoparticles, as the main categories of nanomaterials used in medicine. According to our results, almost 50% of the investigated nanomaterials induced effects related to the activation of the immune system. Among them, complement activation-related hypersensitivity reactions and activation of adaptive immune response were the most frequent effects reported for the lipid-based nanoparticles. However, many of these effects are not or are only partially covered by the current regulatory framework applicable for nanomedicines. In addition, we extracted the most relevant nanospecific properties responsible for the observed biological effects. Our analysis led to identification of the most prevalent measurement endpoints relevant for the assessment of the immunotoxic potential of the nanotechnology-based products and will support the smooth and safe translation of the new formulations to clinical applications.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| | - Susanne Bremer-Hoffmann
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| |
Collapse
|
29
|
Mukherjee SP, Kostarelos K, Fadeel B. Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: Size-Independent NLRP3 Inflammasome Activation. Adv Healthc Mater 2018; 7. [PMID: 29266859 DOI: 10.1002/adhm.201700815] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Graphene-based materials including graphene oxide (GO) are envisioned for a variety of biomedical applications. However, there are conflicting results concerning the biocompatibility of these materials. Here, a question is raised whether GO with small or large lateral dimensions triggers cytotoxicity and/or cytokine responses in primary human monocyte-derived macrophages. GO sheets produced under sterile conditions by a modified Hummers' method are found to be taken up by macrophages without signs of cytotoxicity. Then, multiplex arrays are used for profiling of proinflammatory and anti-inflammatory responses. Notably, GO suppresses the lipopolysaccharide (LPS)-triggered induction of several chemokines and cytokines, including the anti-inflammatory cytokine, interleukin-10 (IL-10). No production of proinflammatory TNF-α is observed. However, GO elicits caspase-dependent IL-1 β expression, a hallmark of inflammasome activation, in LPS-primed macrophages. Furthermore, GO-triggered IL-1 β production requires NADPH oxidase-generated reactive oxygen species and cellular uptake of GO and is accompanied by cathepsin B release and K+ efflux. Using THP-1 knockdown cells, a role for the inflammasome sensor, NLRP3, the adaptor protein, ASC, and caspase-1 for GO-induced IL-1β secretion is demonstrated. Finally, these studies show that inflammasome activation is independent of the lateral dimensions of the GO sheets. These studies provide novel insights regarding the immunomodulatory properties of endotoxin-free GO.
Collapse
Affiliation(s)
- Sourav P. Mukherjee
- Nanosafety & Nanomedicine Laboratory; Institute of Environmental Medicine; Karolinska Institutet; 171 77 Stockholm Sweden
| | - Kostas Kostarelos
- Nanomedicine Laboratory; Faculty of Medical & Human Sciences and National Graphene Institute; University of Manchester; Manchester M13 9PL UK
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory; Institute of Environmental Medicine; Karolinska Institutet; 171 77 Stockholm Sweden
| |
Collapse
|
30
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
31
|
Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol 2017; 34:25-32. [PMID: 28985993 PMCID: PMC5705289 DOI: 10.1016/j.smim.2017.09.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy.
Collapse
Affiliation(s)
- Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
32
|
Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U, Cobaleda M, Lin Z, Jaberi-Douraki M, Italiani P, Horejs-Hoeck J, Himly M, Monteiro-Riviere NA, Duschl A, Puntes VF, Boraschi D. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 2017; 11:1157-1175. [DOI: 10.1080/17435390.2017.1401142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yang Li
- Institute of Protein Biochemistry, National Research Council, Napoli, Italy
- Nanotechnology Innovation Center of Kansas State University (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhenzhen Shi
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | | | - Ancuela Andosch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Eudald Casals
- Institut Català de Nanotecnologia (ICN), Bellaterra, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Macarena Cobaleda
- Institut Català de Nanotecnologia (ICN), Bellaterra, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Majid Jaberi-Douraki
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| | - Jutta Horejs-Hoeck
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Nancy A. Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State University (NICKS), Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Victor F. Puntes
- Institut Català de Nanotecnologia (ICN), Bellaterra, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institut Català de Recerca I Estidus Avançats (ICREA), Barcelona, Spain
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| |
Collapse
|
33
|
Pérez-Hernández M, Moros M, Stepien G, Del Pino P, Menao S, de Las Heras M, Arias M, Mitchell SG, Pelaz B, Gálvez EM, de la Fuente JM, Pardo J. Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Part Fibre Toxicol 2017; 14:41. [PMID: 29073907 PMCID: PMC5658988 DOI: 10.1186/s12989-017-0222-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Background The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. Methods Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. Results Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. Conclusion Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health. Electronic supplementary material The online version of this article (10.1186/s12989-017-0222-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. .,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - María Moros
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Institute of Applied Sciences and Intelligent Systems-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Grazyna Stepien
- Fundación Instituto Universitario de Nanociencia de Aragón (FINA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pablo Del Pino
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sebastián Menao
- Departamento de Bioquímica clínica. H.C.U. Lozano Blesa, 50009, Zaragoza, Spain
| | - Marcelo de Las Heras
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Scott G Mitchell
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Beatriz Pelaz
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva M Gálvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Jesús M de la Fuente
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.,Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, 50009, Zaragoza, Spain.,Aragón I+D Foundation (ARAID), Gobierno de Aragón, Zaragoza, Spain
| |
Collapse
|
34
|
Durocher I, Noël C, Lavastre V, Girard D. Evaluation of the in vitro and in vivo proinflammatory activities of gold (+) and gold (-) nanoparticles. Inflamm Res 2017; 66:981-992. [PMID: 28676918 DOI: 10.1007/s00011-017-1078-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to determine potential effects of gold (+) and gold (-) nanoparticles, AuNP(+) and AuNP(-), on neutrophil biology. MATERIAL OR SUBJECTS Freshly isolated human neutrophils were used for the in vitro aspects and CD-1 mice were used in the in vivo murine air pouch model of acute neutrophilic inflammation. TREATMENT Human neutrophils were treated with the indicated concentrations of AuNP(+) or AuNP(-) in vitro and mice received 100 or 500 µg/ml AuNP(+) or AuNP(-) into air pouches. METHODS Cellular uptake of AuNP by neutrophils was confirmed by transmission electron microscopy and the ability of the NP to modulate apoptosis, gelatinase activity, and chemokine production and chemotaxis was determined by cytology, zymography, ELISArray, antibody array, and ELISA and by a micro-chemotaxis chamber, respectively. In vivo, exudates were harvested after 6 h to determine the leukocyte infiltration to detect the production of several cytokines by an antibody array approach and ELISA. One-way analysis of variance was used for statistical analysis. RESULTS AuNP possess proinflammatory activities in vitro and induce mainly a neutrophil influx in vivo, albeit at different degrees. CONCLUSIONS AuNP(+) and AuNP(-) should be added as new candidates into a growing list of NP having proinflammatory activities by themselves.
Collapse
Affiliation(s)
- Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Claudie Noël
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Valérie Lavastre
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V1B7, Canada.
| |
Collapse
|
35
|
Italiani P, Boraschi D. Induction of Innate Immune Memory by Engineered Nanoparticles: A Hypothesis That May Become True. Front Immunol 2017; 8:734. [PMID: 28694812 PMCID: PMC5483442 DOI: 10.3389/fimmu.2017.00734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 02/02/2023] Open
Abstract
Innate immune memory is the capacity of cells of the innate immune system, such as monocytes and macrophages, to react differently to an inflammatory or infectious challenge if previously exposed to the same or to another agent. Innate immune memory is a protective mechanism, based on epigenetic reprogramming, that ensures effective protection while limiting side effects of tissue damage, by controlling innate/inflammatory responses to repeated stimulations. Engineered nanoparticles (NPs) are novel challenges for our innate immune system, and their ability to induce inflammatory activation, thereby posing health risks, is currently being investigated with controversial results. Besides their putative direct inflammation-inducing effects, we hypothesize that engineered NPs may induce innate memory based on their capacity to induce epigenetic modulation of gene expression. Preliminary results using non-toxic non-inflammatory gold NPs show that in fact NPs can induce memory by modulating in either positive or negative fashion the inflammatory activation of human monocytes to a subsequent bacterial challenge. The possibility of shaping innate/inflammatory reactivity with NPs could open the way to future novel approaches of preventive and therapeutic immunomodulation.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| |
Collapse
|
36
|
Pallardy MJ, Turbica I, Biola-Vidamment A. Why the Immune System Should Be Concerned by Nanomaterials? Front Immunol 2017; 8:544. [PMID: 28555135 PMCID: PMC5431153 DOI: 10.3389/fimmu.2017.00544] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy), immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.
Collapse
Affiliation(s)
- Marc J Pallardy
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Isabelle Turbica
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Armelle Biola-Vidamment
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
37
|
Li Y, Fujita M, Boraschi D. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Front Immunol 2017; 8:472. [PMID: 28533772 PMCID: PMC5420554 DOI: 10.3389/fimmu.2017.00472] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Given the presence of engineered nanomaterials in consumers' products and their application in nanomedicine, nanosafety assessment is becoming increasingly important. In particular, immunosafety aspects are being actively investigated. In nanomaterial immunosafety testing strategies, it is important to consider that nanomaterials and nanoparticles are very easy to become contaminated with endotoxin, which is a widespread contaminant coming from the Gram-negative bacterial cell membrane. Because of the potent inflammatory activity of endotoxin, contaminated nanomaterials can show inflammatory/toxic effects due to endotoxin, which may mask or misidentify the real biological effects (or lack thereof) of nanomaterials. Therefore, before running immunosafety assays, either in vitro or in vivo, the presence of endotoxin in nanomaterials must be evaluated. This calls for using appropriate assays with proper controls, because many nanomaterials interfere at various levels with the commercially available endotoxin detection methods. This also underlines the need to develop robust and bespoke strategies for endotoxin evaluation in nanomaterials.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council (CNR), Napoli, Italy
| |
Collapse
|