1
|
Chen M, Xu X. Structure of a Grafted Polyelectrolyte Layer at the Dielectric Interface: Coupling Effects of Dielectric Contrast, Ionic Strength, and Excluded Volume. J Phys Chem B 2025; 129:4595-4604. [PMID: 40267177 DOI: 10.1021/acs.jpcb.5c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A statistical thermodynamic theory is employed to study the grafted polyelectrolyte layers (GPELs) at dielectric interfaces, focusing on the coupling effects of dielectric contrast (Δε), ionic strength, and excluded volume. The dielectric contrast induces an image-charge effect near the interface, whose influence on GPELs remains to be further explored, especially when combined with ionic strength and excluded volume effects. With increasing grafting density (ρg), GPELs exhibit four distinct regimes: isotropic, stretched, collapsed, and re-stretched. In the isotropic regime, all three effects are weak, making GPELs insensitive to Δε variations. In the stretched and collapsed regimes, high ionic strength shifts dominance to the entropic effect of mobile ions. Here, mobile ions respond strongly to Δε, while PE chains remain insensitive. A jump-like decrease in layer thickness occurs at the stretch-collapse transition due to counterion accumulation near the surface, enhancing electrostatic interactions. In the re-stretched regime, GPELs behave like neutral polymer brushes, with excluded volume effects becoming crucial, rendering both PE chains and mobile ions insensitive to Δε. Reducing the charge density of PE chains further diminishes the response of mobile ions to Δε. The interplay of these effects results in a "roller coaster" trend in brush height with increasing ρg. This study underscores the necessity of considering all three effects to fully understand GPEL behavior at dielectric interfaces, as neglecting any one may lead to incomplete insights into swelling/shrinking behaviors. While some findings align with experimental results, others warrant further exploration.
Collapse
Affiliation(s)
- Mingyu Chen
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Buonaiuto L, Reuvekamp S, Shakhayeva B, Liu E, Neuhaus F, Braunschweig B, de Beer S, Mugele F. Thermally Activated Swelling and Wetting Transition of Frozen Polymer Brushes:a New Concept for Surface Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502173. [PMID: 40226910 DOI: 10.1002/adma.202502173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Functional polymer brush coatings have great potential for various industrial applications thanks to their ability to adapt to environmental stimuli, providing tunable surface properties. While existing approaches rely on polymer-solvent interactions and their response to external stimuli, changes in the intrinsic physical properties of the polymer also play a critical role in modulating brush behavior. In this context, the melting transition of a semicrystalline oleophilic poly-octadecylmethacrylate (P18MA) brush coating is shown to drive a swelling and wetting transition upon exposure to various liquid alkanes. The top surface of this polymer displays a somewhat higher melting temperature than the bulk, enabling separate control of the bulk-driven swelling and surface-driven wetting transitions. Laser-induced heating enables reversible on-demand activation of both transitions with micrometer lateral resolution. These findings suggest a new concept of polymer brush-based functional surfaces that allow for controlled fluid transport via separately switchable surface barriers and bulk transport layers based on a suitable choice of polymer-polymer and polymer-solvent interactions.
Collapse
Affiliation(s)
- Luciana Buonaiuto
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Sander Reuvekamp
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
- Department of Molecules & Materials, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Billura Shakhayeva
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Enqing Liu
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Franziska Neuhaus
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, University of Münster, Corrensstraße 28/30, 48149, Münster, Germany
| | - Sissi de Beer
- Department of Molecules & Materials, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids, MESA+ Institute, University of Twente, PO box 217, Enschede, 7500AE, The Netherlands
| |
Collapse
|
3
|
Fuster-Aparisi A, Cerrato A, Batle J, Cerdà JJ. Dipolar Brush Polymers: A Numerical Study of the Force Exerted onto a Penetrating Colloidal Particle Under an External Field. Polymers (Basel) 2025; 17:366. [PMID: 39940567 PMCID: PMC11820698 DOI: 10.3390/polym17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Langevin Dynamics numerical simulations have been used to compute the force profiles that dipolar polymer brushes exert onto a penetrating colloidal particle. It has been observed that force profiles are strongly influenced by externally applied fields: at large distances from the grafting surface, a force barrier appears, and at shorter distances a region with lower repulsive forces develops. Furthermore, with the right combination of polymer grafting density, polymer chain length and strength of the external field, it is possible to observe in this intermediate region both the existence of net attractive forces onto the penetrating particle and the emergence of a stationary point. The existence of these regions of low repulsive or net attractive forces inside the dipolar brushes, as well as their dependence on the different parameters of the system can be qualitatively reasoned in terms of a competition between steric repulsion forces and Kelvin forces arising from the dipolar mismatch between different regions of the system. The possibility to tune force profile features such as force barriers and stationary points via an external field paves the way for many potential surface-particle-related applications.
Collapse
Affiliation(s)
- A. Fuster-Aparisi
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| | - Antonio Cerrato
- Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Sevilla, Spain;
| | - Josep Batle
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| | - Joan Josep Cerdà
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| |
Collapse
|
4
|
Wu J, Cao F, Yeung PWF, Li M, Ohno K, Ngai T. A Total Internal Reflection Microscopy (TIRM)-Based Approach for Direct Characterization of Polymer Brush Conformational Change in Aqueous Solution. ACS Macro Lett 2024; 13:1376-1382. [PMID: 39364913 PMCID: PMC11483946 DOI: 10.1021/acsmacrolett.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
This study presents a novel approach utilizing total internal reflection microscopy (TIRM) to effectively characterize the swelling and collapse of polymer brushes in aqueous solutions. Zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes are chosen as model systems. By investigation of an intriguing theory-experiment discrepancy observed during the measurement of near-wall hindered diffusion, valuable insights into the compressibility of polymer brushes are obtained, revealing their conformational information in aqueous solution. The results demonstrate that zwitterionic PCBMA brushes exhibit minimal antipolyelectrolyte effects in 0.1-10 mM NaCl solution but undergo significant swelling with increasing pH. On the other hand, nonionic POEGMA brushes exhibit similar responses to ionic strength as weak polyelectrolyte brushes. These unexpected findings enhance our understanding of polymer brushes beyond classical theories. The TIRM-based approach proves to be effective for characterizing polymer brushes and other soft nanomaterials.
Collapse
Affiliation(s)
- Jiahao Wu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Feng Cao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pui Wo Felix Yeung
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Manjia Li
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kohji Ohno
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - To Ngai
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
5
|
Liu Z, Lin L, Li T, Premadasa UI, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Physicochemical control of solvation and molecular assembly of charged amphiphilic oligomers at air-aqueous interfaces. J Colloid Interface Sci 2024; 669:552-560. [PMID: 38729003 DOI: 10.1016/j.jcis.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
HYPOTHESIS Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
6
|
Ziemann E, Coves T, Oren YS, Maman N, Sharon-Gojman R, Neklyudov V, Freger V, Ramon GZ, Bernstein R. Pseudo-bottle-brush decorated thin-film composite desalination membranes with ultrahigh mineral scale resistance. SCIENCE ADVANCES 2024; 10:eadm7668. [PMID: 38781328 PMCID: PMC11114193 DOI: 10.1126/sciadv.adm7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
High water recovery is crucial to inland desalination but is impeded by mineral scaling of the membrane. This work presents a two-step modification approach for grafting high-density zwitterionic pseudo-bottle-brushes to polyamide reverse osmosis membranes to prevent scaling during high-recovery desalination of brackish water. Increasing brush density, induced by increasing reaction time, correlated with reduced scaling. High-density grafting eliminated gypsum scaling and almost completely prevented silica scaling during desalination of synthetic brackish water at a recovery ratio of 80%. Moreover, scaling was effectively mitigated during long-term desalination of real brackish water at a recovery ratio of 90% without pretreatment or antiscalants. Molecular dynamics simulations reveal the critical dependence of the membrane's silica antiscaling ability on the degree to which the coating screens the membrane surface from readily forming silica aggregates. This finding highlights the importance of maximizing grafting density for optimal performance and advanced antiscaling properties to allow high-recovery desalination of complex salt solutions.
Collapse
Affiliation(s)
- Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Tali Coves
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Yaeli S. Oren
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Nitzan Maman
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Guy Z. Ramon
- Wolfson Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Grand Water Research Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
7
|
Wang A, Zhu Y, Fang W, Gao S, Jin J. Zero-Oil-Fouling Membrane With High Coverage of Grafted Zwitterionic Polymer for Separation of Oil-in-Water Emulsions. SMALL METHODS 2024; 8:e2300247. [PMID: 37357558 DOI: 10.1002/smtd.202300247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Indexed: 06/27/2023]
Abstract
Current hydrophilic modification strategies improve the antifouling ability of membranes but fail to completely eliminate the fouling of emulsified oil droplets with a wide size distribution. Constructing membranes with superior anti-oil-fouling ability to resist various oil droplets especially at high permeation fluxes is challenging. Here, the fabrication of a zero-oil-fouling membrane by grafting considerably high coverage of zwitterionic polymer and building defect-free hydration defense barrier on the surface is reported. A uniform layer of protocatechuic acid with COOH as abundant as existing in every molecule is stably deposited on the membrane so as to provide sufficient reactive sites and achieve dense grafting of the zwitterionic polymer. The coverage of zwitterionic polymer on the membrane plays a crucial role in promoting the antifouling ability to emulsified oil droplets. The poly(vinylidene fluoride) membrane with 93% coverage of the zwitterionic polymer exhibits zero oil fouling when separating multitudinous oil-in-water emulsions with ≈0% flux decline, ≈100% flux recovery, and a high water flux of ≈800 L m-2 h-1 bar-1. This membrane outperforms almost all of the reported membranes in terms of the comprehensive antifouling performance. This work provides a feasible route for manufacturing super-antifouling membranes toward oil/water separation application.
Collapse
Affiliation(s)
- Aqiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Yuzhang Zhu
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wangxi Fang
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Shoujian Gao
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
8
|
Veldscholte LB, Snoeijer JH, den Otter WK, de Beer S. Pressure Anisotropy in Polymer Brushes and Its Effects on Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4401-4409. [PMID: 38358950 PMCID: PMC10905992 DOI: 10.1021/acs.langmuir.3c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Polymer brushes, coatings consisting of densely grafted macromolecules, experience an intrinsic lateral compressive pressure, originating from chain elasticity and excluded volume interactions. This lateral pressure complicates a proper definition of the interface and, thereby, the determination and interpretation of the interfacial tension and its relation to the wetting behavior of brushes. Here, we study the link among grafting-induced compressive lateral pressure in polymer brushes, interfacial tension, and brush wettability using coarse-grained molecular dynamics simulations. We focus on grafting densities and polymer-liquid affinities such that the polymer and liquid do not tend to mix. For these systems, a central result is that the liquid contact angle is independent of the grafting density, which implies that the grafting-induced lateral compressive pressure in the brush does not influence its wettability. Although the definition of brush interfacial tensions is complicated by the grafting-induced pressure, the difference in the interfacial tension between wet and dry brushes is perfectly well-defined. We confirm explicitly from Young's law that this difference offers an accurate description of the brush wettability. We then explore a method to isolate the grafting-induced contribution to the lateral pressure, assuming the interfacial tension is independent of grafting density. This scenario indeed allows disentanglement of interfacial and grafting effects for a broad range of parameters, except close to the mixing point. We separately discuss the latter case in light of autophobic dewetting.
Collapse
Affiliation(s)
- Lars B. Veldscholte
- Functional
Polymer Surfaces, Department of Molecules and Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Jacco H. Snoeijer
- Physics
of Fluids, MESA+ Institute, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Multiscale
Mechanics, Department of Fluid and Thermal Engineering, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Functional
Polymer Surfaces, Department of Molecules and Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Vorsmann CF, Del Galdo S, Capone B, Locatelli E. Colloidal adsorption in planar polymeric brushes. NANOSCALE ADVANCES 2024; 6:816-825. [PMID: 38298587 PMCID: PMC10825936 DOI: 10.1039/d3na00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 02/02/2024]
Abstract
The design of nano-functionalised membranes or channels, able to effectively adsorb pollutants in aqueous solutions, is a topic that is gaining a great deal of attention in the materials science community. With this work we explore, through a combination of scaling theories and molecular dynamics simulations, the adsorption of spherical non-deformable colloidal nanoparticles within planar polymeric brushes. Our strategy is twofold: first, we generalise the Alexander-de Gennes theory for planar homopolymeric brushes to the case of diblock copolymer brushes, then we map the adsorbing homopolymeric brushes onto a diblock copolymer system, where the adsorbed colloids and all interacting monomers are considered monomers in bad solvent and we apply the generalised scaling theory to this effective diblock copolymer. This allows the prediction of the average conformation of the grafted substrate, i.e. its average height, as a function of the amount of loaded particles, as well as the introduction of a continuous mapping between a homopolymeric brush, the fraction of loaded particles and the average height of the adsorbing substrate.
Collapse
Affiliation(s)
- Clemens Franz Vorsmann
- Dipartimento di Fisica e Astronomia, Università di Padova Sezione di Padova, via Marzolo 8 I-35131 Padova 2INFN Italy
- INFN Sezione di Padova, via Marzolo 8 I-35131 Padova Italy
| | - Sara Del Galdo
- Science Department, University of Roma Tre Via della Vasca Navale 84 00146 Rome Italy
| | - Barbara Capone
- Science Department, University of Roma Tre Via della Vasca Navale 84 00146 Rome Italy
| | - Emanuele Locatelli
- Dipartimento di Fisica e Astronomia, Università di Padova Sezione di Padova, via Marzolo 8 I-35131 Padova 2INFN Italy
- INFN Sezione di Padova, via Marzolo 8 I-35131 Padova Italy
| |
Collapse
|
10
|
Tang Y, Liu Y, Zhang D, Zheng J. Perspectives on Theoretical Models and Molecular Simulations of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1487-1502. [PMID: 38153400 DOI: 10.1021/acs.langmuir.3c03253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Polymer brushes have witnessed extensive utilization and progress, driven by their distinct attributes in surface modification, tethered group functionality, and tailored interactions at the nanoscale, enabling them for various scientific and industrial applications of coatings, sensors, switchable/responsive materials, nanolithography, and lab-on-a-chips. Despite the wealth of experimental investigations into polymer brushes, this review primarily focuses on computational studies of antifouling polymer brushes with a strong emphasis on achieving a molecular-level understanding and structurally designing antifouling polymer brushes. Computational exploration covers three realms of thermotical models, molecular simulations, and machine-learning approaches to elucidate the intricate relationship between composition, structure, and properties concerning polymer brushes in the context of nanotribology, surface hydration, and packing conformation. Upon acknowledging the challenges currently faced, we extend our perspectives toward future research directions by delineating potential avenues and unexplored territories. Our overarching objective is to advance our foundational comprehension and practical utilization of polymer brushes for antifouling applications, leveraging the synergy between computational methods and materials design to drive innovation in this crucial field.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
11
|
Lehnen AC, Hanke S, Schneider M, Radelof CML, Perestrelo J, Reinicke S, Reifarth M, Taubert A, Arndt KM, Hartlieb M. Modification of 3D-Printed PLA Structures Using Photo-Iniferter Polymerization: Toward On-Demand Antimicrobial Water Filters. Macromol Rapid Commun 2023; 44:e2300408. [PMID: 37581256 DOI: 10.1002/marc.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Water filtration is an important application to ensure the accessibility of clean drinking water. As requirements and contaminants vary on a local level, adjustable filter devices and their evaluation with contaminants are required. Within this work, modular filter devices are designed featuring an adjustable surface functionalization. For this purpose, 3D-printed structures are created consisting of bio-based poly(lactic acid) (PLA) that are manufactured by extrusion printing. The surface of PLA is activated with amino groups that are used to install xanthates as chain transfer agents. Subsequently, photo-iniferter (PI) polymerization is used to create cationic polymer brushes on the surface of PLA substrates. Multiple surface characterization techniques are employed to prove successful growth of polymer brushes on PLA. After initial optimization studies on flat surfaces, filter devices are printed, functionalized, and used to remove bacteria from contaminated water. Significant reduction of the number of microorganisms is detected after filtration (single filtration or cycling) and contaminating organism can also be removed from freshwater samples by simple incubation with a 3D-printed filter. The herein developed setup for producing functional filter devices and probing their performance in affinity filtration is a useful platform technology, enabling the rapid testing of polymer brushes for such applications.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Sebastian Hanke
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Schneider
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Charlotte M L Radelof
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Joana Perestrelo
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Stefan Reinicke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Andreas Taubert
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - Katja M Arndt
- Molecular Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
12
|
Chen G. polyGraft 1.0: A program for molecular structure and topology generation of polymer-grafted hybrid nanostructures. J Comput Chem 2023; 44:2230-2239. [PMID: 37596907 DOI: 10.1002/jcc.27206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Polymer-grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft).
Collapse
Affiliation(s)
- Guang Chen
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
13
|
Joosten N, Wyrębak W, Schenning A, Nijmeijer K, Borneman Z. On the Performance of a Ready-to-Use Electrospun Sulfonated Poly(Ether Ether Ketone) Membrane Adsorber. MEMBRANES 2023; 13:543. [PMID: 37367747 DOI: 10.3390/membranes13060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
Motivated by the need for efficient purification methods for the recovery of valuable resources, we developed a wire-electrospun membrane adsorber without the need for post-modification. The relationship between the fiber structure, functional-group density, and performance of electrospun sulfonated poly(ether ether ketone) (sPEEK) membrane adsorbers was explored. The sulfonate groups enable selective binding of lysozyme at neutral pH through electrostatic interactions. Our results show a dynamic lysozyme adsorption capacity of 59.3 mg/g at 10% breakthrough, which is independent of the flow velocity confirming dominant convective mass transport. Membrane adsorbers with three different fiber diameters (measured by SEM) were fabricated by altering the concentration of the polymer solution. The specific surface area as measured with BET and the dynamic adsorption capacity were minimally affected by variations in fiber diameter, offering membrane adsorbers with consistent performance. To study the effect of functional-group density, membrane adsorbers from sPEEK with different sulfonation degrees (52%, 62%, and 72%) were fabricated. Despite the increased functional-group density, the dynamic adsorption capacity did not increase accordingly. However, in all presented cases, at least a monolayer coverage was obtained, demonstrating ample functional groups available within the area occupied by a lysozyme molecule. Our study showcases a ready-to-use membrane adsorber for the recovery of positively charged molecules, using lysozyme as a model protein, with potential applications in removing heavy metals, dyes, and pharmaceutical components from process streams. Furthermore, this study highlights factors, such as fiber diameter and functional-group density, for optimizing the membrane adsorber's performance.
Collapse
Affiliation(s)
- Niki Joosten
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Weronika Wyrębak
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Albert Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
14
|
Yun X, Lu H, Zhou Z, Yuan S, Wang Y, Dong T. Fabrication and design of poly(l-lactic acid) membrane for passive MAP packaging of Brassica chinensis L. J Food Sci 2023; 88:1640-1653. [PMID: 36916069 DOI: 10.1111/1750-3841.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
PLDx L copolymers were synthesized from physically stable rigid poly(l-lactic acid) (PLLA) and a few different molecular weights of polydimethylsiloxane (PDMS) to increase the O2 and CO2 permeabilities of PLLA films and make them acceptable for packaging highly respirable products. The effect of PDMS on the morphology, mechanical properties, and gas permeability of PLDx L was investigated. Copolymers showed approximately 10 times the fracture strain and 1.7 times the CO2 and O2 permeabilities of neat PLLA. Additionally, PLDx L maintained an increased CO2 /O2 perm-selectivity consistent between 5 and 40°C. Passive modified atmosphere packaging of Brassica chinensis L was developed to assess the membrane's impact on headspace gas inside the package. The results showed that poly(amide)/poly(ethylene) packaging with 48 cm2 PLD1.8 L membrane as a breathing window can provide 50 g B. chinensis L. with a healthy atmosphere of 3%-8% O2 and 5%-8% CO2 between 6 and 22 days. Vegetables packaged in PLD1.8 L had the lower respiration rate, lower nitrite contents, and less proliferation of microorganisms. Moreover, a suitable atmosphere kept vegetables with higher ascorbic acid and a good appearance after more than 2 weeks of storage at 5°C. PRACTICAL APPLICATION: The permeability of the PLLA-based membrane can be adjusted for the breathable window membrane of sealed fresh products. In the future, several types of film could be developed to match the respiratory and metabolic characteristics of different kinds of products. Such PLLA-based specialized membranes can refine the fresh-keeping function and be more attractive to the customer.
Collapse
Affiliation(s)
- Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Lu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ziyi Zhou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shuai Yuan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yangyang Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
15
|
Tian Y, Hu C, An M, He X, Wang H, Yi C. Fabrication and Characterization of Carbon Nanotube Filled PDMS Hybrid Membranes for Enhanced Ethanol Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12294-12304. [PMID: 36890695 DOI: 10.1021/acsami.2c20553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ethanol separation via the pervaporation process has shown growing application potential in solvent recovery and the bioethanol industry. In the continuous pervaporation process, polymeric membranes such as hydrophobic polydimethylsiloxane (PDMS) have been developed to enrich/separate ethanol from dilute aqueous solutions. However, its practical application remains largely limited due to the relatively low separation efficiency, especially in selectivity. In view of this, hydrophobic carbon nanotube (CNT) filled PDMS mixed matrix membranes (MMMs) aimed at high-efficiency ethanol recovery were fabricated in this work. The filler K-MWCNTs was prepared by functionalizing MWCNT-NH2 with epoxy-containing silane coupling agent (KH560) to improve the affinity between fillers and PDMS matrix. With K-MWCNT loading increased from 1 wt % to 10 wt %, membranes showed higher surface roughness and water contact angle was improved from 115° to 130°. The swelling degree of K-MWCNT/PDMS MMMs (2 wt %) in water were also reduced from 10 wt % to 2.5 wt %. Pervaporation performance for K-MWCNT/PDMS MMMs under varied feed concentrations and temperatures were evaluated. The results supported that the K-MWCNT/PDMS MMMs at 2 wt % K-MWCNT loading showed the optimum separation performance (compared with pure PDMS membranes), with the separation factor improved from 9.1 to 10.4, and the permeate flux increased by 50% (40-60 °C, at 6 wt % feed ethanol concentration). This work provides a promising method for preparing a PDMS composite with both high permeate flux and selectivity, which showed great potential for bioethanol production and alcohol separation in industry.
Collapse
Affiliation(s)
- Yuhong Tian
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changfeng Hu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Xinping He
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Wang
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Chunhai Yi
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
16
|
Conrad JC, Robertson ML. Shaping the Structure and Response of Surface-Grafted Polymer Brushes via the Molecular Weight Distribution. JACS AU 2023; 3:333-343. [PMID: 36873679 PMCID: PMC9975839 DOI: 10.1021/jacsau.2c00638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Breadth in the molecular weight distribution is an inherent feature of synthetic polymer systems. While in the past this was typically considered as an unavoidable consequence of polymer synthesis, multiple recent studies have shown that tailoring the molecular weight distribution can alter the properties of polymer brushes grafted to surfaces. In this Perspective, we describe recent advances in synthetic methods to control the molecular weight distribution of surface-grafted polymers and highlight studies that reveal how shaping this distribution can generate novel or enhanced functionality in these materials.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
17
|
Ziemann E, Qin J, Coves T, Bernstein R. Effect of branching in zwitterionic polymer brushes grafted from PES UF membrane surfaces via AGET-ATR(c)P. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
19
|
Glišić I, Ritsema van Eck GC, Smook LA, de Beer S. Enhanced vapor sorption in block and random copolymer brushes. SOFT MATTER 2022; 18:8398-8405. [PMID: 36259991 PMCID: PMC9667471 DOI: 10.1039/d2sm00868h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polymer brushes in gaseous environments absorb and adsorb vapors of favorable solvents, which makes them potentially relevant for sensing applications and separation technologies. Though significant amounts of vapor are sorbed in homopolymer brushes at high vapor pressures, at low vapor pressures sorption remains limited. In this work, we vary the structure of two-component polymer brushes and investigate the enhancement in vapor sorption at different relative vapor pressures compared to homopolymer brushes. We perform molecular dynamics simulations on two-component block and random copolymer brushes and investigate the influence of monomer miscibility and formation of high-energy interfaces between immiscible monomers on vapor sorption. Additionally, we present absorption isotherms of pure homopolymer, mixed binary brush and 2-block, 4-block, and random copolymer brushes. Based on these isotherms, we finally show that random copolymer brushes absorb more vapor than any other architecture investigated thus far. Random brushes display enhanced sorption at both high and low vapor pressures, with the largest enhancement in sorption at low vapor pressures.
Collapse
Affiliation(s)
- Ivona Glišić
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
20
|
Martinez J, Fan S, Rabade S, Blevins AK, Fung K, Killgore JP, Perez SB, Youngbear K, Carbrello C, Foley S, Ding X, Long R, Castro R, Ding Y. Capillary infiltration kinetics in highly asymmetric porous membranes and the resulting debonding behaviors. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Li CW, Romeis D, Koch M, Merlitz H, Sommer JU. Theoretical analysis of the elastic free energy contributions to polymer brushes in poor solvent: A refined mean-field theory. J Chem Phys 2022; 157:104902. [DOI: 10.1063/5.0103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider polymer brushes in poor solvent that are grafted onto planar substrates and onto the internal and external surfaces of a cylinder using molecular dynamics simulation, self-consistent field (SCF), and mean-field theory. We derive a unified expression for the mean field free energy for the three geometrical classes. While for low grafting densities, the effect of chain elasticity can be neglected in poor solvent conditions, it becomes relevant at higher grafting densities and, in particular, for concave geometries. Based on the analysis of the end monomer distribution, we introduce an analytical term that describes the elasticity as a function of grafting density. The accuracy of the model is validated with molecular dynamics simulations as well as SCF computations and shown to yield precise values for the layer thickness over a wide range of system parameters. We further apply this model to analyze the gating behavior of switchable brushes inside nanochannels.
Collapse
Affiliation(s)
- Cheng-Wu Li
- Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany
| | - Dirk Romeis
- Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany
| | - Markus Koch
- Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 13, Dresden, Germany
| |
Collapse
|
22
|
Zięba M, Rusak T, Misztal T, Zięba W, Marcińczyk N, Czarnecka J, Al-Gharabli S, Kujawa J, Terzyk AP. Nitrogen plasma modification boosts up the hemocompatibility of new PVDF-carbon nanohorns composite materials with potential cardiological and circulatory system implants application. BIOMATERIALS ADVANCES 2022; 138:212941. [PMID: 35913257 DOI: 10.1016/j.bioadv.2022.212941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To design new material for blood-related applications one needs to consider various factors such as cytotoxicity, platelet adhesion, or anti-thrombogenic properties. The aim of this work is the design of new, highly effective materials possessing high blood compatibility. To do this, the new composites based on the poly(vinylidene fluoride) (PVDF) support covered with a single-walled carbon nanohorns (CNHs) layer were prepared. The PVDF-CNHs composites were subsequently used for the first time in the hemocompatibility studies. To raise the hemocompatibility a new, never applied before for CNHs, plasma-surface modifications in air, nitrogen and ammonia were implemented. This relatively cheap, facile and easy method allows generating the new hybrid materials with high effectiveness and significant differences in surface properties (water contact angle, surface ζ-potential, and surface functional groups composition). Changing those properties made it possible to select the most promising samples for blood-related applications. This was done in a fully controlled way by applying Taguchi's "orthogonal array" procedure. It is shown for the first time that nitrogen plasma treatment of new surfaces is the best tool for hemocompatibility rise and leads to very low blood platelet adhesion, no cytotoxicity, and excellent performance in thromboelastometry and hemolysis tests. We propose a possible mechanism explaining this behavior. The optimisation results are coherent with biological characterisation and are supported with Hansen Solubility Parameters. New surfaces can find potential applications in cardiological and circulatory system implants as well as other blood-related biomaterials.
Collapse
Affiliation(s)
- Monika Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Adama Mickiewicza 2C, 15-089 Bialystok, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan
| | - Joanna Kujawa
- Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| |
Collapse
|
23
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
24
|
Ritsema van Eck G, Chiappisi L, de Beer S. Fundamentals and Applications of Polymer Brushes in Air. ACS APPLIED POLYMER MATERIALS 2022; 4:3062-3087. [PMID: 35601464 PMCID: PMC9112284 DOI: 10.1021/acsapm.1c01615] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 05/22/2023]
Abstract
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
Collapse
Affiliation(s)
- Guido
C. Ritsema van Eck
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonardo Chiappisi
- Institut
Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
25
|
Ye H, Zhou Y, Yang G, Yu T, Zhang Y, Zhao L, Xin Q, Han S. Protein fractionation of pH‐responsive brush‐modified ethylene vinyl alcohol copolymer membranes*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Yining Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Guodong Yang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Tengfei Yu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| | - Shurui Han
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering, Tiangong University Tianjin PR China
| |
Collapse
|
26
|
Liu Z, Lin L, Li T, Kinnun J, Hong K, Ma YZ, Sacci RL, Katsaras J, Carrillo JM, Doughty B, Collier CP. Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. J Phys Chem Lett 2022; 13:2273-2280. [PMID: 35239358 DOI: 10.1021/acs.jpclett.1c03941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired membrane molecules with improved physical properties and enhanced stability can serve as functional models for conventional lipid or amphiphilic species. Importantly, these molecules can also provide new insights into emergent phenomena that manifest during self-assembly at interfaces. Here, we elucidate the structural response and mechanistic steps underlying the self-assembly of the amphiphilic, charged oligodimethylsiloxane imidazolium cation (ODMS-MIM+) at the air-aqueous interface using Langmuir trough methods with coincident surface-specific vibrational sum-frequency generation (SFG) spectroscopy. We find evidence for a new compression-induced desolvation step that precedes commonly known disordered-to-ordered phase transitions to form nanoscopic assemblies. The experimental data was supported by atomistic molecular dynamics (MD) simulations to provide a detailed mechanistic picture underlying the assembly and the role of water in these phase transitions. The sensitivity of the hydrophobic ODMS tail conformations to compression─owing to distinct water-ODMS interactions and tail-tail solvation properties─offers new strategies for the design of interfaces that can be further used to develop soft-matter electronics and low-dimensional materials using physical and chemical controls.
Collapse
Affiliation(s)
- Zening Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Kinnun
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charles Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
27
|
Ma X, Wang C, Guo H, Wang Z, Sun N, Huo P, Gu J, Liu Y. Novel dopamine-modified cellulose acetate ultrafiltration membranes with improved separation and antifouling performances. JOURNAL OF MATERIALS SCIENCE 2022; 57:6474-6486. [PMID: 35281667 PMCID: PMC8902852 DOI: 10.1007/s10853-022-07024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Cellulose acetate (CA) is widely used in the preparation of ultrafiltration membranes due to its many excellent characteristics, especially chemical activity and biodegradability. To improve the inherent hydrophobic and antifouling properties of CA membrane, in this work, CA was successfully modified with dopamine (CA-2,3-DA) through selective oxidation and Schiff base reactions, which was confirmed by FTIR and 1H NMR measurements. Then, CA-2,3-DA membrane with high water permeability and excellent antifouling property was prepared by the phase inversion method. Compared with the original CA membrane, the CA-2,3-DA membrane maintained a higher rejection ratio for BSA (92.5%) with a greatly increased pure water flux (167.3 L m-2 h-1), which could overcome the trade-off between permeability and selectivity of the traditional CA membrane to a certain extent. According to static protein adsorption and three-cycle dynamic ultrafiltration experiments, the CA-2,3-DA membrane showed good antifouling performance and superior long-term performance stability, as supported by the experimental results, including flux recovery ratio, flux decline ratio, and filtration resistance. It is expected that this approach can greatly expand the high-value utilization of modified natural organic polysaccharides in separation engineering.
Collapse
Affiliation(s)
- Xi Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Chengyang Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012 People’s Republic of China
| | - Hanxiang Guo
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Zhaofeng Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Nan Sun
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Pengfei Huo
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiyou Gu
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yang Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Bio-Based Materials Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
28
|
Enes da Silva MJ, Banerjee A, Lefferts L, Albanese JAF. In‐situ ATR‐IR Spectroscopy Reveals Complex Absorption‐Diffusion Dynamics in Model Polymer‐Membrane‐Catalyst Assemblies (PCMA). ChemCatChem 2022. [DOI: 10.1002/cctc.202101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Joao Enes da Silva
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Aayan Banerjee
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Leon Lefferts
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Catalytic Processes and Materials Group NETHERLANDS
| | - Jimmy Alexander Faria Albanese
- Universiteit Twente MESA+ Faculty of Science and Technology Drienerlolaan 5Meander ME361Netherlands 7522NB Enschede NETHERLANDS
| |
Collapse
|
29
|
Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci 2022; 300:102580. [PMID: 34922246 DOI: 10.1016/j.cis.2021.102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Current advancements in the creation of anisotropy in particles and their surface modification with polymer brushes have established a new class of hybrid materials termed polymer brush modified anisotropic particles (PBMAP). PBMAPs display unique property combinations, e.g., multi-functionality in multiple directions along with smart behavior, which is not easily achievable in traditional hybrid materials. Typically, anisotropic particles can be categorized based on three different factors, such as shape anisotropy (geometry driven), compositional anisotropy (functionality driven), and surface anisotropy (spatio-selective surface modification driven). In this review, we have particularly focused on the synthetic strategies to construct the various type of PBMAPs based on inorganic or organic core which may or may not be isotropic in nature, and their applications in various fields ranging from drug delivery to catalysis. In addition, superior performances and fascinating properties of PBMAPs over their isotropic analogues are also highlighted. A brief overview of their future developments and associated challenges have been discussed at the end.
Collapse
Affiliation(s)
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
30
|
Martinez J, Aghajani M, Lu Y, Blevins AK, Fan S, Wang M, Killgore JP, Perez SB, Patel J, Carbrello C, Foley S, Sylvia R, Long R, Castro R, Ding Y. Capillary bonding of membranes by viscous polymers: Infiltration kinetics and mechanical integrity of the bonded polymer/membrane structures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
32
|
Ding J, Liang H, Zhu X, Xu D, Luo X, Wang Z, Bai L. Surface modification of nanofiltration membranes with zwitterions to enhance antifouling properties during brackish water treatment: A new concept of a “buffer layer”. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Yagasaki T, Matubayasi N. Crystallization of Polyethylene Brushes and Its Effect on Interactions with Water. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuma Yagasaki
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
35
|
pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
37
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
38
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Smook LA, Ritsema van Eck GC, de Beer S. Vapor sorption in binary polymer brushes: The effect of the polymer-polymer interface. J Chem Phys 2021; 155:054904. [PMID: 34364330 DOI: 10.1063/5.0057065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer brushes attract vapors that are good solvents for polymers. This is useful in sensing and other technologies that rely on concentrating vapors for optimal performance. It was recently shown that vapor sorption can be enhanced further by incorporating two incompatible types of polymers A and B in the brushes: additional vapor adsorbs at the high-energy polymer-polymer interface in these binary brushes. In this article, we present a model that describes this enhanced sorption in binary brushes of immiscible A-B polymers. To do so, we set up a free-energy model to predict the interfacial area between the different polymer phases in binary brushes. This description is combined with Gibbs adsorption isotherms to determine the adsorption at these interfaces. We validate our model with coarse-grained molecular dynamics simulations. Moreover, based on our results, we propose design parameters (A-B chain fraction, grafting density, vapor, and A-B interaction strength) for optimal vapor absorption in coatings composed of binary brushes.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
40
|
Zhu PW. Effects of cosolvent partitioning on conformational transitions and tethered chain flexibility in spherical polymer brushes. SOFT MATTER 2021; 17:6817-6832. [PMID: 34223603 DOI: 10.1039/d1sm00523e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, based on the framework of preferential adsorption concept and analytical self-consistent field (SCF) theory, a model is proposed to investigate the reentrant transition experimentally observed from the thermoresponsive spherical brush in a series of aqueous alcohol solutions. The interaction between monomers is incorporated into the model. Conformational transitions of the spherical brush are quantitatively correlated to the physical parameters, including the number of adsorbed cosolvents which facilitates the solvent quality, the number of cosolvent bridges which drives the brush collapse, as well as their partition coefficients between the brush and the bulk solution. An analytical formula for the number of Kuhn segments per tethered chain is obtained based on the analytical SCF theory, which elucidates the flexibility of tethered chains in the intricate system of multicomponents involving the conformational transitions. Under the experimental conditions associated with the cosolvent-brush interaction, the variation of the monomer chemical potential with the monomer concentration indicates that the monomer distribution of the spherical brush remains continuous. The analysis based on the SFC theory also reveals that the distribution of adsorbed cosolvents is a positive parabola while the distribution of cosolvent bridges appears to be an exponential decay function, implying that the intervening space between tethered chains, rather than the number of adsorbed cosolvents, plays a crucial role in forming the cosolvent bridge. We demonstrate that the model formulated for the reentrant transition under weaker cosolvent-brush interactions provides guidelines for the one under stronger nanoparticle-brush interactions.
Collapse
Affiliation(s)
- Peng Wei Zhu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
41
|
Iminodiacetic Acid (IDA) Cation-Exchange Nonwoven Membranes for Efficient Capture of Antibodies and Antibody Fragments. MEMBRANES 2021; 11:membranes11070530. [PMID: 34357180 PMCID: PMC8305546 DOI: 10.3390/membranes11070530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
There is strong need to reduce the manufacturing costs and increase the downstream purification efficiency of high-value therapeutic monoclonal antibodies (mAbs). This paper explores the performance of a weak cation-exchange membrane based on the coupling of IDA to poly(butylene terephthalate) (PBT) nonwoven fabrics. Uniform and conformal layers of poly(glycidyl methacrylate) (GMA) were first grafted to the surface of the nonwovens. Then IDA was coupled to the polyGMA layers under optimized conditions, resulting in membranes with very high permeability and binding capacity. This resulted in IgG dynamic binding capacities at very short residence times (0.1–2.0 min) that are much higher than those achieved by the best cation-exchange resins. Similar results were obtained in the purification of a single-chain (scFv) antibody fragment. As is customary with membrane systems, the dynamic binding capacities did not change significantly over a wide range of residence times. Finally, the excellent separation efficiency and potential reusability of the membrane were confirmed by five consecutive cycles of mAb capture from its cell culture harvest. The present work provides significant evidence that this weak cation-exchange nonwoven fabric platform might be a suitable alternative to packed resin chromatography for low-cost, higher productivity manufacturing of therapeutic mAbs and antibody fragments.
Collapse
|
42
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
43
|
Chen Y, Kim S, Cohen Y. Tuning the hydraulic permeability and molecular weight cutoff (MWCO) of surface nano-structured ultrafiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Berwanger JD, Tan HY, Jokhadze G, Bruening ML. Determination of the Serum Concentrations of the Monoclonal Antibodies Bevacizumab, Rituximab, and Panitumumab Using Porous Membranes Containing Immobilized Peptide Mimotopes. Anal Chem 2021; 93:7562-7570. [PMID: 33999602 DOI: 10.1021/acs.analchem.0c04903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective monoclonal antibody (mAb) therapies require a threshold mAb concentration in patient serum. Moreover, the serum concentration of the mAb Bevacizumab should reside in a specific range to avoid side effects. Methods for conveniently determining the levels of mAbs in patient sera could allow for personalized dosage schedules that lead to more successful treatments. This work utilizes microporous nylon membranes functionalized with antibody-binding peptides to capture Bevacizumab, Rituximab, or Panitumumab from diluted (25%) serum. Modification of the capture-peptide terminus is often crucial to creating the affinity necessary for effective binding. The high purity of eluted mAbs allows for their quantitation using native fluorescence, and membranes are effective in spin devices that can be used in any laboratory. The technique is effective over the therapeutic range of Bevacizumab concentrations. Future work aims at further modifications to develop rapid point-of-care devices and decrease detection limits.
Collapse
Affiliation(s)
- Joshua D Berwanger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hui Yin Tan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gia Jokhadze
- Takara Bio USA, Inc., Mountain View, California 94043, United States
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
45
|
Rho H, Im SJ, Alrehaili O, Lee S, Jang A, Perreault F, Westerhoff P. Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6984-6994. [PMID: 33949853 DOI: 10.1021/acs.est.0c07844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.
Collapse
Affiliation(s)
- Hojung Rho
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Omar Alrehaili
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Sungyun Lee
- Department of Civil Environmental Engineering, School of Disaster Prevention and Environmental Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
46
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Zhuo Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, P. R. China
| |
Collapse
|
47
|
Hydraulic Resistance and Protein Fouling Resistance of a Zirconia Membrane with a Tethered PVP Layer. WATER 2021. [DOI: 10.3390/w13070951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of surface modification of zirconia (ZrO2) membrane with tethered poly(vinyl pyrrolidone) (PVP) chains was evaluated with respect to the impact of pH and ionic strength on hydraulic resistance and fouling resistance in the filtration of bovine serum albumin (BSA) and lysozyme (Lys) as model protein foulants. The tethered PVP surface layer led to membrane permeability and fouling propensity that were responsive to both pH and ionic strength. The PVP-modified membrane (PVP-ZrO2) hydraulic resistance increased by up to ~48% over a pH range of 6–11, but with no discernible impact at lower pH. Membrane hydraulic resistance was virtually unaffected by ionic strength over the 0.001–1 M range. However, reversible foulant cake resistance in BSA and Lys solution filtration increased with elevated ionic strength, owing in part to the weakening of protein–protein repulsion. Irreversible BSA and Lys fouling was affected by the operational pH relative to the protein isoelectric point (IEP) and reduced under conditions of chain swelling. Irreversible membrane fouling resistance for both proteins was significantly lower, by ~11–49% and 18–74%, respectively, for the PVP-ZrO2 membrane relative to the unmodified ZrO2 membrane. The present results suggest the merit of further exploration of fouling reduction and improvement of membrane cleaning effectiveness via tuning pH and ionic strength triggered conformational responsiveness of the tethered target polymer layer.
Collapse
|
48
|
Maalige R N, Aruchamy K, Polishetti V, Halakarni M, Mahto A, Mondal D, Sanna Kotrappanavar N. Restructuring thin film composite membrane interfaces using biopolymer as a sustainable alternative to prevent organic fouling. Carbohydr Polym 2021; 254:117297. [PMID: 33357865 DOI: 10.1016/j.carbpol.2020.117297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Replacing polyamide (PA) layer in commercially successful thin film composite (TFC) membranes prepared via interfacial polymerization has been challenging task. Lately, PA is under scrutiny due to its increasing fouling propensity for highly contaminated waters. To mitigate the bio and organic fouling on PA layer in nanofiltration (NF) membranes in a long run, present study attempts to create a new interfacial thin film asymmetric structure using biopolymer chitosan as sustainable alternative. Herein, the effect of chitosan-silver on porous support structure and filtration performance were systematically investigated. Further, the membranes were characterized for their functionality and surface characteristics using ATR-IR, FESEM, AFM, UV-vis spectroscopy and contact angle measurements, respectively. New asymmetric membrane performances in cross flow process were evaluated in terms of pure water flux, NaCl (∼40 %), red brown/organic dye (>98 %) and tannery wastewater flux and rejection (>98 %). With a higher pure water flux (>100 L m-2 h-1) compared to control (40 L m-2 h-1) at 4 bar, membrane showed exceptional antifouling behaviors in comparison to commercial PA membrane. Further, surface characteristics of the membranes before and after rigorous testing were evaluated using AFM micrographs and SEM imaging.
Collapse
Affiliation(s)
- Nidhi Maalige R
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India
| | - Kanakaraj Aruchamy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India
| | - Veerababu Polishetti
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), B.G. Marg, Bhavnagar, 364002, India
| | - Mahaveer Halakarni
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India
| | - Ashesh Mahto
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India
| | - Dibyendu Mondal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India.
| | - Nataraj Sanna Kotrappanavar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore, 562112, India; IMDEA Water Institute, Avenida Punto Com, 2, Parque Cientıfco Tecnoĺogico de la Universidad de Alcala, Alcal ́a de Henares, 28805, Madrid, Spain.
| |
Collapse
|
49
|
Structure evolution in carbon molecular sieve membranes derived from binaphthol-6FDA polyimide and their gas separation performance. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Bell D, Ludwanowski S, Lüken A, Sarikaya B, Walther A, Wessling M. Hydrogel membranes made from crosslinked microgel multilayers with tunable density. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|