1
|
Xie J, Liang A, Lin Q, Chen N, Ahmed A, Li X, Jian R, Sun L, Ding F. Superhydrophilic Silica Coatings via a Sequential Dipping Process. Molecules 2025; 30:1857. [PMID: 40333906 PMCID: PMC12029371 DOI: 10.3390/molecules30081857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
A superhydrophilic silica coating was prepared using a sequential dipping process involving acid-catalyzed silica, base-catalyzed silica, and 3-(trihydroxysilyl)propanesulfonic acid. Acid-catalyzed and base-catalyzed silica particles with varying diameters were synthesized by hydrolyzing tetraethyl orthosilicate using HCl and NH3·H2O as catalysts, respectively. 3-(Trihydroxysilyl)propanesulfonic acid was obtained by oxidizing mercaptopropyl trimethoxysilane with hydrogen peroxide under acidic conditions. The resulting silica coating exhibited exceptional superhydrophilicity, with a water static contact angle of 5.0°, and demonstrated underwater superoleophobicity, with a hexadecane underwater contact angle exceeding 140°. Surfaces coated with the superhydrophilic silica coatings showed excellent performances in oil-water separation, anti-protein adsorption, and anti-fogging applications.
Collapse
Affiliation(s)
- Junbao Xie
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Anqi Liang
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Qin Lin
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Nantian Chen
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Abbas Ahmed
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Xiaoyan Li
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Rongkun Jian
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Fuchuan Ding
- Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; (J.X.); (A.L.); (Q.L.); (N.C.); (R.J.)
| |
Collapse
|
2
|
Chen J, Yang M, Zhang H, Chen Y, Ji Y, Yu R, Liu Z. Boosting the Activation of Molecular Oxygen and the Degradation of Rhodamine B in Polar-Functional-Group-Modified g-C 3N 4. Molecules 2024; 29:3836. [PMID: 39202915 PMCID: PMC11356892 DOI: 10.3390/molecules29163836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Molecular oxygen activation often suffers from high energy consumption and low efficiency. Developing eco-friendly and effective photocatalysts remains a key challenge for advancing green molecular oxygen activation. Herein, graphitic carbon nitride (g-C3N4) with abundant hydroxyl groups (HCN) was synthesized to investigate the relationship between these polar groups and molecular oxygen activation. The advantage of the hydroxyl group modification of g-C3N4 included narrower interlayer distances, a larger specific surface area and improved hydrophilicity. Various photoelectronic measurements revealed that the introduced hydroxyl groups reduced the charge transfer resistance of HCN, resulting in accelerated charge separation and migration kinetics. Therefore, the optimal HCN-90 showed the highest activity for Rhodamine B photodegradation with a reaction time of 30 min and an apparent rate constant of 0.125 min-1, surpassing most other g-C3N4 composites. This enhanced activity was attributed to the adjusted band structure achieved through polar functional group modification. The modification of polar functional groups could alter the energy band structure of photocatalysts, narrow band gap, enhance visible-light absorption, and improve photogenerated carrier separation efficiency. This work highlights the significant potential of polar functional groups in tuning the structure of g-C3N4 to enhance efficient molecular oxygen activation.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Department of Chemical and Material Engineering, Quzhou College of Technology, Quzhou 324002, China; (M.Y.); (H.Z.)
| | - Minghua Yang
- Department of Chemical and Material Engineering, Quzhou College of Technology, Quzhou 324002, China; (M.Y.); (H.Z.)
| | - Hongjiao Zhang
- Department of Chemical and Material Engineering, Quzhou College of Technology, Quzhou 324002, China; (M.Y.); (H.Z.)
| | - Yuxin Chen
- Department of Chemistry, Lishui University, 1 Xueyuan Road, Lishui 323000, China; (Y.C.); (Y.J.); (R.Y.)
| | - Yujie Ji
- Department of Chemistry, Lishui University, 1 Xueyuan Road, Lishui 323000, China; (Y.C.); (Y.J.); (R.Y.)
| | - Ruohan Yu
- Department of Chemistry, Lishui University, 1 Xueyuan Road, Lishui 323000, China; (Y.C.); (Y.J.); (R.Y.)
| | - Zhenguo Liu
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Xu X, Zhang X, He H, Dai L, Hu J, Si C. Graphitic Carbon Nitride Enters the Scene: A Promising Versatile Tool for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39023123 DOI: 10.1021/acs.langmuir.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields.
Collapse
Affiliation(s)
- Xuan Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Haodong He
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Mao L, Zhai B, Shi J, Kang X, Lu B, Liu Y, Cheng C, Jin H, Lichtfouse E, Guo L. Supercritical CH 3OH-Triggered Isotype Heterojunction and Groups in g-C 3N 4 for Enhanced Photocatalytic H 2 Evolution. ACS NANO 2024; 18:13939-13949. [PMID: 38749923 DOI: 10.1021/acsnano.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.
Collapse
Affiliation(s)
- Liuhao Mao
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Binjiang Zhai
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Xing Kang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Bingru Lu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Yanbing Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Cheng Cheng
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
5
|
Chen L, Li M, Xiao Q, Yang Y, Huang P, Qiu X. Highly Hydrophilic and Defective Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. J Phys Chem Lett 2023; 14:11704-11714. [PMID: 38109496 DOI: 10.1021/acs.jpclett.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Graphitic carbon nitride (g-C3N4), as a kind of nonmetallic low-cost photocatalyst, has great potential in photocatalytic hydrogen (H2) evolution, but its poor hydrophilicity and nonwetting extremely limit its H2 evolution efficiency. Herein, highly hydrophilic and defective g-C3N4 photocatalysts (NH3-CN-P as a representative example) have been fabricated on the basis of the strategy of joint phosphorus doping and ammonia stripping. The dopant of phosphorus prefers to occupy the C atoms bonded to -NH2 groups in the g-C3N4 skeleton, which is conducive to the formation of N defects caused by the effects of electronegativity and charge balance. Moreover, ammonia stripping plays a dual role in exposing plentiful two-dimensional defective planar structure and implanting the hydrophilic groups on the surface. As expected, the photocatalytic H2 evolution property of NH3-CN-P reaches 11.31 mmol g-1 h-1, with an apparent quantum yield of 17.9% at 420 nm, outperforming the majority of the reported g-C3N4-based photocatalysts.
Collapse
Affiliation(s)
- Long Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Miao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qinqin Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ying Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Peixian Huang
- School of Data Science, Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
6
|
Chu X, Sathish CI, Yang JH, Guan X, Zhang X, Qiao L, Domen K, Wang S, Vinu A, Yi J. Strategies for Improving the Photocatalytic Hydrogen Evolution Reaction of Carbon Nitride-Based Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302875. [PMID: 37309270 DOI: 10.1002/smll.202302875] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Due to the depletion of fossil fuels and their-related environmental issues, sustainable, clean, and renewable energy is urgently needed to replace fossil fuel as the primary energy resource. Hydrogen is considered as one of the cleanest energies. Among the approaches to hydrogen production, photocatalysis is the most sustainable and renewable solar energy technique. Considering the low cost of fabrication, earth abundance, appropriate bandgap, and high performance, carbon nitride has attracted extensive attention as the catalyst for photocatalytic hydrogen production in the last two decades. In this review, the carbon nitride-based photocatalytic hydrogen production system, including the catalytic mechanism and the strategies for improving the photocatalytic performance is discussed. According to the photocatalytic processes, the strengthened mechanism of carbon nitride-based catalysts is particularly described in terms of boosting the excitation of electrons and holes, suppressing carriers recombination, and enhancing the utilization efficiency of photon-excited electron-hole. Finally, the current trends related to the screening design of superior photocatalytic hydrogen production systems are outlined, and the development direction of carbon nitride for hydrogen production is clarified.
Collapse
Affiliation(s)
- Xueze Chu
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jae-Hun Yang
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xinwei Guan
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xiangwei Zhang
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Kazunari Domen
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1, Wakasato, Nagano-shi, Nagano, 380-8533, Japan
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Wang N, Cheng L, Liao Y, Xiang Q. Effect of Functional Group Modifications on the Photocatalytic Performance of g-C 3 N 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300109. [PMID: 36965084 DOI: 10.1002/smll.202300109] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In recent years, photocatalysis has received increasing attention in alleviating energy scarcity and environmental treatment, and graphite carbon nitride (g-C3 N4 ) is used as an ideal photocatalyst. However, it still remains numerous challenges to obtain the desirable photocatalytic performance of intrinsic g-C3 N4 . Functional group functionalization, formed by introducing functional groups into the bulk structure, is one of the common modification techniques to modulate the carrier dynamics and increases the number of active sites, offering new opportunities to break the limits for structure-to-performance relationship of g-C3 N4 . Nevertheless, the general overview of the advance of functional group modification of g-C3 N4 is less reported yet. In order to better understand the structure-to-performance relationship at the molecular level, a review of the latest development of functional group modification is urgently needed. In this review, the functional group modification of g-C3 N4 in terms of structures, properties, and photocatalytic activity is mainly focused, as well as their mechanism of reaction from the molecular level insights is explained. Second, the recent progress of the application of introducing functional groups in g-C3 N4 is introduced and examples are given. Finally, the difficulties and challenges are presented, and based on this, an outlook on the future research development direction is shown.
Collapse
Affiliation(s)
- Na Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Lei Cheng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
9
|
Mao J, Gu Z, Zhang S, An X, Lan H, Liu H, Qu J. Protonated carbon nitride elicits microalgae for water decontamination. WATER RESEARCH 2022; 222:118955. [PMID: 35963136 DOI: 10.1016/j.watres.2022.118955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Comprehending the effects of synthetic nanomaterials on natural microorganisms is critical for the development of emerging nanotechnologies. Compared to artificial inactivation of microbes, the up-regulation of biological functions should be more attractive due to the possibility of discovering unexpected properties. Herein, a nanoengineering strategy was employed to tailor g-C3N4 for the metabolic regulation of algae. We found that surface protonated g-C3N4 (P-C3N4) as a nanopolymeric elicitor enabled the reinforced biological activity of Microcystis aeruginosa and Scenedesmus for harmful substances removal. Metabolomics analysis suggested that synthetic nanoarchitectures induced moderate oxidative stress of algae, with up-regulated biosynthesis of extracellular polymeric substances (EPS) for resisting the physiological damage caused by toxic substances in water. The formation of oxidative .O2- contributed to over five-fold enhancement in the biodecomposition of harmful aniline. Our study demonstrates a synergistic biotic-abiotic platform with valuable outcomes for various customized applications.
Collapse
Affiliation(s)
- Jie Mao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenao Gu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Guo J, Zhou J, Sun Z, Wang M, Zou X, Mao H, Yan F. Enhanced photocatalytic and antibacterial activity of acridinium-grafted g-C 3N 4 with broad-spectrum light absorption for antimicrobial photocatalytic therapy. Acta Biomater 2022; 146:370-384. [PMID: 35381397 DOI: 10.1016/j.actbio.2022.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/09/2023]
Abstract
As a metal-free polymeric photocatalyst, graphitic carbon nitride (g-C3N4) has attracted great attention owing to its high stability and low toxicity. However, g-C3N4 suffers from low light harvesting ability which limits its applications in antimicrobial photocatalytic therapy (APCT). Herein, acridinium (ADN)-grafted g-C3N4 (ADN@g-C3N4) nanosheets are prepared via covalent grafting of ADN to g-C3N4. The obtained ADN@g-C3N4 exhibits a narrow optical band gap (2.12 eV) and a wide optical absorption spectrum (intensity a.u. > 0.30) ranging from ultraviolet to near-infrared region. Moreover, ADN@g-C3N4 would produce reactive oxygen species (ROS) under light irradiation to exert effective sterilization and biofilm elimination activities against both gram-negative and gram-positive bacteria. Molecular dynamics simulation reveals that the ADN@g-C3N4 may move toward, tile and insert the bacterial lipid bilayer membrane through strong van der Waals and electrostatic interaction, decreasing the order parameter of the lipid while increasing the conducive of ROS migration, inducing ADN@g-C3N4 with improved antimicrobial and antibiofilm performance. Moreover, ADN@g-C3N4 could efficiently eradicate oral biofilm on artificial teeth surfaces. This work may provide a broad-spectrum light-induced photocatalytic therapy for preventing and treating dental plaque diseases and artificial teeth-related infections, showing potential applications for intractable biofilm treatment applications. An acridinium-grafted g-C3N4 (ADN@g-C3N4) with a narrow band gap and broad-spectrum light absorption was synthesized. The narrow optical band gap and improved electrostatic interaction with bacterial lipid bilayer membrane of ADN@g-C3N4 strengthened the ROS generation and facilitated the diffusion of ROS to bacteria surface, leading to enhanced photocatalytic and antibacterial activity against bacteria and corresponding biofilm under light irradiation. STATEMENT OF SIGNIFICANCE: An acridinium-grafted g-C3N4 (ADN@g-C3N4) with a narrow band gap and broad-spectrum light absorption was developed as an antimicrobial photocatalytic therapy agent. The ADN@g-C3N4 exhibited enhanced photocatalytic and antibacterial activity against bacteria and corresponding biofilm under light irradiation, showing potential applications for intractable biofilm treatment.
Collapse
|
11
|
Rostami M, Badiei A, Sorouri AM, Fasihi-Ramandi M, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@L-cysteine – Ox, N-rich mesoporous -gC3N4 nanocarriers as a targeted sonodynamic chemotherapeutic agent for enhanced tumor eradication. SURFACES AND INTERFACES 2022; 30:101900. [DOI: 10.1016/j.surfin.2022.101900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
12
|
Rapid high-temperature hydrothermal post treatment on graphitic carbon nitride for enhanced photocatalytic H2 evolution. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen Q, Song B, Li X, Wang R, Wang S, Xu S, Reniers F, Lam CH. Enhancing the Properties of Photocatalysts via Nonthermal Plasma Modification: Recent Advances, Treatment Variables, Mechanisms, and Perspectives. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qianqian Chen
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Bing Song
- Scion, 49 Sala Street, Whakarewarewa, Rotorua 3010, New Zealand
| | - Xiaochen Li
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou 450003, China
| | - Renjie Wang
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Shun Wang
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Sankui Xu
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - François Reniers
- Chemistry of Surfaces, Interfaces, and Nanomaterials and Laboratoire de Chimie des Polymer̀es, Faculté des Sciences, Universite Libre de Bruxelles, ULB Boulevard du Triomphe, Brussels 1050, Belgium
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
14
|
Rostami M, Nasab AS, Fasihi-Ramandi M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@mZnO-Ox-p-g-C3N4 composites as dual pH- and ultrasound responsive nano-carriers for controlled and targeted cancer chemotherapy. MATERIALS CHEMISTRY AND PHYSICS 2021; 271:124863. [DOI: 10.1016/j.matchemphys.2021.124863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
15
|
Hu F, Luo W, Liu C, Dai H, Xu X, Yue Q, Xu L, Xu G, Jian Y, Peng X. Fabrication of graphitic carbon nitride functionalized P-CoFe 2O 4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation. CHEMOSPHERE 2021; 274:129783. [PMID: 33545591 DOI: 10.1016/j.chemosphere.2021.129783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In this study, nano-sized CoFe2O4 composites were prepared through co-precipitation process. Then the phosphorus-doped strong magnetic graphitic carbon nitride hybrids composites (P-CoFe2O4@GCN) was stemmed from the CoFe2O4 composites via the thermal polymerization method. The TEM results show that the CoFe2O4 nanoparticles have been successfully embedded into the graphitic carbon nitride (GCN). The BET specific surface area of P-CoFe2O4@GCN-1 could reach 36.91 m2/g, which was 5.38 times higher than that of GCN. Thus, it provided sufficient reaction active sites to enhance the photocatalytic activity for tetracycline (TC) decomposition. The results from the photocatalytic experiments showed that the degradation efficiency of TC by P-CoFe2O4@GCN-1 could reach 96.2% within 60 min, which is 3.19 times higher than that of GCN. The h+, O2•- and •OH radicals detected by the electron spin resonance (ESR) were responsible for the TC decomposition in the photocatalytic reaction system. Persulfate (PS) can further activate the hybrid mixture system, and the fitting model predicted by the response surface methodology (RSM) indicated that the maximum tetracycline removal could reach 99.6% within 30 min. In addition, the degradation intermediates of TC were detected by HPLC-MS and the photodegradation mechanism was discussed.
Collapse
Affiliation(s)
- Fengping Hu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China.
| | - Wendong Luo
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Caihua Liu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Hongling Dai
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, Shandong Province, China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, Shandong Province, China
| | - Li Xu
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, 330013, Jiangxi Province, China
| | - Gaoping Xu
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, 330013, Jiangxi Province, China
| | - Yan Jian
- Jiangxi Province Key Laboratory of Drinking Water Safety, Nanchang, 330013, Jiangxi Province, China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi Province, China.
| |
Collapse
|
16
|
Kashyap T, Boruah PJ, Bailung H, Sanyal D, Choudhury B. Simultaneous layer exfoliation and defect activation in g-C 3N 4 nanosheets with air-water interfacial plasma: spectroscopic defect probing with tailored optical properties. NANOSCALE ADVANCES 2021; 3:3260-3271. [PMID: 36133658 PMCID: PMC9416856 DOI: 10.1039/d1na00098e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Defect-activated ultrathin graphitic carbon nitride nanosheets (g-C3N4) show an enhanced visible light absorption, better charge-separation, and facile charge transport properties. These are requisites for the designing of an active photocatalyst. Conventional methods used for layer exfoliation and defect activation require strong acids, reducing agents, or ultrasonic treatment for a sufficiently long duration. Furthermore, single-step approaches for layer exfoliation and defect incorporation have hardly been reported. Herein, we have shown atmospheric plasma enabled fabrication of g-C3N4 nanosheets. This approach is simple, low-cost, less time-consuming, and a green approach to exfoliate layers and activate multiple defects concurrently. The protocol involves plasma discharging at an air-water interface at 5 kV for 30-150 min. Atomic force microscopy (AFM) reveals a layer thickness of 96.27 nm in bulk g-C3N4. The thickness becomes 3.78 nm after 150 min of plasma treatment. The exfoliated layers emerge with nitrogen-vacancy sites and self-incorporated defects as probed by positron annihilation spectroscopy (PAS) and X-ray photoelectron spectroscopy (XPS). The defect activated layers show visible light absorption extended up to 600 nm. It is demonstrated that a non-uniform change in the band gap with the plasma treatment time results from quantum confinement in thin layers and Urbach tailing due to defects acting in opposition. Further, steady-state and time-resolved spectroscopy shows the contribution of multiple defect sites for a prolonged lifetime of photoinduced carriers. These defect-activated ultrathin nanosheets of CN serve as an active photocatalyst in the degradation of rhodamine B (RhB) under white LED illumination.
Collapse
Affiliation(s)
- Trishamoni Kashyap
- Materials and Energy Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
- Department of Physics, Cotton University Panbazar Guwahati-01 India
| | - Palash J Boruah
- Basic and Applied Plasma Physics, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| | - Heremba Bailung
- Basic and Applied Plasma Physics, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| | - Dirtha Sanyal
- Variable Energy Cyclotron Centre HBNI, 1/AF Bidhannagar Kolkata-700064 India
| | - Biswajit Choudhury
- Materials and Energy Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Vigyan Path Guwahati-35 India
| |
Collapse
|
17
|
Cheng X, Lu R, Zhang X, Zhu Y, Wei S, Zhang Y, Zan X, Geng W, Zhang L. Silanization of a Metal-Polyphenol Coating onto Diverse Substrates as a Strategy for Controllable Wettability with Enhanced Performance to Resist Acid Corrosion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3637-3647. [PMID: 33740370 DOI: 10.1021/acs.langmuir.0c03623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wettability is a crucial characteristic of materials that plays a vital role in surface engineering. Surface modification is the key to changing the wettability of materials, and a simple and universal modification approach is being extensively pursued by researchers. Recently, metal-phenolic networks (MPNs) have been widely studied because they impart versatility and functionality in surface modification. However, an MPN is not stable for long periods, especially under acidic conditions, and is susceptible to pollution by invasive species. Spurred by the versatility of MPNs and various functionalities achieved by silanization, we introduce a general strategy to fabricate functionally stable coatings with controllable surface wettability by combining the two methods. The formation process of MPN and silane-MPN coatings was characterized by spectroscopic ellipsometry (SE), UV-visible-near-infrared (UV-vis-NIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), etc. We found that the stability of the MPN was greatly enhanced after silanization, which is attributed to the cross-linking effect that occurs between silane and the MPN, namely, the cross-linking protection produced in this case. Additionally, the wettability of an MPN can be easily changed through our strategy. We trust that our strategy can further extend the applications of MPNs and points toward potential prospects in surface modification.
Collapse
Affiliation(s)
- Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaxin Zhu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325035, People's Republic of China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| |
Collapse
|
18
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
19
|
Majdoub M, Anfar Z, Amedlous A. Emerging Chemical Functionalization of g-C 3N 4: Covalent/Noncovalent Modifications and Applications. ACS NANO 2020; 14:12390-12469. [PMID: 33052050 DOI: 10.1021/acsnano.0c06116] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomically 2D thin-layered structures, such as graphene nanosheets, graphitic carbon nitride nanosheets (g-C3N4), hexagonal boron nitride, and transition metal dichalcogenides are emerging as fascinating materials for a good array of domains owing to their rare physicochemical characteristics. In particular, graphitic carbon nitride has turned into a hot subject in the scientific community due to numerous qualities such as simple preparation, electrochemical properties, high adsorption capacity, good photochemical properties, thermal stability, and acid-alkali chemical resistance, etc. Basically, g-C3N4 is considered as a polymeric material consisting of N and C atoms forming a tri-s-triazine network connected by planar amino groups. In comparison with most C-based materials, g-C3N4 possesses electron-rich characteristics, basic moieties, and hydrogen-bonding groups owing to the presence of hydrogen and nitrogen atoms; therefore, it is taken into account as an interesting nominee to further complement carbon in applications of functional materials. Nevertheless, g-C3N4 has some intrinsic limitations and drawbacks mainly related to a relatively poor specific surface area, rapid charge recombination, a limited light absorption range, and a poor dispersibility in both aqueous and organic mediums. To overcome these shortcomings, numerous chemical modification approaches have been conducted with the aim of expanding the range of application of g-C3N4 and enhancing its properties. In the current review, the comprehensive survey is conducted on g-C3N4 chemical functionalization strategies including covalent and noncovalent approaches. Covalent approaches consist of establishing covalent linkage between the g-C3N4 structure and the chemical modifier such as oxidation/carboxylation, amidation, polymer grafting, etc., whereas the noncovalent approaches mainly consist of physical bonding and intermolecular interaction such as van der Waals interactions, electrostatic interactions, π-π interactions, and so on. Furthermore, the preparation, characterization, and diverse applications of functionalized g-C3N4 in various domains are described and recapped. We believe that this work will inspire scientists and readers to conduct research with the aim of exploring other functionalization strategies for this material in numerous applications.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, Casablanca 20000, Morocco
| | - Zakaria Anfar
- Laboratory of Materials & Environment, Ibn Zohr University, Agadir 80000, Morocco
- Institute of Materials Science of Mulhouse, Haute Alsace University, Mulhouse 68100, France
- Strasbourg University, Strasbourg 67081, France
| | - Abdallah Amedlous
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, Casablanca 20000, Morocco
| |
Collapse
|
20
|
Kumru B, Antonietti M. Colloidal properties of the metal-free semiconductor graphitic carbon nitride. Adv Colloid Interface Sci 2020; 283:102229. [PMID: 32795670 DOI: 10.1016/j.cis.2020.102229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
The metal-free, polymeric semiconductor graphitic carbon nitride (g-CN) family is an emerging class of materials and has striking advantages compared to other semiconductors, i.e. ease of tunability, low cost and synthesis from abundant precursors in a chemical environment. Efforts have been done to improve the properties of g-CN, such as photocatalytic efficiency, designing novel composites, processability and scalability towards discovering novel applications as a remedy for the problems that we are facing today. Despite the fact that the main efforts to improve g-CN come from a catalysis perspective, many fundamental possibilities arise from the special colloidal properties of carbon nitride particles, from synthesis to applications. This review will display how typical colloid chemistry tools can be employed to make 'better g-CNs' and how up to now overseen properties can be levered by integrating a colloid and interface perspective into materials chemistry. Establishing a knowledge on the origins of colloidal behavior of g-CN will be the core of the review.
Collapse
Affiliation(s)
- Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
21
|
Lu N, Liu N, Hui Y, Shang K, Jiang N, Li J, Wu Y. Characterization of highly effective plasma-treated g-C 3N 4 and application to the photocatalytic H 2O 2 production. CHEMOSPHERE 2020; 241:124927. [PMID: 31590029 DOI: 10.1016/j.chemosphere.2019.124927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 05/21/2023]
Abstract
Plasma treated g-C3N4 (PT-g-C3N4) was obtained by a simple and rapid DBD plasma modification process on the pristine g-C3N4. Compared with the pristine g-C3N4, the grain size of the PT-g-C3N4 decreased from 99.2 nm to 57.2 nm, the specific surface area and the pore volume increased by 15% and 33.8%, respectively. Oxygen-containing groups such as -NO2 and -COOH were observed to form on the surface of PT-g-C3N4 so the hydrophilic property of PT-g-C3N4 was much higher than that of pristine g-C3N4. More importantly, the photocatalytic H2O2 production activity of PT-g-C3N4 was significantly improved on account of the treatment in plasma atmosphere for only 5 min, the H2O2 yield of which was about 13 times that of the pristine g-C3N4. Our finding is not only of great significance for effectively promoting the production of H2O2 under mild conditions, but also proposes an innovative DBD plasma method to modify the g-C3N4 photocatalyst, which effectively promotes the improvement of photocatalytic activity and provides valuable insights for catalyst modification studies.
Collapse
Affiliation(s)
- Na Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Ning Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yan Hui
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Kefeng Shang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Nan Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yan Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
22
|
Cui H, Gu Z, Chen X, Lin L, Wang Z, Dai X, Yang Z, Liu L, Zhou R, Dong M. Stimulating antibacterial activities of graphitic carbon nitride nanosheets with plasma treatment. NANOSCALE 2019; 11:18416-18425. [PMID: 31576862 DOI: 10.1039/c9nr03797g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a widely studied photoactive antibacterial nanomaterial, the intrinsic antibacterial traits of graphitic carbon nitride (g-C3N4) as a two-dimensional nanomaterial have not been reported so far. Herein, nitrogen-plasma-treated g-C3N4 (N-g-C3N4) nanosheets and their influence on bactericidal characteristics are investigated. Bactericidal rates of more than 99% have been successfully achieved for 8 kinds of foodborne pathogenic bacteria by N-g-C3N4 with 8 h incubation in the dark. The achieved rates are percentage wise 10 times higher than those for pristine g-C3N4. Cell rupture caused by direct mechanical contact between g-C3N4 nanosheets and cell membranes is observed. X-ray photoelectron spectroscopy revealed a substantial loss of surface defects and nitrogen vacancies in N-g-C3N4. Molecular dynamics simulations further indicated that the largely sealed defects of N-g-C3N4 enhanced the electrostatic attraction between inherent pores and lipid heads; thus, further insertion of N-g-C3N4 was promoted, resulting in enhanced antibacterial activity. This study establishes novel fabrication and application strategies for carbon based antibacterial nanomaterials.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pandey RK, Chen L, Teraji S, Nakanishi H, Soh S. Eco-Friendly, Direct Deposition of Metal Nanoparticles on Graphite for Electrochemical Energy Conversion and Storage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36525-36534. [PMID: 31518101 DOI: 10.1021/acsami.9b09273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simple, green, and energy-efficient methods for preparing electroactive materials used to generate and store renewable energy are important for a sustainable future. In this study, we showed that noble and certain non-noble metal nanoparticles can be deposited on graphite without the aid of any reducing agent. This method of reducing metal ions to metal nanoparticles by graphite involves only one step (i.e., immersion into a solution) and one chemical (i.e., a metal salt). Hence, the method is exceedingly simple, green, and does not require any energy input. Large amounts of metal nanoparticles are generated both on the surface and deep into the bulk of graphite (∼100 μm). Despite the simplicity of this method, the metal deposited on graphite showed good electrocatalytic performance for ethanol oxidation and oxygen evolution reactions and also functioned as electrodes for supercapacitors. This method is thus ideal for preparing electrocatalytic materials and electrochemical energy storage devices due to its simplicity and environmental sustainability. The simplicity of the method is due to the inherent reducing potential of graphite (i.e., a material that is generally perceived as inert). Results from analyses showed that functionalization of the reactive edges in the regions of defects allowed the graphite to serve as a reducing agent. Increasing the amount of defects (e.g., via chemical or simple mechanical treatments) is shown to be the fundamental principle for increasing the reactivity of graphite.
Collapse
Affiliation(s)
- Rakesh K Pandey
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Satoshi Teraji
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology , Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585 , Japan
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology , Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585 , Japan
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
24
|
Cao Q, Kumru B, Antonietti M, Schmidt BVKJ. Grafting Polymers onto Carbon Nitride via Visible-Light-Induced Photofunctionalization. Macromolecules 2019; 52:4989-4996. [PMID: 31543549 PMCID: PMC6750929 DOI: 10.1021/acs.macromol.9b00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Indexed: 01/28/2023]
Abstract
![]()
Metal-free
graphitic carbon nitride (g-CN) has attracted significant
attention recently due to its multiple applications, such as photocatalysis,
energy storage and conversion, and biomaterials, albeit formation
of g-CN films is challenging. Herein, a “grafting to”
route to graft polymer brushes onto g-CN via visible-light irradiation
is described. Afterward, g-CN/polymer films can be obtained through
spin coating on glass substrates. As such, the present material provides
an improved process toward further application of g-CN in thin films.
Moreover, an improved dispersibility in organic solvent was realized
after grafting and functional groups (such as epoxides) were introduced
to g-CN. Subsequently, the epoxy groups were utilized for further
functionalization to adjust the surface polarity.
Collapse
Affiliation(s)
- Qian Cao
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baris Kumru
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bernhard V K J Schmidt
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
25
|
Kang S, He M, Chen M, Liu Y, Wang Y, Wang Y, Dong M, Chang X, Cui L. Surface Amino Group Regulation and Structural Engineering of Graphitic Carbon Nitride with Enhanced Photocatalytic Activity by Ultrafast Ammonia Plasma Immersion Modification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14952-14959. [PMID: 30964263 DOI: 10.1021/acsami.9b01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface amino group regulation and structural engineering of graphitic carbon nitride (g-CN) for better catalytic activity have increasingly become a focus of academia and industry. In this work, the ammonia plasma produced by a microwave surface wave plasma generator was developed as a facile source to achieve fast, controllable surface modification, and structural engineering of g-CN by ultrafast plasma treatment in minutes, thus enhancing photocatalytic performance of g-CN. The morphology, surface hydrophilicity, optical absorption properties, and states of C-N bonds were investigated to determine the effect of plasma immersion modification on the g-CN catalyst. The structure and photoelectric features of the plasma-modified samples were characterized by X-ray diffractometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The results indicate that the ammonia plasma-treated g-CN-NH3 exhibits an ultrathin nanosheet structure, enriched amino groups, and an ideal molecular structure, a narrower band gap (2.35 eV), extended light-harvesting edges (560 nm), and enhanced electron transport ability. The remarkably enhanced photocatalytic activity demonstrated in the photoreduction and detoxification of hexavalent chromium (Cr(VI)) can be ascribed to the optimization of the structural and photoelectric properties induced by the unique ammonia plasma treatment. The effective and ultrafast approach developed in this work is promising in the surface amino group regulation and structural engineering of various functional materials.
Collapse
Affiliation(s)
- Shifei Kang
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P.R. China
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus , Denmark
| | - Maofen He
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P.R. China
| | - Mengya Chen
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P.R. China
| | - Yanfei Liu
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P.R. China
| | - Yuting Wang
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus , Denmark
- School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan 523808 , Guangdong , P.R. China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering , Jiaxing University , Jiaxing 314001 , P.R. China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus , Denmark
| | - Xijiang Chang
- School of Electrical & Electronic Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P.R. China
| | - Lifeng Cui
- Department of Environmental Science and Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , P.R. China
| |
Collapse
|
26
|
Kumru B, Barrio J, Zhang J, Antonietti M, Shalom M, Schmidt BVKJ. Robust Carbon Nitride-Based Thermoset Coatings for Surface Modification and Photochemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9462-9469. [PMID: 30746936 PMCID: PMC6728114 DOI: 10.1021/acsami.8b21670] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 05/12/2023]
Abstract
Herein, the convenient visible light-induced photografting of hydroxyl ethyl methacrylate onto graphitic carbon nitride (g-CN) is described, leading to well-dispersible g-CN-based precursor polymers that can be injected. Mixing with citric acid as the cross-linker and heating leads to stable thermoset coatings. The process is versatile and easy to perform, leading to g-CN-based coatings. Moreover, the coating can be further functionalized/modified via grafting of other polymer chains, and the resulting structure is useful as photocatalytic surface or as photoelectrode.
Collapse
Affiliation(s)
- Baris Kumru
- Max
Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Jesús Barrio
- Department
of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jianrui Zhang
- Max
Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Markus Antonietti
- Max
Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Menny Shalom
- Department
of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | | |
Collapse
|
27
|
Amorin LH, Suzuki VY, de Paula NH, Duarte JL, da Silva MAT, Taft CA, de Almeida La Porta F. Electronic, structural, optical, and photocatalytic properties of graphitic carbon nitride. NEW J CHEM 2019. [DOI: 10.1039/c9nj02702e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials exhibit an organized layered porous structure and a band position optimum for the development of various optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Luís Henrique Amorin
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - Victor Yuudi Suzuki
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - Natália Herédia de Paula
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| | - José Leonil Duarte
- Grupo de Óptica e Optoeletrônica (GOO)
- Universidade Estadual de Londrina (UEL)
- Londrina
- Brazil
| | - Marco Aurélio Toledo da Silva
- Dispositivos Fotônicos e Materiais Nanoestruturados (DFMNano)
- Universidade Tecnológica Federal do Paraná (UTFPR)
- Londrina
- Brazil
| | - Carlton Anthony Taft
- Departamento de Materia Condensada
- CBPF—Centro Brasileiro de Pesquisas Físicas
- Rio de Janeiro
- Brazil
| | - Felipe de Almeida La Porta
- Federal Technological University of Paraná
- Nanotechnology and Computational Chemistry Laboratory
- Londrina
- Brazil
| |
Collapse
|
28
|
Effects of Protonation, Hydroxylamination, and Hydrazination of g-C₃N₄ on the Performance of Matrimid ®/g-C₃N₄ Membranes. NANOMATERIALS 2018; 8:nano8121010. [PMID: 30563112 PMCID: PMC6316444 DOI: 10.3390/nano8121010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
One of the challenges to continue improving polymeric membranes properties involves the development of novel chemically modified fillers, such as nitrogen-rich 2-D nanomaterials. Graphitic carbon nitride (g-C₃N₄) has attracted significant interest as a new class of these fillers. Protonation is known to afford it desirable functionalities to form unique architectures for various applications. In the work presented herein, doping of Matrimid® with protonated g-C₃N₄ to yield Matrimid®/g-C₃N₄ mixed matrix membranes was found to improve gas separation by enhancing the selectivity for CO₂/CH₄ by up to 36.9% at 0.5 wt % filler doping. With a view to further enhancing the contribution of g-C₃N₄ to the performance of the composite membrane, oxygen plasma and hydrazine monohydrate treatments were also assayed as alternatives to protonation. Hydroxylamination by oxygen plasma treatment increased the selectivity for CO₂/CH₄ by up to 52.2% (at 2 wt % doping) and that for O₂/N₂ by up to 26.3% (at 0.5 wt % doping). Hydrazination led to lower enhancements in CO₂/CH₄ separation, by up to 11.4%. This study suggests that chemically-modified g-C₃N₄ may hold promise as an additive for modifying the surface of Matrimid® and other membranes.
Collapse
|
29
|
Griffin M, Palgrave R, Baldovino-Medrano VG, Butler PE, Kalaskar DM. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography. Int J Nanomedicine 2018; 13:6123-6141. [PMID: 30349241 PMCID: PMC6181122 DOI: 10.2147/ijn.s167637] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tissue integration and vessel formation are important criteria for the successful implantation of synthetic biomaterials for subcutaneous implantation. OBJECTIVE We report the optimization of plasma surface modification (PSM) using argon (Ar), oxygen (O2) and nitrogen (N2) gases of a polyurethane polymer to enhance tissue integration and angiogenesis. METHODS The scaffold's bulk and surface characteristics were compared before and after PSM with either Ar, O2 and N2. The viability and adhesion of human dermal fibroblasts (HDFs) on the modified scaffolds were compared. The formation of extracellular matrix by the HDFs on the modified scaffolds was evaluated. Scaffolds were subcutaneously implanted in a mouse model for 3 months to analyze tissue integration, angiogenesis and capsule formation. RESULTS Surface analysis demonstrated that interfacial modification (chemistry, topography and wettability) achieved by PSM is unique and varies according to the gas used. O2 plasma led to extensive changes in interfacial properties, whereas Ar treatment caused moderate changes. N2 plasma caused the least effect on surface chemistry of the polymer. PSM-treated scaffolds significantly (P<0.05) enhanced HDF activity and growth over 21 days. Among all three gases, Ar modification showed the highest protein adsorption. Ar-modified scaffolds also showed a significant upregulation of adhesion-related proteins (vinculin, focal adhesion kinase, talin and paxillin; P<0.05) and extracellular matrix marker genes (collagen type I, fibronectin, laminin and elastin) and deposition of associated proteins by the HDFs. Subcutaneous implantation after 3 months demonstrated the highest tissue integration and angiogenesis and the lowest capsule formation on Ar-modified scaffolds compared with O2- and N2-modified scaffolds. CONCLUSION PSM using Ar is a cost-effective and efficient method to improve the tissue integration and angiogenesis of subcutaneous implants.
Collapse
Affiliation(s)
- Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Robert Palgrave
- Department of Chemistry, University College London, London, UK
| | | | - Peter E Butler
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Deepak M Kalaskar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, London, UK,
| |
Collapse
|
30
|
An X, Wu S, Tang Q, Lan H, Tang Y, Liu H, Qu J. Strongly coupled polyoxometalates/oxygen doped g-C3N4 nanocomposites as Fenton-like catalysts for efficient photodegradation of sulfosalicylic acid. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Zhao R, Gao J, Mei S, Wu Y, Wang X, Zhai X, Yang J, Hao C, Yan J. Facile synthesis of graphitic C 3N 4 nanoporous-tube with high enhancement of visible-light photocatalytic activity. NANOTECHNOLOGY 2017; 28:495710. [PMID: 29019339 DOI: 10.1088/1361-6528/aa929a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple and convenient method was used to synthesize a graphitic carbon nitride (g-C3N4) nanoporous-tube by using SiO2 nanoparticles as pore formers. The structure of the g-C3N4 nanoporous-tube was characterized by the SEM and TEM images. Taking photodegradation of RhB as an example, the photocatalytic activity of the as-prepared g-C3N4 nanoporous-tube was investigated. It can photodegrade 90% RhB in 40 min under visible-light irradiation and obtain a k value of 0.04491 min-1, which is 8.16 times that of bulk g-C3N4, 3.09 times that of tubular g-C3N4 and 1.48 times that of tubular g-C3N4-SiO2. The significant enhancement in photocatalytic efficiency is due to the edge effect of the pores and the special structure of the tubes. In addition, the possible mechanism of photocatalytic degradation of RhB was also proposed based on the trapping experiment of active species, which indicated that the superoxide radicals ([Formula: see text]) and the holes (h +) were the main reactive species in this photocatalyst. This work may open up a new idea of innovation in g-C3N4 structure and inspire its follow-up study.
Collapse
Affiliation(s)
- Ruiru Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kumar R, Barakat MA, Alseroury FA. Oxidized g-C 3N 4/polyaniline nanofiber composite for the selective removal of hexavalent chromium. Sci Rep 2017; 7:12850. [PMID: 28993628 PMCID: PMC5634480 DOI: 10.1038/s41598-017-12850-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials with selective adsorption properties are in demand for environmental applications. Herein, acid etching and oxidative decomposition of melon units of graphitic carbon nitride (g-C3N4) was performed to obtain the oxidized graphitic carbon nitride (Ox-g-C3N4) nanosheets. Ox- g-C3N4 nanosheets were further decorated on the polyaniline nanofiber (Ox-g-C3N4/Pani-NF). Ox-g-C3N4/Pani-NF was well characterized and further applied for a selective removal of hexavalent chromium (Cr(VI)) form aqueous solution. The zeta potential analysis indicate that the surface of Ox-g-C3N4/Pani-NF was positively charged which could be beneficial to bind anionic Cr(VI) ions electrostatically. In addition, nitrogen and oxygen containing functional groups exist on the Ox-g-C3N4/Pani-NF were mainly responsible for adsorption of Cr(VI) ions from aqueous solution. Moreover, the adsorption of Cr(VI) ions was also dependent on solution pH, reaction temperature and initial concentration of Cr(VI) ions. The maximum monolayer adsorption capacity of Ox-g-C3N4/Pani-NF for Cr(VI), calculated from Langmuir isotherm was 178.57 mg/g at pH = 2 and 30 °C. The activation energy (Ea = −20.66 kJ/mol) and the enthalpy change (ΔH° = −22.055 kJ/mol) validate the role of physical forces in adsorption of Cr(VI). These results demonstrate that Ox-g-C3N4/Pani-NF can be used as a potential adsorbent for environmental remediation applications.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Central Metallurgical R & D Institute, Helwan, 11421, Cairo, Egypt
| | - F A Alseroury
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Kumru B, Antonietti M, Schmidt BVKJ. Enhanced Dispersibility of Graphitic Carbon Nitride Particles in Aqueous and Organic Media via a One-Pot Grafting Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9897-9906. [PMID: 28845993 DOI: 10.1021/acs.langmuir.7b02441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A facile route to synthesize hydrophilically or hydrophobically grafted graphitic carbon nitride (g-CN) is reported. For this purpose, functionalized olefinic molecules with a low polymerization tendency are utilized for grafting onto the surface to preserve the features of g-CN while improving its dispersibility. One-pot, visible light-induced grafting yields highly dispersible g-CNs either in aqueous or organic media. Moreover, functional groups such as amines can be introduced, which yields pH-dependent dispersibility in aqueous media. Compared with unfunctionalized g-CN, low sonication times are sufficient to redisperse g-CN. In addition, because of increased dispersion stability, higher amounts of functionalized g-CN can be dispersed (up to 10% in aqueous dispersion and 2% in organic dispersion) when compared to unfunctionalized g-CN.
Collapse
Affiliation(s)
- Baris Kumru
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces , Research Campus Golm, 14424 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces , Research Campus Golm, 14424 Potsdam, Germany
| | - Bernhard V K J Schmidt
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces , Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|