1
|
Sultana S, Rahaman M, Hassan A, Parvez MA, Chandan MR. Biomass-Based Sustainable Graphene for Advanced Electronic Technology: A Review. Chem Asian J 2025; 20:e202500128. [PMID: 40256841 DOI: 10.1002/asia.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Through its remarkable mechanical, electrical, and thermal qualities, graphene has become a revolutionary material in electronics. Sustainable graphene synthesis from biomass residues offers a possible path toward adhering to the demand for economical and ecologically friendly graphene production methods. The present study thoroughly examines the numerous biomass sources used for graphene synthesis, such as plant-derived materials, agricultural waste, and other organic leftovers. The benefits and drawbacks of several synthesis methods are examined, including pyrolysis, chemical exfoliation, and hydrothermal carbonization. The study also explores the possible uses of graphene produced from biomass in electronics, including sensors, energy storage devices, electronic devices with flexibility, and electromagnetic interference (EMI) shielding. This review highlights how biomass-based graphene can revolutionize the electronics sector by bridging the gap between electronic applications, synthesis techniques, and biomass supplies.
Collapse
Affiliation(s)
- Salma Sultana
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abul Hassan
- Department of Finance, School of Business, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Anwar Parvez
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Rehaan Chandan
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
2
|
Ba shbil A, Yennappa Siddappa N, Daddi Suraiah S, Honnu G, Siddappa Pujar V, Sharanappa S, Hundekal D. Sustainable Approach to Fabricate High-Performance Symmetry Supercapacitor Electrodes from Natural Coconut-Shell-Derived Porous Activated Carbon with Nickel Oxide Nanocomposites. ACS OMEGA 2025; 10:11077-11090. [PMID: 40160793 PMCID: PMC11947821 DOI: 10.1021/acsomega.4c09778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
This paper reports high specific capacitance of an activated carbon nickel oxide nanocomposite (PCNiO) electrode that has been synthesized from natural coconut shell using carbonization and an activated PCNiO nanocomposite with the help of a hydrothermal process. The structural phase, chemical change, morphology, and pore structure of the PCNiO nanocomposite were investigated using a variety of techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET), thermo-gravimetric analysis (TGA), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) techniques. Among the prepared samples, PCNiO-150 displays the most significant characteristics that were used to create symmetric supercapacitors (SSCs). It had a specific capacitance (C sp) of 598.6 F/g at a scan rate of 10 mV/s. The Galvanostatic charging-discharging (GCD) curves showed a high specific capacitance (C sp) of 656.2 F/g at a current density (CD) of 1.5 A/g. Additionally, even after 5000 cycles, it had achieved long-term cycle stability with capacitance retention of 78.34% and Coulombic efficiency of 97.55%. Its highest energy density (ED) and power density (PD) were 44 Wh kg-1 and 562.5 W kg-1, respectively. Additionally, the fabricated SSC device is serially connected to turn on a commercial green LED for 30-40 s at the time of the experiment. This paper proposes a novel environmentally sustainable and easy-to-use carbon source as well as a cost-effective and technologically unique approach for carbon supercapacitors in environmental applications.
Collapse
Affiliation(s)
- Abdullah Ba shbil
- Department
of Physics, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | | | - Suresh Daddi Suraiah
- Department
of Physics, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Ganesha Honnu
- Department
of Physics, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | | | - Sapna Sharanappa
- Department
of Physics, Mangalore University, Mangalagangothri, Mangalore 574199, India
| | - Devendrappa Hundekal
- Department
of Physics, Mangalore University, Mangalagangothri, Mangalore 574199, India
| |
Collapse
|
3
|
Simon S, Harikumar P, Sreeja PB. Green Power: The Role of Plant-Based Biochar in Advanced Energy Storage. Chemphyschem 2025; 26:e202400569. [PMID: 39327809 DOI: 10.1002/cphc.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
This comprehensive review aims to provide an overview of recent progress in utilizing plant-based biochar for supercapacitors. It specifically focuses on biochar derived from plant biomass such as agricultural residues, weeds and aquatic plants, examining their potential in energy storage applications. It explores various synthesis methods like pyrolysis and hydrothermal carbonization and evaluates their impact on biochar's structure and electrochemical properties. Additionally, it examines the electrochemical performance of biochar-based supercapacitors, focusing on parameters such as capacitance, cycling stability, and rate capability. Strategies to enhance biochar's electrochemical performance, such as surface modification and composite fabrication, are also discussed. Furthermore, it addresses existing challenges and prospects in harnessing plant-based biochar for supercapacitor applications, highlighting its potential as a sustainable and efficient electrode material for next-generation energy storage devices.
Collapse
Affiliation(s)
- Shilpa Simon
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - Parvathy Harikumar
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - P B Sreeja
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| |
Collapse
|
4
|
Saeed M, Shahzad U, Fazle Rabbee M, Manzar R, Al-Humaidi JY, Siddique A, Sheikh TA, Althomali RH, Qamar T, Rahman MM. Potential Development of Porous Carbon Composites Generated from the Biomass for Energy Storage Applications. Chem Asian J 2024; 19:e202400394. [PMID: 38847495 DOI: 10.1002/asia.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Indexed: 07/25/2024]
Abstract
Creating an innovative and environmentally friendly energy storage system is of vital importance due to the growing number of environmental problems and the fast exhaustion of fossil fuels. Energy storage using porous carbon composites generated from biomass has attracted a lot of attention in the research community. This is primarily due to the environmentally friendly nature, abundant availability in nature, accessibility, affordability, and long-term viability of macro/meso/microporous carbon sourced from a variety of biological materials. Extensive information on the design and the building of an energy storage device that uses supercapacitors was a part of this research. This study examines both porous carbon electrodes (ranging from 44 to 1050 F/g) and biomasses with a large surface area (between 215 and 3532 m2/g). Supposedly, these electrodes have a capacitive retention performance of about 99.7 percent after 1000 cycles. The energy density of symmetric supercapacitors is also considered, with values between 5.1 and 138.4 Wh/kg. In this review, we look at the basic structures of biomass and how they affect porous carbon synthesis. It also discusses the effects of different structured porous carbon materials on electrochemical performance and analyzes them. In recent developments, significant steps have been made across various fields including fuel cells, carbon capture, and the utilization of biomass-derived carbonaceous nanoparticles. Notably, our study delves into the innovative energy conversion and storage potentials inherent in these materials. This comprehensive investigation seeks to lay the foundation for forthcoming energy storage research endeavors by delineating the current advancements and anticipating potential challenges in fabricating porous carbon composites sourced from biomass.
Collapse
Affiliation(s)
- Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Rabia Manzar
- Department of Chemistry, Forman Christian College Lahore (A Chartered University), Lahore, Pakistan
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX, 84428, Riyadh 11671, Saudi Arabia
| | - Amna Siddique
- Institute of Chemistry, Faculty of Chemical & Biological Science, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur-63100, Pakistan
| | - Tahir Ali Sheikh
- Institute of Chemistry, Faculty of Chemical & Biological Science, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur-63100, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Han X, Geng Y, Wang J, Zhang S, Wei C, Cao L, Zhang S. ZIF-8-Based Nitrogen and Monoatomic Metal Co-Doped Pyrolytic Porous Carbon for High-Performance Supercapacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1367. [PMID: 39195405 DOI: 10.3390/nano14161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Metal-organic frameworks (MOFs) receive wide attention owing to their high specific surface area, porosity, and structural designability. In this paper, ZC-Ru and ZC-Cu electrodes loaded with monatomic Ru and Cu doped with nitrogen were prepared by pyrolysis, ion impregnation, and carbonization process using ZIF-8 synthesized by static precipitation as a precursor. ZC-Cu has a high specific surface area of 859.78 m2 g-1 and abundant heteroatoms O (10.04%) and N (13.9%), showing the specific capacitance of 222.21 F g-1 at 0.1 A g-1 in three-electrode system, and low equivalent series resistance (Rct: 0.13 Ω), indicating excellent energy storage capacity and electrical conductivity. After 10,000 cycles at 1 A g-1 in 6 M KOH electrolyte, it still has an outstanding capacitance retention of 99.42%. Notably, symmetric supercapacitors ZC-Cu//ZC-Cu achieved the maximum power density and energy density of 485.12 W·kg-1 and 1.61 Wh·kg-1, respectively, positioning ZC-Cu among the forefront of previously known MOF-based electrode materials. This work demonstrates the enormous potential of ZC-Cu in the supercapacitor industry and provides a facile approach to the treatment of transition metal.
Collapse
Affiliation(s)
- Xiaobo Han
- Miami College, Henan University, Kaifeng 475004, China
| | - Yihao Geng
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Hossen MS, Islam T, Hoque SM, Islam A, Bashar MM, Bhat G. Synthesis, Activation, and Characterization of Carbon Fiber Precursor Derived from Jute Fiber. ACS OMEGA 2024; 9:35384-35393. [PMID: 39184490 PMCID: PMC11339993 DOI: 10.1021/acsomega.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Activated carbon (AC) fiber is a carbonaceous material with a porous structure that has a tremendous scope of application in different fields. Conventionally, AC is derived from fossil fuel-based raw materials like polyacrylonitrile (PAN) and pitch. In this work, AC was synthesized from eco-friendly, renewable, and ubiquitous jute fiber. Systematically, the jute fiber was washed and pretreated with NaOH. Raw jute and NaOH-treated jute were carbonized/pyrolyzed at 500 °C for 1 h in presence of N2 gas. The carbonized carbon was activated with H3PO4 and KOH and again pyrolyzed at 650 °C for 1.5 h maintaining the inert condition. The different features of activated carbons were characterized with field emission-scanning electron microscope, energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis. The average yield of carbonized and activated carbons was recorded at 19 and 13.8%, respectively. The scanning electron microscopic images confirmed a honeycomb-like porous structure. It was observed that KOH-activated carbon exhibited a more porous structure than the H3PO4-activated carbons. The average pore diameter of activated carbons was noted to be 1.3 μm. The pore density was higher in case of KOH-activated carbons accounting for 2.15 pore/μm. The EDX analysis showed that H3PO4-activated carbons had more than 90% carbon atoms indicating a significant carbon content. The TEM images revealed that AC particles were in the nanoscale range. The average particle sizes of H3PO4-activated carbon and KOH-activated carbon were 36.38 and 32.8 nm, respectively. The XRD study demonstrated the highly disordered and low level of crystallinity of AC. It was detected that the AC showed much higher thermal resistance than the jute fiber. The H3PO4-activated carbon obtained from NaOH-treated jute remained at 84% even after 500 °C. A higher thermal resistance was achieved with H3PO4-activated carbon since it contains 0.56% phosphorus, which was confirmed by EDX investigation. It was found that a higher carbon yield was obtained from NaOH-treated jute. The porous structure of the material showed that it could be used as an adsorbent. Due to its high thermal stability, it is recommended for flame retardants and heat insulation applications as well.
Collapse
Affiliation(s)
- Md Shahabul Hossen
- Department
of Textile Engineering, Mawlana Bhashani
Science and Technology University, Tangail, Santosh 1902, Bangladesh
| | - Tarikul Islam
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Textile Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| | - Sheikh Manjura Hoque
- Materials
Science Division, Bangladesh Atomic Energy
Commission, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Aminul Islam
- Department
of Petroleum and Mining Engineering, Jashore
University of Science and Technology, Jashore 7408, Bangladesh
| | - M. Mahbubul Bashar
- Department
of Textile Engineering, Mawlana Bhashani
Science and Technology University, Tangail, Santosh 1902, Bangladesh
| | - Gajanan Bhat
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
8
|
Nframah Ampong D, Lin W, de Souza FM, Kishore Bharti V, Ofori Agyemang F, Andrews A, Mensah-Darkwa K, Dhakal A, Mishra SR, Perez F, Gupta RK. Utilization of shea butter waste-derived hierarchical activated carbon for high-performance supercapacitor applications. BIORESOURCE TECHNOLOGY 2024; 406:131039. [PMID: 38944313 DOI: 10.1016/j.biortech.2024.131039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
In this work, carbonization and subsequent activation procedures were adopted to synthesize waste shea butter shells into oxygen-rich interconnected porous activated carbon (SAC_x, x is the mass ratio of KOH used for activation). The SAC_1.5 electrode material showed outstanding electrochemical performance with high specific capacitance (286.6 F/g) and improved rate capability, owing to various synergistic effects originating from a high specific surface area (1233.5 m2/g) and O-rich content. The SAC_1.5-based symmetric device delivered an impressive specific capacitance of 91.6 F/g with a high energy density of 12.7 Wh/kg at 0.5 A/g. The device recorded 99.9 % capacitance retention after 10,000 charge-discharge cycles. The symmetric supercapacitor device successfully lit an LED bulb for more than 1 h, signifying the potential of bio-waste as an efficient carbon precursor for electrode material in practical supercapacitors. This work offers an efficient, affordable, and environmentally friendly strategy for potential renewable energy storage devices.
Collapse
Affiliation(s)
- Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, United States.
| | - Wang Lin
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, United States
| | - Felipe M de Souza
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, United States
| | - Vikram Kishore Bharti
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, United States
| | - Frank Ofori Agyemang
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anthony Andrews
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alisha Dhakal
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, United States
| | - Sanjay R Mishra
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, United States
| | - Felio Perez
- Integrated Microscopy Center, The University of Memphis, Memphis, TN 38152, United States
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, United States; Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, United States
| |
Collapse
|
9
|
Gao C, Gu Y, Liu Q, Lin W, Zhang B, Lin X, Wang H, Zhao Y, Qu L. All Plant-Based Compact Supercapacitor in Living Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307400. [PMID: 38054796 DOI: 10.1002/smll.202307400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Biomass-based energy storage devices (BESDs) have drawn much attention to substitute traditional electronic devices based on petroleum or synthetic chemical materials for the advantages of biodegradability, biocompatibility, and low cost. However, most of the BESDs are almost made of reconstructed plant materials and exogenous chemical additives which constrain the autonomous and widespread advantages of living plants. Herein, an all-plant-based compact supercapacitor (APCSC) without any nonhomologous additives is reported. This type of supercapacitor formed within living plants acts as a form of electronic plant (e-plant) by using its tissue fluid electrolyte, which surprisingly presents a satisfying electrical capacitance of 182.5 mF cm-2, higher than those of biomass-based micro-supercapacitors reported previously. In addition, all constituents of the device come from the same plant, effectively avoid biologically incompatible with other extraneous substances, and almost do no harm to the growth of plant. This e-plant can not only be constructed in aloe, but also be built in most of succulents, such as cactus in desert, offering timely electricity supply to people in extreme conditions. It is believed that this work will enrich the applications of electronic plants, and shed light on smart botany, forestry, and agriculture.
Collapse
Affiliation(s)
- Chang Gao
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Yuyang Gu
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Liu
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihu Lin
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730071, P. R. China
| | - Bin Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Xiangyun Lin
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Haozhen Wang
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Kim SA, Kim EB, Imran M, Shahzad K, Moon DH, Akhtar MS, Ameen S, Park SH. Naturally manufactured biochar materials based sensor electrode for the electrochemical detection of polystyrene microplastics. CHEMOSPHERE 2024; 351:141151. [PMID: 38199498 DOI: 10.1016/j.chemosphere.2024.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
In recent times, microplastics have become a disturbance to both aquatic and terrestrial ecosystems and the ingestion of these particles can have severe consequences for wildlife, aquatic organisms, and even humans. In this study, two types of biochars were manufactured through the carbonization of naturally found starfish (SF-1) and aloevera (AL-1). The produced biochars were utilized as sensing electrode materials for the electrochemical detection of ∼100 nm polystyrene microplastics (PS). SF-1 and AL-1 based biochars were thoroughly analyzed in terms of morphology, structure, and composition. The detection of microplastics over biochar based electrodes was carried out by electrochemical studies. From electrochemical results, SF-1 based electrode exhibited the detection efficiency of ∼0.2562 μA/μM∙cm2 with detection limit of ∼0.44 nM whereas, a high detection efficiency of ∼3.263 μA/μM∙cm2 was shown by AL-1 based electrode and detection limit of ∼0.52 nM for PS (100 nm) microplastics. Process contributed to enhancing the sensitivity of AL-1 based electrode might associate to the presence of metal-carbon framework over biochar's surfaces. The AL-1 biochar electrode demonstrated excellent repeatability and detection stability for PS microplastics, suggesting the promising potential of AL-1 biochar for electrochemical microplastics detection.
Collapse
Affiliation(s)
- Shin-Ae Kim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Nuclear Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul 222, Republic of Korea.
| | - Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - M Imran
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea.
| | - M Shaheer Akhtar
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup 56212, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Koli A, Kumar A, Pattanshetti A, Supale A, Garadkar K, Shen J, Shaikh J, Praserthdam S, Motkuri RK, Sabale S. Hierarchical Porous Activated Carbon from Wheat Bran Agro-Waste: Applications in Carbon Dioxide Capture, Dye Removal, Oxygen and Hydrogen Evolution Reactions. Chempluschem 2024; 89:e202300373. [PMID: 37909792 DOI: 10.1002/cplu.202300373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This work reports an efficient method for facile synthesis of hierarchically porous carbon (WB-AC) utilizing wheat bran waste. Obtained carbon showed 2.47 mmol g-1 CO2 capture capacity with good CO2 /N2 selectivity and 27.35 to 29.90 kJ mol-1 isosteric heat of adsorption. Rapid removal of MO dye was observed with a capacity of ~555 mg g-1 . Moreover, WB-AC demonstrated a good OER activity with 0.35 V low overpotential at 5 mA cm-2 and a Tafel slope of 115 mV dec-1 . It also exhibited high electrocatalytic HER activity with 57 mV overpotential at 10 mA cm-2 and a Tafel slope of 82.6 mV dec-1 . The large SSA (757 m2 g-1 ) and total pore volume (0.3696 cm3 g-1 ) result from N2 activation contributing to selective CO2 uptake, high and rapid dye removal capacity and superior electrochemical activity (OER/HER), suggesting the use of WB-AC as cost effective adsorbent and metal free electrocatalyst.
Collapse
Affiliation(s)
- Amruta Koli
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Amit Supale
- Dr. Patangrao Kadam Mahavidhyalaya College, Sangli, 416416, India
| | | | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Jasmin Shaikh
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College, Jaysingpur, 416101, India
| |
Collapse
|
12
|
Shukla RK, Yadav RK, Gole VL, Na CY, Jeong GH, Singh S, Baeg JO, Choi MY, Gupta NK, Kim TW. Aloe vera-derived graphene-coupled phenosafranin photocatalyst for generation and regeneration of ammonia and NADH by mimicking natural photosynthetic route. Photochem Photobiol 2024; 100:41-51. [PMID: 37458262 DOI: 10.1111/php.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 01/17/2024]
Abstract
Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.
Collapse
Affiliation(s)
- Ravindra K Shukla
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - V L Gole
- Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Chae Yeong Na
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| | - Gyoung Hwa Jeong
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Jin-Ook Baeg
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, Korea
| | - Navneet Kumar Gupta
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Korea
| |
Collapse
|
13
|
Zhang T, Li J. Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules 2023; 28:8136. [PMID: 38138624 PMCID: PMC10745835 DOI: 10.3390/molecules28248136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Biomass-derived carbon materials have broad application prospects in energy storage, but still face problems such as complex synthesis paths and the massive use of corrosive activators. In this study, we proposed a mild and efficient pathway to prepare nitrogen-doped porous carbon material (N-YAC) using one-step pyrolysis with solid K2CO3, tobacco straw, and melamine. The optimized material (N-YAC0.5) was not only enriched with nitrogen, but also exhibited a high specific surface area (2367 m2/g) and a reasonable pore size distribution (46.49% mesopores). When utilized in electrodes, N-YAC0.5 exhibited an excellent capacitance performance (338 F/g at 1 A/g) in the three-electrode system, and benefitted from a high mesopore distribution that maintained a capacitance of 85.2% (288 F/g) at high current densities (20 A/g). Furthermore, the composed symmetric capacitor achieved an energy density of 14.78 Wh/kg at a power density of 400 W/kg. In summary, our work provides a novel and eco-friendly approach for converting biomass into high-performance energy-storage materials.
Collapse
Affiliation(s)
| | - Jun Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| |
Collapse
|
14
|
Paramasivam K, Manickam S, Sivalingam Nallathambi K, Kuzhandaivel H. Polymer-assisted synthesis of Co 3O 4/CoO microballs decorated N-doped carbon for symmetric supercapacitor. Dalton Trans 2023; 52:14621-14631. [PMID: 37786376 DOI: 10.1039/d3dt02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Cobalt oxide (Co) and cobalt oxide/N-doped carbon composites (Co-NC) were synthesized and applied as electrode materials for supercapacitors. The pristine cobalt oxide was prepared hydrothermally at 160 °C (CoH160) and further calcined at three different temperatures of 300, 400, and 500 °C (CoC300, CoC400, and CoC500). The cobalt oxide prepared at 300 °C was composited with N-doped carbon prepared from g-C3N4 at four different weight ratios 1 : 0.03, 1 : 0.06, 1 : 0.15, and 1 : 0.30 (Co-NC1, Co-NC2, Co-NC3, and Co-NC4). X-ray diffraction analysis (XRD) confirms the phase and product formation. Among all the composites, Co-NC2 showed the microball structure decorated on N-doped carbon with an average size of 4.2 μm. The X-ray photoelectron spectroscopy (XPS) of Co-NC2 confirms the presence of Co2+, Co3+, C, N, and O. The Brunauer-Emmett-Teller analysis (BET) of Co-NC2 showed a surface area of 73.06 m2 g-1 with a pore diameter of 3.39 nm. The energy storage performance of Co-NC2 exhibits a high specific capacitance of 774.38 F g-1 at a current density of 1 A g-1 in 1 M KOH electrolyte. The fabricated symmetric device showed a specific capacitance of 84.60 F g-1 at a current density of 1 A g-1. The fabricated device showed good cyclic stability with a coulombic efficiency of 92.55% and capacitance retention of 97.75% up to 4000 cycles.
Collapse
Affiliation(s)
- Kiruthika Paramasivam
- Materials Research and Product Laboratory, Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India.
| | - Sornalatha Manickam
- Materials Research and Product Laboratory, Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India.
| | | | - Hemalatha Kuzhandaivel
- Materials Research and Product Laboratory, Department of Chemistry, Coimbatore Institute of Technology, Coimbatore-641014, India.
| |
Collapse
|
15
|
Geng Y, Wang J, Wang Q, Chen X, Sun S, Zhang S, Tian Y, Liu C, Wang L, Wei Z, Cao L, Zhang J, Zhang S. N/O Co-doped hierarchical nanoporous biochar derived from waste polypropylene nonwoven for high-performance supercapacitors. RSC Adv 2023; 13:25877-25887. [PMID: 37664215 PMCID: PMC10472799 DOI: 10.1039/d3ra04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
How to efficiently treat municipal solid waste (MSW) has become one of the critical solutions in response to the call for "carbon neutrality". Here, the waste polypropylene nonwoven fabric of waste diapers was converted into hierarchical nanoporous biochar (HPBC) through pre-carbonization and activation processes as an ideal precursor for supercapacitors (SCs) with excellent performance. The prepared HPBC-750-4 with an ultrahigh specific surface area (3838.04 m2 g-1) and abundant heteroatomic oxygen (13.25%) and nitrogen (1.16%) codoped porous biochar structure. Given its structural advantages, HPBC-750-4 achieved a specific capacitance of 340.9 F g-1 at a current density of 1 A g-1 in a three-electrode system. Its capacitance retention rate was above 99.2% after 10 000 cycles at a current density of 10 A g-1, which indicated an excellent rate capability and long-term cycling stability. Furthermore, the HPBC-750-4//HPBC-750-4 symmetric SC exhibited a superb energy density of 10.02 W h kg-1 with a power density of 96.15 W kg-1 in a 6 M KOH electrolyte. This work not only demonstrates the enormous potential of waste polypropylene nonwoven fabric in the SC industry but also provides an economically feasible means of managing MSW.
Collapse
Affiliation(s)
- Yihao Geng
- Miami College, Henan University Kaifeng 475004 China
| | - Jieni Wang
- Miami College, Henan University Kaifeng 475004 China
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Qizhao Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Xuanyu Chen
- Miami College, Henan University Kaifeng 475004 China
| | - Sainan Sun
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 PR China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 PR China
| | - Shuqin Zhang
- Miami College, Henan University Kaifeng 475004 China
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Yijun Tian
- Miami College, Henan University Kaifeng 475004 China
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Chenxiao Liu
- Miami College, Henan University Kaifeng 475004 China
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Lin Wang
- Miami College, Henan University Kaifeng 475004 China
| | - Zhangdong Wei
- Miami College, Henan University Kaifeng 475004 China
| | - Leichang Cao
- Miami College, Henan University Kaifeng 475004 China
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Jinglai Zhang
- College of Chemistry and Molecular Sciences, Henan University Kaifeng 475004 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University Shanghai 200433 China
| |
Collapse
|
16
|
Atchudan R, Perumal S, Sundramoorthy AK, Manoj D, Kumar RS, Almansour AI, Lee YR. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101654. [PMID: 37242070 DOI: 10.3390/nano13101654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of Anacardium occidentale (AO) nut-skin waste for high-performance supercapacitor applications. The as-prepared AO-PC material possessed interconnected micropore/mesopore structures and exhibited a high specific surface area of 615 m2 g-1. The Raman spectrum revealed a moderate degree of graphitization of AO-PC materials. These superior properties of the as-prepared AO-PC material help to deliver high specific capacitance. After fabricating the working electrode, the electrochemical performances including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements were conducted in 1 M H2SO4 aqueous solution using a three-electrode configuration for supercapacitor applications. The AO-PC material delivered a high specific capacitance of 193 F g-1 at a current density of 0.5 A g-1. The AO-PC material demonstrated <97% capacitance retention even after 10,000 cycles of charge-discharge at the current density of 5 A g-1. All the above outcomes confirmed that the as-prepared AO-PC from AO nut-skin waste via simple pyrolysis is an ideal electrode material for fabricating high-performance supercapacitors. Moreover, this work provides a cost-effective and environmentally friendly strategy for adding value to biomass waste by a simple pyrolysis route.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Kumaresan N, Alsalhi MS, Karuppasamy P, Praveen Kumar M, Pandian MS, Arulraj A, Peera SG, Mangalaraja R, Devanesan S, Ramasamy P, Murugadoss G. Nitrogen implanted carbon nanosheets derived from Acorus calamus as an efficient electrode for the supercapacitor application. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Raja A, Son N, Kang M. Reduced graphene oxide decorated transition metal manganese vanadium oxide nanorods for electrochemical supercapacitors and photocatalytic degradation of pollutants in water. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Tu J, Qiao Z, Wang Y, Li G, Zhang X, Li G, Ruan D. American ginseng biowaste-derived activated carbon for high-performance supercapacitors. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Pd Oxide Nanoparticles enhanced Biomass Driven N-doped Carbon for Hydrogen Evolution Reaction. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Shrestha LK, Shrestha RG, Shahi S, Gnawali CL, Adhikari MP, Bhadra BN, Ariga K. Biomass Nanoarchitectonics for Supercapacitor Applications. J Oleo Sci 2023; 72:11-32. [PMID: 36624057 DOI: 10.5650/jos.ess22377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nanoarchitectonics integrates nanotechnology with numerous scientific disciplines to create innovative and novel functional materials from nano-units (atoms, molecules, and nanomaterials). The objective of nanoarchitectonics concept is to develop functional materials and systems with rationally architected functional units. This paper explores the progress and potential of this field using biomass nanoarchitectonics for supercapacitor applications as examples of energetic materials and devices. Strategic design of nanoporous carbons that exhibit ultra-high surface area and hierarchically pore architectures comprising micro- and mesopore structure and controlled pore size distributions are of great significance in energy-related applications, including in high-performance supercapacitors, lithium-ion batteries, and fuel cells. Agricultural wastes or natural biomass are lignocellulosic materials and are excellent carbon sources for the preparation of hierarchically porous carbons with an ultra-high surface area that are attractive materials in high-performance supercapacitor applications due to high electrical and ion conduction, extreme porosity, and exceptional chemical and thermal stability. In this review, we will focus on the latest advancements in the fabrication of hierarchical porous carbon materials from different biomass by chemical activation method. Particularly, the importance of biomass-derived ultra-high surface area porous carbons, hierarchical architectures with interconnected pores in high-energy storage, and high-performance supercapacitors applications will be discussed. Finally, the current challenges and outlook for the further improvement of carbon materials derived from biomass or agricultural wastes in the advancements of supercapacitor devices will be discussed.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU)
| | | | - Biswa Nath Bhadra
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
22
|
Shrestha LK, Shahi S, Gnawali CL, Adhikari MP, Rajbhandari R, Pokharel BP, Ma R, Shrestha RG, Ariga K. Phyllanthus emblica Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8335. [PMID: 36499823 PMCID: PMC9739855 DOI: 10.3390/ma15238335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700-1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g-1, and the total pore volumes range from 0.664 to 1.328 cm3 g-1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g-1 at 1 A g-1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g-1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode's excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Sabina Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | - Chhabi Lal Gnawali
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | | | - Rinita Rajbhandari
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Bhadra P. Pokharel
- Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University, Lalitpur, Kathmandu 44700, Nepal
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Kashiwa, Japan
| |
Collapse
|
23
|
Meftahi A, Shabani-Nooshabadi M, Reisi-Vanani A. AgI/g-C3N4 nanocomposite as electrode material for supercapacitors: Comparative study for its efficiency in three different aqueous electrolytes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Moorthy M, Karnan M, Suresh Balaji S, Gokulnath S, Sathish M. Nanoarchitectonics with Beetroot Peel Waste Derived Activated Carbon for Improved Electrochemical Performances in Supercapacitors using Redox Additive Electrolyte. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Mummoorthi G, Shajahan S, Abu Haija M, Mahalingam U, Rajendran R. Synthesis and Characterization of Ternary α-Fe 2O 3/NiO/rGO Composite for High-Performance Supercapacitors. ACS OMEGA 2022; 7:27390-27399. [PMID: 35967063 PMCID: PMC9366972 DOI: 10.1021/acsomega.2c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, pure α-Fe2O3, binary α-Fe2O3/NiO, and ternary α-Fe2O3/NiO/rGO composites were prepared by a hydrothermal method. The properties of the prepared materials were studied by powder X-ray diffraction, scanning electron microscopy, TEM, XPS, and Brunauer-Emmett-Teller techniques. The clusters of smaller α-Fe2O3 nanoparticles (∼30 nm) along with conducting NiO was freely covered by the rGO layer sheet, which offer a higher electrode-electrolyte interface for improved electrochemical performance. The ternary composite has shown a higher specific capacitance of 747 F g-1@ a current density of 1 A g-1 in a 6 M KOH solution, when compared with that of α-Fe2O3/rGO (610 F g-1@1 A g-1) and α-Fe2O3 (440 F g-1@1 A g-1) and the nanocomposite. Moreover, the ternary α-Fe2O3/NiO/rGO composite exhibited a 98% rate capability @ 10 A g-1. The exceptional electrochemical performance of ternary composites has been recognized as a result of their well-designed unique architecture, which provides a large surface area and synergistic effects among all three constituents. The asymmetric supercapacitor (ASC) device was assembled using the ternary α-Fe2O3/NiO/rGO composite as the anode electrode (positive) material and activated carbon as the cathode (negative) material. The ASC device has an energy density of 35.38 W h kg-1 at a power density of 558.6 W kg-1 and retains a 94.52% capacitance after 5000 cycles at a 1 A g-1 current density.
Collapse
Affiliation(s)
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788 Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box., 127788 Abu Dhabi, United Arab
Emirates
| | - Umadevi Mahalingam
- Department
of Physics, Mother Teresa Women’s
University, 624 10 Kodaikanal, Tamil Nadu, India
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, 636 011 Salem, Tamil Nadu, India
| |
Collapse
|
26
|
Shrestha RG, Maji S, Mallick AK, Jha A, Man Shrestha R, Rajbhandari R, Hill JP, Ariga K, Shrestha LK. Hierarchically Porous Carbon from Phoenix Dactylifera Seed for High-Performance Supercapacitor Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Aabhash Kumar Mallick
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Abhimanyu Jha
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Rajeshwar Man Shrestha
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Rinita Rajbhandari
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
27
|
Hepsiba P, Rajkumar S, Elanthamilan E, Wang SF, Princy Merlin J. Biomass-derived porous activated carbon from anacardium occidentale shell as electrode material for supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01041k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anacardium occidentale shell (AOS) biowaste was chemically activated using KOH at various temperatures to produce AC. Interestingly, this study also presents a novel strategy for achieving value-added usage of cashewnut shell in the energy storage field.
Collapse
Affiliation(s)
- P. Hepsiba
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - S. Rajkumar
- Department of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - E. Elanthamilan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd, Taipei 106, Taiwan
| | - J. Princy Merlin
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| |
Collapse
|
28
|
Youssry SM, Abd Elkodous M, Kawamura G, Matsuda A. Carbon dots conjugated nanocomposite for the enhanced electrochemical performance of supercapacitor electrodes. RSC Adv 2021; 11:39636-39645. [PMID: 35494151 PMCID: PMC9044567 DOI: 10.1039/d1ra08045h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Naturally, a combination of metal oxides and carbon materials enhances the electrochemical performance of supercapacitor (SC) electrodes. We report on two different materials with highly conductive carbon dots (CDs) and a Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite with a high power density, a high specific surface area, and a nanoporous structure to improve power and energy density in energy storage devices. A simple and low-cost process for synthesizing the hybrid SC electrode material Co0.5Ni0.5Fe2O4/SiO2/TiO2/CDs, known as CDs-nanocomposite, was performed via a layer-by-layer method; then, the CDs-nanocomposite was loaded on a nickel foam substrate for SC electrochemical measurements. A comparative study of the surface and morphology of CDs, the Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite and CDs-nanocomposite was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BET surface area, and Raman spectroscopy. The synthesized CDs-nanocomposite electrode material displayed enhanced electrochemical performance, having a high specific capacitance of 913.7 F g-1 at a scan rate of 5 mV s-1 and capacitance retention of 72.2%, as well as remarkable long-life cyclic stability over 3000 cycles in the three-electrode setup and 1 M KOH electrolyte. It also demonstrated a superior energy density of 130.7 W h kg-1. The improved electrochemical behavior of the CDs-nanocomposite for SC electrodes, together with its fast and simple synthesis method, provides a suitable point of reference. Other kinds of metal oxide nanocomposites can be synthesized for use in energy storage devices.
Collapse
Affiliation(s)
- Sally M Youssry
- Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
29
|
Shrestha LK, Shrestha RG, Chaudhary R, Pradhananga RR, Tamrakar BM, Shrestha T, Maji S, Shrestha RL, Ariga K. Nelumbo nucifera Seed-Derived Nitrogen-Doped Hierarchically Porous Carbons as Electrode Materials for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3175. [PMID: 34947524 PMCID: PMC8707477 DOI: 10.3390/nano11123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
Biomass-derived activated carbon materials with hierarchically nanoporous structures containing nitrogen functionalities show excellent electrochemical performances and are explored extensively in energy storage and conversion applications. Here, we report the electrochemical supercapacitance performances of the nitrogen-doped activated carbon materials with an ultrahigh surface area prepared by the potassium hydroxide (KOH) activation of the Nelumbo nucifera (Lotus) seed in an aqueous electrolyte solution (1 M sulfuric acid: H2SO4) in a three-electrode cell. The specific surface areas and pore volumes of Lotus-seed-derived carbon materials carbonized at a different temperatures, from 600 to 1000 °C, are found in the range of 1059.6 to 2489.6 m2 g-1 and 0.819 to 2.384 cm3 g-1, respectively. The carbons are amorphous materials with a partial graphitic structure with a maximum of 3.28 atom% nitrogen content and possess hierarchically micro- and mesoporous structures. The supercapacitor electrode prepared from the best sample showed excellent electrical double-layer capacitor performance, and the electrode achieved a high specific capacitance of ca. 379.2 F g-1 at 1 A g-1 current density. Additionally, the electrode shows a high rate performance, sustaining 65.9% capacitance retention at a high current density of 50 A g-1, followed by an extraordinary long cycle life without any capacitance loss after 10,000 subsequent charging/discharging cycles. The electrochemical results demonstrate that Nelumbo nucifera seed-derived hierarchically porous carbon with nitrogen functionality would have a significant probability as an electrical double-layer capacitor electrode material for the high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Rashma Chaudhary
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Raja Ram Pradhananga
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | | | - Timila Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
| | - Ram Lal Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.C.); (R.R.P.); (T.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (S.M.); (K.A.)
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
30
|
Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: A review. CHEMOSPHERE 2021; 280:130723. [PMID: 34162084 DOI: 10.1016/j.chemosphere.2021.130723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.
Collapse
Affiliation(s)
- S M Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - M Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering University of Saskatchewan, Saskatchewan, S7N 5A9, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
31
|
Nasrin K, Subramani K, Karnan M, Sathish M. MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. J Colloid Interface Sci 2021; 600:264-277. [DOI: 10.1016/j.jcis.2021.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
|
32
|
Sahoo MK, Rao GR. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers. NANOSCALE ADVANCES 2021; 3:5417-5429. [PMID: 36132632 PMCID: PMC9417211 DOI: 10.1039/d1na00261a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/10/2021] [Indexed: 05/07/2023]
Abstract
Nitrogen doped activated carbons of high surface area are synthesized using palm flower biomaterial by KOH activation followed by pyrolysis. The concentration of the activating agent KOH and carbonization temperature are found to be crucial to obtain high surface area activated carbon. The optimal concentration of KOH and carbonization temperature for the synthesis of activated carbon, respectively, are 2 M and 800 °C in the flow of nitrogen gas. The optimized conditions have been employed to further prepare nitrogen doped activated carbon (NAC) by varying the weight ratio of palm flowers to melamine. All activated carbons are characterized by powder XRD, BET analysis, RAMAN spectroscopy, HR-SEM analysis, HR-TEM analysis and FT-IR analysis. With 2 wt% nitrogen doping, the BET surface area and pore diameter of the NAC-2 sample are 1054 m2 g-1 and 1.9 nm, respectively. The electrochemical charge storage performance of the nitrogen doped activated carbons has been evaluated in an aqueous acidic electrolyte medium. The results indicate that among the nitrogen doped activated carbons, the NAC-2 sample exhibits the highest electrochemical capacitance of 296 F g-1 at 0.5 A g-1. The performance of the NAC-2 electrode is further tested in aqueous, ionic liquid and solid polymer electrolytes by assembling a symmetric capacitor for real time application. By employing an ionic liquid as the electrolyte, the device delivers an energy density of 8.6 Wh kg-1 and a power density of 38.9 W kg-1 in the voltage window of 1.5 V and at an operating current density of 0.1 A g-1. Interestingly, the NAC-2 electrode shows good cycling performance in the ionic liquid electrolyte (up to 50k cycles). Furthermore, the symmetric device in 0.1 M H2SO4/PVA solid state electrolyte shows excellent electrochemical stability under various bending angles, demonstrating its potential in flexible electronic devices.
Collapse
Affiliation(s)
- Malaya K Sahoo
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras Chennai 600036 India +91 44 2257 4202 +91 44 2257 4226
| | - G Ranga Rao
- Department of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC), Indian Institute of Technology Madras Chennai 600036 India +91 44 2257 4202 +91 44 2257 4226
| |
Collapse
|
33
|
Subramani K, Shunmugasundaram S, Duraisamy V, Ilavarasi R, Murugesan Senthil Kumar S, Sathish M. Dual heteroatoms doped SBA-15 templated porous carbon for symmetric supercapacitor in dual redox additive electrolyte. J Colloid Interface Sci 2021; 606:286-297. [PMID: 34390995 DOI: 10.1016/j.jcis.2021.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022]
Abstract
Porous carbon (PC) based materials is a proficient impetus for upgrading supercapacitor thanks to its traits of high surface area, meso, micropores, and replication morphology. Mainly, single and dual heteroatom doping in PC material is one of the amazing strategies for enhancing the supercapacitor activity due to the interaction of carbon and heteroatom material along with the excessive contribution of by functional groups. Here, we have synthesized nitrogen (N) and boron (B) dual doped PC (NBPC) with the assistance of Santa Barbara Amorphous (SBA-15) silica material and afterward investigated their doping impact of the heteroatom which is investigated for supercapacitor application. Among all, NBPC material delivered a high specific capacitance of 375 F/g at 2 A/g current density in 1 M H2SO4 electrolyte with excellent rate capability and capacitance retention. Such an attractive property of NBPC is a reflection of its high specific surface area (809 m2/g) rendered by N and B functional groups. In addition, the introduction of dual redox additive materials to the electrolyte synergistically enhanced the specific capacity of the symmetric supercapacitor cell. An unprecedented high specific capacity of 929 C/g at 3 A/g current density is observed and a 56% of initial specific capacity was retained when current density increased to 20 A/g. The fabricated symmetric cell using NBPC electrode in 1 M H2SO4 + 0.01 M ammonium metavanadate + Ferrous (II) sulfate dual redox additive electrolyte delivered an energy density of 48.4 W h/kg which is five folds higher than the bare electrolyte (10.1 W h/kg). Similarly, the NBPC electrode delivered a power density of 15 kW/kg in the redox additive electrolyte which is three folds higher than the bare electrolyte (5 kW/kg).
Collapse
Affiliation(s)
- Kaipannan Subramani
- Electrochemical Power Sources Division (ECPS), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 003, India
| | - Shanmugam Shunmugasundaram
- Nanotechnology Division, Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu 613 403, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry Division (EME), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rajaji Ilavarasi
- Nanotechnology Division, Department of Electronics and Communication Engineering, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, Tamil Nadu 613 403, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division (EME), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Marappan Sathish
- Electrochemical Power Sources Division (ECPS), CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630 003, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
34
|
Pavithra S, Priya A, Jayachandran M, Vijayakumar T, Maiyalagan T, Jayachitra J, Sivakumar N. Influence of aloe-vera gel mediated CuO coated LiNiPO4 cathode material in rechargeable battery applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Shrestha RL, Chaudhary R, Shrestha RG, Shrestha T, Maji S, Ariga K, Shrestha LK. Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ram Lal Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rashma Chaudhary
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Timila Shrestha
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan
| |
Collapse
|
36
|
Vinoth S, Subramani K, Ong WJ, Sathish M, Pandikumar A. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor. J Colloid Interface Sci 2021; 584:204-215. [DOI: 10.1016/j.jcis.2020.09.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
|
37
|
Yang X, Xu J, Chen X, Lei Y, Wang L, Cheng S, Li Y, Lu Y, Zhu Y, Chen N. Preparation and Characterization of Porous Carbon from Mixed Leaves for
High‐Performance
Supercapacitors. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaoxiang Yang
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Jie Xu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Xin Chen
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yuli Lei
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Lingling Wang
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Siyu Cheng
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yan Li
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yuxuan Lu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Yupeng Zhu
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| | - Na Chen
- East China University of Science & Technology No.130, Meilong Road, Xuhui District Shanghai 200237 China
| |
Collapse
|
38
|
Venkateshalu S, Grace AN. Ti3C2Tx MXene and Vanadium nitride/Porous carbon as electrodes for asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Alegaonkar AP, Alegaonkar PS, Pardeshi SK. Electrochemical performance of a self-assembled two-dimensional heterostructure of rGO/MoS 2/h-BN. NANOSCALE ADVANCES 2020; 2:1531-1541. [PMID: 36132305 PMCID: PMC9419772 DOI: 10.1039/d0na00021c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
We report the preparation and electrochemical performance evaluation of a two-dimensional (2D) self-assembled heterostructure of graphene oxide (rGO), molybdenum disulphide (MoS2), and hexagonal boron nitride (h-BN). In the present study, the rGO-MoS2-h-BN (GMH) multi-layered GMH heterostructure is fabricated via an in situ chemical route. Based on material analysis, the composite consists of bond conformations of C-B-C, Mo-S, C-N, B-N, and Mo-C, indicating the layered stacks of rGO/h-BN/MoS2. In electrochemical analysis, the composite showed superior performance in the aqueous medium of cobalt sulphate (CoSO4) over other samples. CV measurements, performed over the range 10 to 100 mV s-1, showed a change in specific capacitance (C sp) from 800 to 100 F g-1. GMH showed almost no degradation up to 20 000 cycles @ 100 mV s-1. The calculated C sp, energy density (E D), and power density (P D) are discussed in light of Nyquist, Bode, and Ragone analysis. An equivalent circuit is simulated for the cell and its discrete electronic components are discussed. Due to its larger effective electron diffusion length > 1000 μm, broadly, the composite showed battery-like characteristics, as supported by radical paramagnetic resonance and transport response studies. The symmetric electrodes prepared in one step are facile to fabricate, easy to integrate and involve no pre or post-treatment. They possess superior flat cell character, are cost effective, and are favourable towards practicality at an industrial scale, as demonstrated on the laboratory bench. The details are presented.
Collapse
Affiliation(s)
- Ashwini P Alegaonkar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune 411 007 MS India
| | - Prashant S Alegaonkar
- Department of Physics, School of Basic and Applied Sciences, Central University of Punjab City Campus, Mansa Road Bathinda 151 001 Punjab India
| | - Satish K Pardeshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune 411 007 MS India
| |
Collapse
|
40
|
Shrestha LK, Shrestha RG, Maji S, Pokharel BP, Rajbhandari R, Shrestha RL, Pradhananga RR, Hill JP, Ariga K. High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E728. [PMID: 32290435 PMCID: PMC7221556 DOI: 10.3390/nano10040728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
Abstract
Nanoporous activated carbon materials derived from agro-wastes could be suitable low-cost electrode materials for high-rate performance electrochemical supercapacitors. Here we report high surface area nanoporous carbon materials derived from Lapsi seed agro-waste prepared by zinc chloride (ZnCl2) activation at 700 °C. Powder X-ray diffraction (pXRD) and Raman scattering confirmed the amorphous structure of the resulting carboniferous materials, which also incorporate oxygen-containing functional groups as confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning and transmission electron microscopy (SEM and TEM) analyses revealed the granular, nanoporous structures of the materials. High-resolution TEM (HR-TEM) confirmed a graphitic carbon structure containing interconnected mesopores. Surface areas and pore volumes of the materials were found, respectively, in the ranges from 931 to 2272 m2 g-1 and 0.998 to 2.845 cm3 g-1, and are thus superior to commercially available activated carbons. High surface areas, large pore volumes and interconnected mesopore structures of these Lapsi seed-derived nanoporous carbon materials lead to their excellent electrochemical supercapacitance performance in aqueous electrolyte (1 M H2SO4) with a maximum specific capacitance of 284 F g-1 at a current density of 1 A g-1. Furthermore, the electrodes showed high-rate capability sustaining 67.7% capacity retention even at high current density of 20 A g-1 with excellent cycle stability achieving 99% capacitance retention even after 10,000 charge-discharge cycles demonstrating the potential of Lapsi seed derived nanoporous carbons as suitable electrode materials in high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Bhadra P. Pokharel
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700, Nepal; (B.P.P.); (R.R.)
| | - Rinita Rajbhandari
- Materials Science and Engineering Program, Pulchowk Campus, Institute of Engineering (IOE), Tribhuvan University (TU), Lalitpur, Kathmandu 44700, Nepal; (B.P.P.); (R.R.)
| | - Ram Lal Shrestha
- Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal; (R.L.S.); (R.R.P.)
| | | | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; (S.M.); (J.P.H.); (K.A.)
- Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
41
|
Zhou M, Lin Y, Xia H, Wei X, Yao Y, Wang X, Wu Z. A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO 2 Capture. NANO-MICRO LETTERS 2020; 12:58. [PMID: 34138265 PMCID: PMC7770655 DOI: 10.1007/s40820-020-0389-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Hierarchically porous carbon materials are promising for energy storage, separation and catalysis. It is desirable but fairly challenging to simultaneously create ultrahigh surface areas, large pore volumes and high N contents in these materials. Herein, we demonstrate a facile acid-base enabled in situ molecular foaming and activation strategy for the synthesis of hierarchically macro-/meso-/microporous N-doped carbon foams (HPNCFs). The key design for the synthesis is the selection of histidine (His) and potassium bicarbonate (PBC) to allow the formation of 3D foam structures by in situ foaming, the PBC/His acid-base reaction to enable a molecular mixing and subsequent a uniform chemical activation, and the stable imidazole moiety in His to sustain high N contents after carbonization. The formation mechanism of the HPNCFs is studied in detail. The prepared HPNCFs possess 3D macroporous frameworks with thin well-graphitized carbon walls, ultrahigh surface areas (up to 3200 m2 g-1), large pore volumes (up to 2.0 cm3 g-1), high micropore volumes (up to 0.67 cm3 g-1), narrowly distributed micropores and mesopores and high N contents (up to 14.6 wt%) with pyrrolic N as the predominant N site. The HPNCFs are promising for supercapacitors with high specific capacitances (185-240 F g-1), good rate capability and excellent stability. They are also excellent for CO2 capture with a high adsorption capacity (~ 4.13 mmol g-1), a large isosteric heat of adsorption (26.5 kJ mol-1) and an excellent CO2/N2 selectivity (~ 24).
Collapse
Affiliation(s)
- Mengyuan Zhou
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Yaqian Lin
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Huayao Xia
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Xiangru Wei
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Yan Yao
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Xiaoning Wang
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China
| | - Zhangxiong Wu
- Particle Engineering Laboratory (CPCIA) and Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2151213, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Sahoo MK, Gusain M, Thangriyal S, Nagarajan R, Rao GR. Energy storage study of trimetallic Cu2MSnS4 (M: Fe, Co, Ni) nanomaterials prepared by sequential crystallization method. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Ho S. Removal of Dyes from Wastewater by Adsorption onto Activated Carbon: Mini Review. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/gep.2020.85008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Veerakumar P, Maiyalagan T, Raj BGS, Guruprasad K, Jiang Z, Lin KC. Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Manikandan M, Subramani K, Sathish M, Dhanuskodi S. Hydrothermal synthesis of cobalt telluride nanorods for a high performance hybrid asymmetric supercapacitor. RSC Adv 2020; 10:13632-13641. [PMID: 35493025 PMCID: PMC9051561 DOI: 10.1039/c9ra08692g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/14/2020] [Indexed: 01/08/2023] Open
Abstract
Cobalt telluride nanostructured materials have demonstrated various applications, particularly in energy generation and storage. A high temperature and reducing atmosphere are required for the preparation of cobalt telluride-based materials, which makes this a difficult and expensive process. The development of a facile route for producing the desirable nanostructure of cobalt telluride remains a great challenge. We demonstrated a simple hydrothermal method for preparing cobalt telluride nanorods (CoTe NRs) and telluride nanorods (Te NRs) for supercapacitor applications. The morphology of CoTe NRs and Te NRs was analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The prepared CoTe NR electrode material exhibited a high specific capacity of 170 C g−1 at a current density of 0.5 A g−1 with an exceptional cyclic stability. The asymmetric supercapacitor was assembled using CoTe NRs and orange peel-derived activated carbon (OPAA-700) as a positive and negative electrode, respectively. The fabricated device delivered a high energy density of 40.7 W h kg−1 with a power density of 800 W kg−1 at 1 A g−1 current density. When the current density was increased to 30 A g−1, the fabricated device delivered a high power density of 22.5 kW kg−1 with an energy density of 16.3 W h kg−1. The fabricated asymmetric supercapacitor displayed a good cyclic stability performance for 10 000 cycles at a high current density of 30 A g−1 and retained 85% of its initial capacity for after 10 000 cycles. The prepared materials indicate their applicability for high performance energy storage devices. A one-step hydrothermal derived cobalt telluride nanorods and activated carbon-based hybrid asymmetric supercapacitor delivered a high energy (40.7 W h kg−1) and power density (22.5 kW kg−1) with an electrochemical stability of 85% for 10000 cycles.![]()
Collapse
Affiliation(s)
- M. Manikandan
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| | - K. Subramani
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - M. Sathish
- Electrochemical Power Sources Division
- CSIR-CECRI
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - S. Dhanuskodi
- School of Physics
- Bharathidasan University
- Tiruchirappalli – 620 024
- India
| |
Collapse
|
46
|
Shirhatti V, Kedambaimoole V, Nuthalapati S, Neella N, Nayak MM, Rajanna K. High-range noise immune supersensitive graphene-electrolyte capacitive strain sensor for biomedical applications. NANOTECHNOLOGY 2019; 30:475502. [PMID: 31430732 DOI: 10.1088/1361-6528/ab3cd2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents development and performance assessment of an innovative and a highly potent graphene-electrolyte capacitive sensor (GECS) based on the supercapacitor model. Although graphene has been widely researched and adapted in supercapacitors as electrode material, this combination has not been applied in sensor technology. A low base capacitance, generally the impeding factor in capacitive sensors, is addressed by incorporating electric double layer capacitance in GECS, and a million-fold increase in base capacitance is achieved. The high base capacitance (∼22.0 μF) promises to solve many inherent issues pertaining to capacitive sensors. GECS is fabricated by using thermally reduced microwave exfoliated graphene oxide material to form interdigitated electrodes coated with solid-state electrolyte which forms the double layer capacitance. The capacitance response of GECS on subjecting to strain is examined and an enormous operating range (∼300 nF) is seen, which is the salient feature of this sensor. The GECS showed an impressive device sensitivity of 11.24 nF kPa-1 and good immunity towards noise i.e. lead capacitance and stray capacitance. Two regimes of operation are identified based on the procedure of device fabrication. The device can be applied to varied applications and one such biomedical application of breath pattern monitoring is demonstrated.
Collapse
Affiliation(s)
- Vijay Shirhatti
- Dept. of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
47
|
Kaipannan S, Govindarajan K, Sundaramoorthy S, Marappan S. Waste Toner-Derived Carbon/Fe 3O 4 Nanocomposite for High-Performance Supercapacitor. ACS OMEGA 2019; 4:15798-15805. [PMID: 31592452 PMCID: PMC6776962 DOI: 10.1021/acsomega.9b01337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
Electronic waste management is one of the key challenges for the green revolution without affecting the environment. The wide use of printer devices has brought a horde of discarded waste toner, which release ∼6000 tons of processed carbon powder into the atmosphere every year that would essentially pollute the atmosphere. Here, we propose a one-step thermal conversion of waste toner powder into carbon/Fe3O4 nanocomposites for energy storage applications. Recovered toner carbon (RTC) and toner carbon calcined at 300 °C (RTC-300) were characterized using various analytical tools. From the FE-SEM analysis, the presence of carbon particles with uniformly decorated Fe3O4 nanoparticles was confirmed. RTC-300 carbon was used as an electrode material for supercapacitors, and it exhibited a high specific capacitance of 536 F/g at a current density of 3 A/g, which is almost six times higher than that of the commercial mesoporous graphitized carbon black. RTC-300 showed excellent electrochemical stability of 97% over 5000 cycles at a high current density of 20 A/g. The fabricated symmetric cell using RTC-300 electrode materials in an aqueous electrolyte with a cell voltage of 1.8 V delivered a high energy and high-power density of 42 W h/kg and 14.5 kW/kg, respectively. The fabricated device is stable up to 20,000 cycles at a high current density of 20 A/g with a loss of 23% capacitance.
Collapse
Affiliation(s)
- Subramani Kaipannan
- Functional
Materials Division and Academy of Scientific and Innovative Research
(AcSIR), CSIR-Central Electrochemical Research
Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Kaviarasan Govindarajan
- Functional
Materials Division and Academy of Scientific and Innovative Research
(AcSIR), CSIR-Central Electrochemical Research
Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Santhoshkumar Sundaramoorthy
- Functional
Materials Division and Academy of Scientific and Innovative Research
(AcSIR), CSIR-Central Electrochemical Research
Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Sathish Marappan
- Functional
Materials Division and Academy of Scientific and Innovative Research
(AcSIR), CSIR-Central Electrochemical Research
Institute, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
48
|
Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH) 2 Nanosheets and Bio-derived Activated Carbon. Sci Rep 2019; 9:1104. [PMID: 30705312 PMCID: PMC6355786 DOI: 10.1038/s41598-018-37566-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Hydrated Ni(OH)2 and activated carbon based electrodes are widely used in electrochemical applications. Here we report the fabrication of symmetric supercapacitors using Ni(OH)2 nanosheets and activated carbon as positive and negative electrodes in aqueous electrolyte, respectively. The asymmetric supercapacitors stack connected in series exhibited a stable device voltage of 9.6 V and delivered a stored high energy and power of 30 mWh and 1632 mW, respectively. The fabricated device shows an excellent electrochemical stability and high retention of 81% initial capacitance after 100,000 charge-discharges cycling at high charging current of 500 mA. The positive electrode material Ni(OH)2 nanosheets was prepared through chemical decomposition of nickel hexacyanoferrate complex. The XRD pattern revealed the high crystalline nature of Ni(OH)2 with an average crystallite size of ~10 nm. The nitrogen adsorption-desorption isotherms of Ni(OH)2 nanosheets indicate the formation of mesoporous Ni(OH)2 nanosheets. The chemical synthesis of Ni(OH)2 results the formation of hierarchical nanosheets that are randomly oriented which was confirmed by FE-SEM and HR-TEM analysis. The negative electrode, activated porous carbon (OPAA-700) was obtained from orange peel waste. The electrochemical properties of Ni(OH)2 nanosheets and OPAA-700 were studied and exhibit a high specific capacity of 1126 C/g and high specific capacitance of 311 F/g at current density of 2 A/g, respectively. Ni(OH)2 nanosheets delivered a good rate performance and remarkable capacitance retention of 96% at high current density of 32 A/g.
Collapse
|
49
|
Balaji SS, Karnan M, Kamarsamam J, Sathish M. Synthesis of Boron‐Doped Graphene by Supercritical Fluid Processing and its Application in Symmetric Supercapacitors using Various Electrolytes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Suresh Balaji
- Functional Materials DivisionCSIR-Central Electrochemical Research Institute Karaikudi – 630003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad – 201002 India
| | - M. Karnan
- Functional Materials DivisionCSIR-Central Electrochemical Research Institute Karaikudi – 630003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad – 201002 India
| | - J. Kamarsamam
- Functional Materials DivisionCSIR-Central Electrochemical Research Institute Karaikudi – 630003, Tamilnadu India
| | - M. Sathish
- Functional Materials DivisionCSIR-Central Electrochemical Research Institute Karaikudi – 630003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad – 201002 India
| |
Collapse
|
50
|
Banna Motejadded Emrooz H, Maleki M, Rahmani A. Azolla-derived hierarchical nanoporous carbons: From environmental concerns to industrial opportunities. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|