1
|
Zhang W, Yu R, Chen J, Wu Y, Chen Y, Sui Y, Yan S, Zhang Z, Chen L. One-pot preparation of anionic ligand-stabilized gold nanoparticles with low SERS background for detecting reaction intermediates under strong oxidative conditions. Analyst 2025. [PMID: 40402158 DOI: 10.1039/d5an00290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Gold nanoparticle-based surface-enhanced Raman scattering (SERS) substrates exhibit better chemical stability compared with silver ones, making them suitable for characterizing reaction intermediates in the presence of strong oxidants such as H2O2. However, conventional wet-chemistry-synthesized gold nanoparticles often show strong background signals from organic stabilizers, which could overlap and disturb the SERS signals of reaction intermediates and products. In this work, a low-background corrosion-resistant gold-based SERS substrate was prepared via a facile one-pot method using anionic ligands as stabilizers, achieving the rapid characterization of the reaction process in the presence of H2O2. Anionic ligands (such as I-, SCN-, Br- and S2O32-) were used instead of commonly used surfactants as stabilizers to obtain monodisperse colloidal gold nanoparticles. The obtained gold nanoparticles displayed an ultralow SERS background signal, allowing for precise characterization of trace reaction intermediates. Moreover, the low-background gold substrate exhibited much better corrosion resistance (10 mM H2O2) compared with the low-background silver substrate, enabling sensitive and stable detection of target analytes even under harsh oxidative conditions. Finally, we successfully employed this SERS substrate for the direct detection and monitoring of degradation intermediates of sulfamerazine (SMR) through a UV-H2O2-induced degradation reaction without using any sample treatment. Combination of SERS spectroscopic data with DFT calculations provided a robust framework for elucidating the photodegradation mechanism. Results indicated that the SERS substrate has a robust and broad application prospect in the precise characterization of various reactions under harsh oxidative conditions. Moreover, this work may provide guidance for the synthesis of other colloidal nanoparticles using anionic ligands as universal stabilizers.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, P.R. China
| | - Ranran Yu
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, P.R. China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yanzhou Wu
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yan Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Sui
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoyang Yan
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhiyang Zhang
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Yin T, Peng Y, Chao K, Li Y. Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches. NPJ Sci Food 2025; 9:31. [PMID: 40089516 PMCID: PMC11910576 DOI: 10.1038/s41538-025-00393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 03/17/2025] Open
Abstract
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Collapse
Affiliation(s)
- Tianzhen Yin
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China.
| | - Kuanglin Chao
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Yongyu Li
- National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
4
|
Hardy M, Goldberg Oppenheimer P. 'When is a hotspot a good nanospot' - review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. NANOSCALE 2024; 16:3293-3323. [PMID: 38273798 PMCID: PMC10868661 DOI: 10.1039/d3nr05332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s-100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS' sensitivity, and in need of investigation via scanning probe techniques.
Collapse
Affiliation(s)
- Mike Hardy
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham B15 2TH, UK
| |
Collapse
|
5
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Zhang L, Zhao R, Wu Y, Zhang Z, Chen Y, Liu M, Zhou N, Wang Y, Fu X, Zhuang X, Wang J, Chen L. Ultralow-background SERS substrates for reliable identification of organic pollutants and degradation intermediates. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132508. [PMID: 37690198 DOI: 10.1016/j.jhazmat.2023.132508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Chemical methods for preparing SERS substrates have the advantages of low cost and high productivity, but the strong background signals from the substrate greatly limit their applications in characterization and identification of organic compounds. Herein, we developed a one-step synthesis method to prepare silver nanoparticle substrates with ultralow SERS background using anionic ligands as stabilizing agents and applied the SERS substrate for the reliable and reproducible identification of typical organic pollutants and corresponding degradation intermediates. The synthesis method shows excellent universality to different reducing agents cooperating with different anionic ligands (Cl-, Br-, I-, SCN-). As model applications, the machine learning algorithm can realize the precise prediction of six organophosphorus pesticides and eight sulfonamide antibiotics with 100% accuracy based on SERS training data. More importantly, the ultralow-background SERS substrate enables one to detect and identify the time-dependent degradation intermediates of organophosphorus pesticides by combining them with density functional theory (DFT) calculations. All the results indicate that the ultralow-background SERS substrate will greatly push the development of SERS characterization applications.
Collapse
Affiliation(s)
- Longfei Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao 264003, PR China.
| | - Yan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meichun Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiuli Fu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao 264003, PR China.
| |
Collapse
|
7
|
Gao Y, Zhu H, Wang X, Shen R, Zhou X, Zhao X, Li Z, Zhang C, Lei F, Yu J. Promising Mass-Productive 4-Inch Commercial SERS Sensor with Particle in Micro-Nano Porous Ag/Si/Ag Structure Using in Auxiliary Diagnosis of Early Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207324. [PMID: 36932935 DOI: 10.1002/smll.202207324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The construction of commercial surface enhanced Raman scattering (SERS) sensors suitable for clinical applications is a pending problem, which is heavily limited by the low production of high-performance SERS bases, because they usually require fine or complicated micro/nano structures. To solve this issue, herein, a promising mass-productive 4-inch ultrasensitive SERS substrate available for early lung cancer diagnosis is proposed, which is designed with a special architecture of particle in micro-nano porous structure. Benefitting from the effective cascaded electric field coupling inside the particle-in-cavity structure and efficient Knudsen diffusion of molecules within the nanohole, the substrate exhibits remarkable SERS performance for gaseous malignancy biomarker, with the limit of detection is 0.1 ppb and the average relative standard deviation value at different scales (from cm2 to µm2 ) is ≈16.5%. In practical application, this large-sized sensor can be further divided into small ones (1 × 1 cm2 ), and more than 65 chips will be obtained from just one 4-inch wafer, greatly increasing the output of commercial SERS sensor. Further, a medical breath bag composed of this small chip is designed and studied in detail here, which suggested high-specificity recognition for lung cancer biomarker in mixed mimetic exhalation tests.
Collapse
Affiliation(s)
- Yuanmei Gao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Hongyu Zhu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Xiaoxiong Wang
- College of Physics, Qingdao University, Qingdao, 266071, P.R. China
| | - Rong Shen
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, P.R. China
| | - Xiaoming Zhou
- Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, P.R. China
| | - Xiaofei Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, P.R. China
| |
Collapse
|
8
|
One-click investigation of shape influence of silver nanostructures on SERS performance for sensitive detection of COVID-19. Anal Chim Acta 2022; 1234:340523. [PMCID: PMC9576320 DOI: 10.1016/j.aca.2022.340523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022]
Abstract
Sensitive and accurate detection of SARS-CoV-2 methods is meaningful for preventing and controlling the novel coronavirus. The detection techniques supporting portable, onsite, in-time, and online data transfer are urgently needed. Here, we one-click investigated the shape influence of silver nanostructures on SERS performance and their applications in the sensitive detection of SARS-CoV-2. Such investigation is achieved by adjusting multiple parameters (concentration, potential, and time) on the integrated electrochemical array, thus various morphologies (e.g., bulk, dendritic, globular, and spiky) can be one-click synthesized. The SERS performance results indicated that dendritic nanostructures are superior to the other three with an order of magnitude signal enhancement. Such on-electrode dendritic silver substrate also represents high sensitivity (LOD = 7.42 × 10−14 M) and high reproducibility (RSD = 3.67%) toward the SARS-CoV-2 RNA sequence detection. Such approach provides great potentials for rapid diagnosis and prevention of diverse infectious diseases.
Collapse
|
9
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
10
|
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO 2/Si SERS Substrate with Ordered Moth-like Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3127. [PMID: 36144914 PMCID: PMC9501013 DOI: 10.3390/nano12183127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.
Collapse
Affiliation(s)
- Jingguo Yang
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Song
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Huang L, Zhu Y, Xu C, Cai Y, Yi Y, Li K, Ren X, Jiang D, Ge Y, Liu X, Sun W, Zhang Q, Wang Y. Noninvasive Diagnosis of Gastric Cancer Based on Breath Analysis with a Tubular Surface-Enhanced Raman Scattering Sensor. ACS Sens 2022; 7:1439-1450. [PMID: 35561250 DOI: 10.1021/acssensors.2c00146] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SERS-based breath analysis as an emerging technique has attracted increasing attention in cancer screening. Here, eight aldehydes and ketones in the human breath are reported as the VOC biomarkers identified by gas chromatography-mass spectrometry (GC-MS) and applied further for the noninvasive diagnosis of gastric cancer (GC) with a tubular SERS sensor. The tubular SERS sensor is prepared with a glass capillary loaded with ZIF-67-coated silver particles (Ag@ZIF-67), which offers Raman enhancement from the plasmonic nanoparticles and gas enrichment from the metal-organic framework (MOF) shells. The composite materials are modified with 4-aminothiophenol (4-ATP) to capture different aldehyde and ketone compounds. The tubular sensor is served simultaneously as a gas flow channel and a detection chamber, bringing a higher gas capture efficiency than the planar SERS sensor. As a proof-of-concept, the tubular SERS sensor is successfully employed to screen gastric cancer patients with an accuracy of 89.83%, based on the noninvasive, rapid, and easily operated breath analysis. The results demonstrate that the established breath analysis method provides an excellent alternative for the screening of GC and other diseases.
Collapse
Affiliation(s)
- Liping Huang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Yajie Zhu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
| | - Changshun Xu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Yu Cai
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Kang Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
| | - Xueqian Ren
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Danfeng Jiang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, PR China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325001, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| |
Collapse
|
12
|
M Santhosh N, Shvalya V, Modic M, Hojnik N, Zavašnik J, Olenik J, Košiček M, Filipič G, Abdulhalim I, Cvelbar U. Label-Free Mycotoxin Raman Identification by High-Performing Plasmonic Vertical Carbon Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103677. [PMID: 34636140 DOI: 10.1002/smll.202103677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are widespread chemical entities in the agriculture and food industries that can induce cancer growth and immune deficiency, posing a serious health threat for humankind. These hazardous compounds are produced naturally by various molds (fungi) that contaminate different food products and can be detected in cereals, nuts, spices, and other food products. However, their detection, especially at minimally harmful concentrations, remains a serious analytical challenge. This research shows that high-performing plasmonic substrates (analytical enhancement factor = 5 × 107 ) based on plasma-grown vertical hollow carbon nanotubes can be applied for immediate detection of the most toxic mycotoxins. Due to excellent sensitivity allowing operation at ppb concentrations, it is possible to collect vibrational fingerprints of aflatoxin B1 , zearalenone, alternariol, and fumonisin B1 , highlighting the key spectral differences between them using principal component analysis. Regarding time-consuming conventional methods, including thin-layer chromatography, gas chromatography, high-performance liquid chromatography, and enzyme-linked immunosorbent assay, the designed surface-enhanced Raman spectroscopy substrates provide a clear roadmap to reducing the detection time-scale of mycotoxins down to seconds.
Collapse
Affiliation(s)
- Neelakandan M Santhosh
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Vasyl Shvalya
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Martina Modic
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Nataša Hojnik
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Janez Zavašnik
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Jaka Olenik
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Martin Košiček
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Gregor Filipič
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Ibrahim Abdulhalim
- Department of Electro-Optics and Photonics Engineering, School of Electrical and Computer Engineering, Ilse-Katz Institute for Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva, 84105, Israel
| | - Uroš Cvelbar
- Department of Gaseous Electronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
13
|
Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.
Collapse
Affiliation(s)
- Mingtao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Zhu W, Feng X, Liu Z, Zhao M, He P, Yang S, Tang S, Chen D, Guo Q, Wang G, Ding G. Sensitive, Reusable, Surface-Enhanced Raman Scattering Sensors Constructed with a 3D Graphene/Si Hybrid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23081-23091. [PMID: 33957757 DOI: 10.1021/acsami.1c02182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates based on graphene and its derivatives have recently attracted attention among those interested in the detection of trace molecules; however, these substrates generally show poor uniformity, an unsatisfactory enhancement factor, and require a complex fabrication process. Herein, we design and fabricate three-dimensional (3D) graphene/silicon (3D-Gr/Si) heterojunction SERS substrates to detect various types of molecules. Notably, the detection limit of 3D-Gr/Si can reach 10-10 M for rhodamine 6G (R6G) and rhodamine B (RB), 10-7 M for crystal violet (CRV), copper(II) phthalocyanine (CuPc), and methylene blue (MB), 10-8 M for dopamine (DA), 10-6 M for bovine serum albumin (BSA), and 10-5 M for melamine (Mel), which is superior to most reported graphene-based SERS substrates. Besides, the proposed 3D-Gr/Si heterojunction SERS substrates can achieve a high uniformity with relative standard deviations (RSDs) of less than 5%. Moreover, the 3D-Gr/Si SERS substrates are reusable after washing with ethyl alcohol to remove the adsorbed molecules. These excellent SERS performances are attributed to the novel 3D structure and abundantly exposed atomically thin edges, which facilitate charge transfer between 3D-Gr and probe molecules. We believe that the 3D-Gr/Si heterojunction SERS substrates offer potential for practical applications in biochemical molecule detection and provide insight into the design of high-performance SERS substrates.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Xiaoqiang Feng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Zhiduo Liu
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Menghan Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Peng He
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Siwei Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Guqiao Ding
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
15
|
Robust quantitative SERS analysis with Relative Raman scattering intensities. Talanta 2021; 221:121465. [DOI: 10.1016/j.talanta.2020.121465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022]
|
16
|
Li G, Gong WB, Qiu T, Cong S, Zhao Z, Ma R, Michiue Y, Sasaki T, Geng F. Surface-Modified Two-Dimensional Titanium Carbide Sheets for Intrinsic Vibrational Signal-Retained Surface-Enhanced Raman Scattering with Ultrahigh Uniformity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23523-23531. [PMID: 32347101 DOI: 10.1021/acsami.0c00908] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) employing a non-noble substrate in comparison with conventional noble-metal ones offers advantages of low cost and rich selection of candidates; however, its application has been seriously hindered by its unsatisfactory detection sensitivity, poor uniformity, and undesirable modification of vibrational signals via changing the orientation and/or polarizability of probe molecules. Here, an unusually sensitive but nonselective enhancement was achieved by employing titanium carbide sheets modified with aluminum oxyanions in situ as active supports for Raman measurement. The analyte molecules adopted a conformation similar to what they adopt on a bare substrate, while closely interacting with the aluminum oxyanion surface, which leads to the rare observation of highly sensitive but nonselective enhancement with a detection limit close to the pM level. With the substrate surface roughness in the nanometer region, an outstanding uniformity with a relative standard deviation of less than 4.3% was achieved. In addition, the SERS effect on the modified titanium carbide sheets was shown to be applicable to a wide range of analyte molecules, including both organic dyes and trace harmful compounds. The success of the work demonstrates the feasibility of surface tuning to improve the SERS effect, and it introduces a new window for two-dimensional materials in SERS applications.
Collapse
Affiliation(s)
- Guohui Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen-Bin Gong
- Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industry Park, Suzhou 215123, China
| | - Tianlun Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shan Cong
- Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industry Park, Suzhou 215123, China
| | - Zhigang Zhao
- Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industry Park, Suzhou 215123, China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yuichi Michiue
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengxia Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Dielectric Nanoparticles Coated upon Silver Hollow Nanosphere as an Integrated Design to Reinforce SERS Detection of Trace Ampicillin in Milk Solution. COATINGS 2020. [DOI: 10.3390/coatings10040390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technique is competent to trace detection of target species, down to the single molecule level. The detection sensitivity is presumably degraded by the presence of non-specific binding molecules that occupy a SERS-active site (or hot spot) on the substrate surface. In this study, a silver hollow nano-sphere (Ag HNS) with cavity has been particularly designed, followed by depositing dielectric nanoparticles (Di NPs) upon Ag HNS. In the integrated nanostructures, Di NPs/Ag HNS were furthermore confirmed by cutting through the cross sections using the Focused Ion Beam (FIB) technique, which provides the Scanning Electron Microscope (SEM) with Energy-dispersive Spectroscope (EDS) mode for identifying the distribution of Di NPs upon Ag HNS. The results have indicated that Di NPs/Ag HNS exhibits small diameter of cavity, and among Di NPs in this study, Al2O3 with lower dielectric constant provides a much higher SERS enhancement factor (e.g., ~6.2 × 107). In this study, to detect trace amounts (e.g., 0.01 ppm) of Ampicillin in water or milk solution, Al2O3 NPs/Ag HNS was found to be more efficient and less influenced by non-specific binding molecules in milk. A substrate with integrated plasmonic and dielectric components was designed to increase the adsorption of target species and to repulse non-specific binding molecules from SERS-active sites.
Collapse
|
18
|
Chen Y, Liu H, Tian Y, Du Y, Ma Y, Zeng S, Gu C, Jiang T, Zhou J. In Situ Recyclable Surface-Enhanced Raman Scattering-Based Detection of Multicomponent Pesticide Residues on Fruits and Vegetables by the Flower-like MoS 2@Ag Hybrid Substrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14386-14399. [PMID: 32118398 DOI: 10.1021/acsami.9b22725] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pesticides, extensively used in agriculture production, have received enormous attention because of their potential threats to the environment and human health. Hence, in this study, a kind of highly sensitive and stable hybrid surface-enhanced Raman scattering (SERS)-active substrates constructed with flower-like two-dimensional molybdenum sulfide and Ag (MoS2@Ag) has been developed, and then the above substrate was sequentially utilized in the recyclable detection of pesticide residues on several kinds of fruits and vegetables. In the first place, the excellent photocatalytic performance of the MoS2@Ag hybrid substrate was demonstrated, which was attributed to the inhibition of electron-hole combination after the formation of Schottky barrier between the Ag NPs and MoS2 matrix. Thereafter, two calibration curves with ultra-low limits of detection (LOD) as 6.4 × 10-7 and 9.8 × 10-7 mg/mL were established for the standard solutions of thiram (tetramethylthiuram disulfide, TMTD) and methyl parathion (MP), and then the recyclable assay of their single and mixed residues on eggplant, Chinese cabbage, grape, and strawberry was successfully realized. It is interesting to note that the detection recoveries from 95.5 to 63.1% for TMTD and 92.3 to 62.6% for MP are greatly dependent on the size and surface roughness of these foods. In a word, the MoS2@Ag composite matrix shows attractive SERS and photocatalysis performance, and it is expected to have the potential application on food safety monitoring.
Collapse
Affiliation(s)
- Ying Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Hongmei Liu
- Institute of Solid State Physics, Shanxi Datong University, Datong 037009, Shanxi, P. R. China
| | - Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuanyuan Du
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yi Ma
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, Avenue Albert Thomas, 87060 Limoges, France
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
19
|
Zhai Y, Deng L, Chen Y, Wang N, Huang Y. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:105001. [PMID: 31658445 DOI: 10.1088/1361-648x/ab51f1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanoparticle (NP) dimers, generating highly intense areas of electric field enhancement named hot spots, have been playing a vital role in various applications like surface enhanced Raman scattering. For stabilization and functionalization, such metallic NPs are often coated with dielectric shells, yet suffer from a rapid degeneration of the hot spot with the increase of the shell thickness. Herein, it is demonstrated that the use of appropriately high refractive dielectric coatings can greatly reduce the loss of local electric field enhancement, maintaining usable hot spots. Two mechianisms work synergistically. Firstly, the high refractive index dielectric coating enables a great leap of the local electric fields reaching the gap, which follows the boundary conditions at the interface within electrodynamics. Secondly, owing to its strong Mie resonances that can participate in the plasmon hybridization, the high refractive index dielectric coating contributes to a strong light coupling effect in terms of improving the light absorption. Taking advantage of the proposed physical process decomposition, both the resonance shift and local electric field enhancement can be elaborated. These findings should be of significant importance in extended applications of surface enhanced spectroscopies and related plasmonic devices based on hot spots.
Collapse
|
20
|
Lafuente M, Sanz D, Urbiztondo M, Santamaría J, Pina MP, Mallada R. Gas phase detection of chemical warfare agents CWAs with portable Raman. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121279. [PMID: 31606709 DOI: 10.1016/j.jhazmat.2019.121279] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The development of SERS substrates for chemical detection of specific analytes requires appropriate selection of plasmonic metal and the surface where it is deposited. Here we deposited Ag nanoplates on three substrates: i) conventional SiO2/Si wafer, ii) stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was studied for Rhodamine 6 G (R6 G) as common liquid phase probe molecule. We conducted a comprehensive study with λ = 532, 633 and 785 nm on all the substrates. The best substrate was investigated, at the optimum laser 785 nm, for gas phase detection of dimethyl methyl phosphonate (DMMP), simulant of the G-series nerve agents, at a concentration of 2.5 ppmV (14 mg/m3). The spectral fingerprint was clearly observed; with variations on the relative intensities of SERS Raman bands compared to bulk DMMP in liquid phase reflects the DMMP-Ag interactions. These interactions were simulated by Density Functional Theory (DFT) calculations and the simulated spectra matched with the experimental one. Finally, we were detected the characteristics DMMP fingerprint with hand-held portable equipment. These results open the way for the application of SERS technique on real scenarios where robust, light-weight, miniaturized and simple to use and cost-effective tools are required by first responders.
Collapse
Affiliation(s)
- Marta Lafuente
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Diego Sanz
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Miguel Urbiztondo
- Centro Universitario de la Defensa de Zaragoza, Carretera Huesca s/n, 50090, Zaragoza, Spain
| | - Jesús Santamaría
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - María Pilar Pina
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Reyes Mallada
- Nanoscience Institute of Aragon (INA), University of Zaragoza, Department of Chemical & Environmental Engineering, Edificio I+D+i, Campus Rio Ebro, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain; Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Zhang P, Liu G, Feng S, Zhou X, Xu W, Cai W. Engineering of flexible granular Au nanocap ordered array and its surface enhanced Raman spectroscopy effect. NANOTECHNOLOGY 2020; 31:035303. [PMID: 31550688 DOI: 10.1088/1361-6528/ab477c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a new and developing analytical technology in chemical and biological detection. However, traditional hard SERS substrates are struggling to meet the growing demand for flexible devices. In this work, we introduce a simple, cost-effective and large scale preparation route to form a flexible Au nanocap (AuNC) ordered array as SERS substrates via reactive ion etching (RIE) method and then Au deposition. We find RIE is an excellent method for nanoroughening the surface of polystyrene (PS) spheres. Such flexible SERS substrates exhibit high sensitivity and uniformity for detecting organic molecules. The finite-difference time-domain simulation results revealed that a strong electric field coupling effect existed not only in the gap site between the Au nanoparticles (AuNPs), but also in the connection position between the AuNCs and the single AuNP. This study not only offers a novel way for nanoroughening of PS spheres, but also acquires flexible and cheap SERS substrates for quick and sensitive detection of organic molecules.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Yu M, Liu S, Su D, Jiang S, Zhang G, Qin Y, Li MY. Controllable MXene nano-sheet/Au nanostructure architectures for the ultra-sensitive molecule Raman detection. NANOSCALE 2019; 11:22230-22236. [PMID: 31735944 DOI: 10.1039/c9nr08340e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy aims to augment the relatively weak molecular vibrations based on electromagnetic enhancement (EE) and chemical enhancement (CE) mechanisms, and offers a potential way for material identification, even up to the single-molecule level, under atmospheric conditions. We have subtly combined the advantages of EE and CE, and propose new MXene (Ti3C2TX) nano-sheet/Au nanostructure architectures to break through the limitations of the Raman detection with long-time stability. The MXene nanosheets with excellent biocompatibility can effectively prevent structural distortion from the interaction with the Au NSs, and can also guarantee a high enhancement effect owing to the spatially extended electromagnetic field distribution and electron injection into the molecules. The self-assembled Au nanostructures are aggregated based on the Volmer-Weber growth model, and the electromagnetic field distribution radically evolves depending on the morphologies of the resultant Au nanostructures, leading to a drastic compensation for the limited EE of the MXene nano-sheets. Consequently, the intensified Raman vibrational signals of R6G molecules lead to a high enhancement factor of 2.9 × 107, even at an ultra-low concentration of 10-10 M. Similarly, the Raman signals of the methylene blue (MB) and crystal violet (CV) molecules can also be detected at low concentrations below 10-8 M, manifesting universal applications of the MXene/Au architectures for ultra-sensitive molecular detection under atmospheric conditions.
Collapse
Affiliation(s)
- Muni Yu
- School of Optical and Electronic Information and Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
24
|
Xu K, Zhou R, Takei K, Hong M. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900925. [PMID: 31453071 PMCID: PMC6702763 DOI: 10.1002/advs.201900925] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/26/2019] [Indexed: 05/18/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy provides a noninvasive and highly sensitive route for fingerprint and label-free detection of a wide range of molecules. Recently, flexible SERS has attracted increasingly tremendous research interest due to its unique advantages compared to rigid substrate-based SERS. Here, the latest advances in flexible substrate-based SERS diagnostic devices are investigated in-depth. First, the intriguing prospect of point-of-care diagnostics is briefly described, followed by an introduction to the cutting-edge SERS technique. Then, the focus is moved from conventional rigid substrate-based SERS to the emerging flexible SERS technique. The main part of this report highlights the recent three categories of flexible SERS substrates, including actively tunable SERS, swab-sampling strategy, and the in situ SERS detection approach. Furthermore, other promising means of flexible SERS are also introduced. The flexible SERS substrates with low-cost, batch-fabrication, and easy-to-operate characteristics can be integrated into portable Raman spectroscopes for point-of-care diagnostics, which are conceivable to penetrate global markets and households as next-generation wearable sensors in the near future.
Collapse
Affiliation(s)
- Kaichen Xu
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Department of Physics and ElectronicsOsaka Prefecture University SakaiOsaka599‐8531Japan
| | - Rui Zhou
- School of Aerospace EngineeringXiamen University422 Siming South Road, Siming DistrictXiamenFujian361005P. R. China
| | - Kuniharu Takei
- Department of Physics and ElectronicsOsaka Prefecture University SakaiOsaka599‐8531Japan
| | - Minghui Hong
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| |
Collapse
|
25
|
Jiang J, Zhao F, Shi S, Du Y, Chen J, Wang S, Xu J, Li C, Liao J. In Situ Surface-Enhanced Raman Spectroscopy Detection of Uranyl Ions with Silver Nanorod-Decorated Tape. ACS OMEGA 2019; 4:12319-12324. [PMID: 31460349 PMCID: PMC6682048 DOI: 10.1021/acsomega.9b01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/05/2019] [Indexed: 05/25/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been utilized for rapid analysis of uranyl ions (UO2 2+) on account of its fast response and high sensitivity. However, the difficulty of fabricating a suitable SERS substrate for in situ analysis of uranyl ions severely restricts its practical application. Hence, we proposed flexible and adhesive SERS tape decorated with silver nanorod (AgNR) arrays for in situ detection of UO2 2+. The SERS tape was fabricated through a simple "paste & peel off" procedure by transferring the slanted AgNR arrays from silicon to the transparent tape surface. UO2 2+ can be easily in situ detected by placing the AgNR SERS tape into an aqueous solution or pasting it onto the solid matrix surface due to the excellent transparent feature of the tape. The proposed SERS tape with well-distributed AgNRs effectively improved the reproducibility and sensitivity for UO2 2+ analysis. UO2 2+ with concentration as low as 100 nM was easily detected. Besides, UO2 2+ adsorbed on an iron disc and rock surface also can be rapidly in situ detected. With its simplicity and convenience, the AgNR SERS tape-based SERS technique offers a promising approach for environmental monitoring and nuclear accident emergency detection.
Collapse
Affiliation(s)
- Jiaolai Jiang
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Fengtong Zhao
- Key
Laboratory of Advanced Materials (MOE), School of Materials Science
and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Siwei Shi
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Yunfeng Du
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Jun Chen
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Shaofei Wang
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Jingsong Xu
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Changmao Li
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| | - Junsheng Liao
- Institute
of Materials, China Academy of Engineering
Physics, P. O. Box No.9-11, Mianyang, Sichuan 621907, P. R. China
| |
Collapse
|
26
|
Liu Y, Ma L, Zou S, Zhao F, Wang Y, Ling Y, Zhang Z. Slanted Ag-Al alloy nanorods arrays for highly active and stable surface-enhanced Raman scattering substrates. NANOTECHNOLOGY 2019; 30:235703. [PMID: 30716729 DOI: 10.1088/1361-6528/ab0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aluminum has been established as an earth-abundant and low-cost alternative to gold and silver for plasmonic applications. Particularly, aluminum largely tends to combines with oxygen compared with silver. Here, a simple glancing angle deposition technique is presented to prepare Ag-Al alloy nanorods (NRs) with a small amount of aluminum. The effect of aluminum is to combine oxygen or corroded substances under certain conditions, such as in the air and in etchants. Beside this, owing to the large diffusion coefficient of aluminum in a Si wafer, the aluminum diffuses easily into a Si wafer, so the bonding force between the Ag-Al alloy NRs and Si wafer can be improved accordingly. In this work, 3.5 at% Al alloy NRs are optimal to exhibit high surface-enhanced Raman scattering (SERS) sensitivity, long-time stability as well as strong bonding force with a Si wafer. Ag-Al alloy NRs make a metal-metal alloy a promising material platform to develop pretty sensitive as well as stable SERS substrates.
Collapse
Affiliation(s)
- Yuehua Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Zou S, Ma L, Li J, Liu Y, Zhao D, Zhang Z. Ag Nanorods-Based Surface-Enhanced Raman Scattering: Synthesis, Quantitative Analysis Strategies, and Applications. Front Chem 2019; 7:376. [PMID: 31214564 PMCID: PMC6558050 DOI: 10.3389/fchem.2019.00376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) is a powerful technology that provides abundant chemical fingerprint information with advantages of high sensitivity and time-saving. Advancements in SERS substrates fabrication allow Ag nanorods (AgNRs) possess superior sensitivity, high uniformity, and excellent reproducibility. To further promote AgNRs as a promising SERS substrate candidate to a broader application scope, oxides are integrated with AgNRs by virtue of their unique properties which endow the AgNRs-oxide hybrid with high stability and recyclability. Aside from SERS substrates fabrication, significant developments in quantitative analysis strategies offer enormous approaches to minimize influences resulted from variations of measuring conditions and to provide the reasonable data analysis. In this review, we discuss various fabrication approaches for AgNRs and AgNRs-oxide hybrids to achieve efficient SERS platforms. Then, we introduce three types of strategies which are commonly employed in chemical quantitative analysis to reach a reliable result. Further, we highlight SERS applications including food safety, environment safety, biosensing, and vapor sensing, demonstrating the potential of SERS as a powerful and promising technique. Finally, we conclude with the current challenges and future prospects toward efficient SERS manipulations for broader real-world applications.
Collapse
Affiliation(s)
- Sumeng Zou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Lingwei Ma
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuehua Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Dongliang Zhao
- Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Simultaneous Thermal Stability and Ultrahigh Sensitivity of Heterojunction SERS Substrates. NANOMATERIALS 2019; 9:nano9060830. [PMID: 31159335 PMCID: PMC6631846 DOI: 10.3390/nano9060830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
This paper reports the design of Ag-Al2O3-Ag heterojunctions based on Ag nanorods (AgNRs) and their applications as thermally stable and ultrasensitive substrates of surface-enhanced Raman scattering (SERS). Specifically, an ultrathin Al2O3 capping layer of 10 nm on top of AgNRs serves to slow down the surface diffusion of Ag at high temperatures. Then, an additional Ag layer on top of the capping layer creates AgNRs-Al2O3-Ag heterojunctions, which lead to giant enhancement of electromagnetic fields within the Al2O3 gap regions that could boost the SERS enhancement. As a result of this design, the SERS substrates are thermally stable up to 200 °C, which has been increased by more than 100 °C compared with bare AgNRs, and their sensitivity is about 400% that of pure AgNRs. This easy yet effective capping approach offers a pathway to fabricate ultrasensitive, thermally stable and easily prepared SERS sensors, and to extend SERS applications for high-temperature detections, such as monitoring in situ the molecule reorientation process upon annealing. Such simultaneous achievement of thermal stability and SERS sensitivity represents a great advance in the design of SERS sensors and will inspire the fabrication of novel hetero-nanostructures.
Collapse
|
29
|
Liu Y, Wu H, Ma L, Zou S, Ling Y, Zhang Z. Highly stable and active SERS substrates with Ag-Ti alloy nanorods. NANOSCALE 2018; 10:19863-19870. [PMID: 30335108 DOI: 10.1039/c8nr07138a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver (Ag) nanostructures have been intensively studied as one of the most promising surface-enhanced Raman scattering (SERS) substrates; however, their practical applications have been limited by the chemical instability with regard to oxidation, sulfuration and etching of Ag. Therefore, designing and fabricating highly active Ag nanostructures with high SERS stability has been recognized as an important research area. Herein, Ag-Ti alloy nanorods (Ag-Ti alloy NRs) are designed and fabricated by the oblique angle deposition (OAD) method to protect Ag. Taking advantage of the higher chemical activity of Ti compared with Ag, Ti can be sacrificed against oxidation and corrosion, protecting Ag in harsh environments, further ensuring long-term stability of the SERS substrates. It is demonstrated that a 2% Ti (in atoms) substrate possesses extremely high SERS sensitivity, and is stable both in air for more than 1 month and in 10 mM HNO3 solution for 1 hour. The alloy nanostructure provides a new opportunity to achieve highly sensitive and highly stable SERS substrates.
Collapse
Affiliation(s)
- Yuehua Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | | | | | | | | | | |
Collapse
|
30
|
Li J, Fan Y, Xue X, Ma L, Zou S, Fei Z, Xie Z, Zhang Z. Fabrication and simulation of V-shaped Ag nanorods as high-performance SERS substrates. Phys Chem Chem Phys 2018; 20:25623-25628. [PMID: 30283924 DOI: 10.1039/c8cp05533e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bending straight Ag nanorods (AgNRs) into V-shaped structures can generate a higher surface-enhanced Raman scattering (SERS) performance. Numerical simulations showed that V-shaped AgNRs with a total length between 300 nm and 800 nm were more sensitive than equal-length straight AgNRs under a 785 nm laser in most cases. It was found that at a laser wavelength between 500 nm and 1000 nm, the Raman enhancement factor (EF) of a V-shaped AgNR's 3rd plasmon mode was not only optimal among the other major plasmon modes, but also outperformed the plasmon modes of straight AgNRs. Besides, a linear relationship between the resonance wavelength of the V-shaped AgNR's 3rd mode and its length was observed both numerically and experimentally, which was beneficial for the optimization of SERS substrates. Under 785 nm laser excitation, V-shaped AgNR substrates with a single arm length between 330 nm and 340 nm possessed the highest SERS efficiency. This work took AgNR array substrates one step closer to practical applications.
Collapse
Affiliation(s)
- Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tong Q, Wang W, Fan Y, Dong L. Recent progressive preparations and applications of silver-based SERS substrates. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Quantification of trace chemicals in unknown complex systems by SERS. Talanta 2018; 186:452-458. [DOI: 10.1016/j.talanta.2018.04.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
|
33
|
Chen M, Luo W, Zhang Z, Wang R, Zhu Y, Yang H, Chen X. Synthesis of Multi-Au-Nanoparticle-Embedded Mesoporous Silica Microspheres as Self-Filtering and Reusable Substrates for SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42156-42166. [PMID: 29140677 DOI: 10.1021/acsami.7b16618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surface-enhanced Raman-scattering-based (SERS-based) biosensing in biological fluids is constrained by nonspecific macromolecule adsorptions and disposable property of the SERS substrate. Here, novel multi-Au-nanoparticle-embedded mesoporous silica microspheres (AuNPs/mSiO2) were prepared using a one-pot method, which served as reliable substrates for SERS enhancement associated with salient features of self-filtering ability and reusability. The fabrication and physical characterization of AuNPs/mSiO2 microspheres were discussed, and SERS activity of this novel substrate was investigated by using 4-mercaptobenzoic acid (4-MBA) as Raman probe. The responses of our substrates to Raman intensities exhibited a SERS enhancement factor of 2.01 × 107 and high reproducibility (relative standard deviation of 6.13%). Proof-of-concept experiments were designed to evaluate the self-filtering ability of the substrates in bovine serum albumin (BSA) and human serum solution, separately. The results clearly demonstrate that mesoporous SiO2 can serve as a molecular sieve via size exclusion and avoid Raman signal interference of biomacromolecules in biological fluids. Subsequently, feasibility of practical application of AuNPs/mSiO2 microspheres was assessed by quantitative detection of methotrexate (MTA) in serum. The method exhibited good linearity between 1 and 110 nM with the correlation coefficients of 0.996, which proved that the obtained AuNPs/mSiO2 microspheres were good SERS substrates for determination of small biomolecules directly in biological fluids without need of manipulating samples. In addition, the substrate maintained its SERS response during multiple cycles, which was evaluated by recording Raman signals for 4-MBA before and after thermal annealing, thereby demonstrating the high thermostability and satisfactory reusability. These results offered the AuNPs/mSiO2 microspheres attractive advantages in their SERS biosensing.
Collapse
Affiliation(s)
- Miao Chen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Wen Luo
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Ranhao Wang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, Hunan 410083, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University , Changsha, Hunan 410083, China
| |
Collapse
|
34
|
Zhang X, Si S, Zhang X, Wu W, Xiao X, Jiang C. Improved Thermal Stability of Graphene-Veiled Noble Metal Nanoarrays as Recyclable SERS Substrates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40726-40733. [PMID: 29086549 DOI: 10.1021/acsami.7b13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ability to enhance the heat resistance of noble metals is vital to many industrial and academic applications. Because of its exceptional thermal properties, graphene was used to enhance the thermal stability of noble metals. Monolayer graphene-covered noble metal triangular nanoarrays (TNAs) showed excellent heat resistance, which could maintain their original triangular nanoarrays at high temperatures, whereas bare noble metal TNAs all agglomerate into spherical nanoparticles. On the basis of this mechanism, we obtained a universal recyclable surface-enhanced Raman scattering (SERS) substrate; after 16 cycles, the SERS substrate still worked well. The improvement of the heat resistance of noble metals by graphene has a great significance to the working reliability and service life of electronic devices and the single-use problem of traditional SERS substrates.
Collapse
Affiliation(s)
- Xingang Zhang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| | - Shuyao Si
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| | - Xiaolei Zhang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| | - Wei Wu
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| | - Xiangheng Xiao
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| | - Changzhong Jiang
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application and ‡Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University , Wuhan 430072, P. R. China
| |
Collapse
|
35
|
Ma L, Zhang Z, Huang H. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering. NANOTECHNOLOGY 2017; 28:405602. [PMID: 28786818 DOI: 10.1088/1361-6528/aa84f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.
Collapse
Affiliation(s)
- Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Department of Mechanical and Industrial Engineering, Northeastern University, United States of America
| | | | | |
Collapse
|
36
|
Ma L, Li J, Zou S, Zhang Z. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering. SENSORS 2017; 17:s17081895. [PMID: 28817107 PMCID: PMC5579474 DOI: 10.3390/s17081895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS) technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates) featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.
Collapse
Affiliation(s)
- Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Sumeng Zou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications. COATINGS 2017. [DOI: 10.3390/coatings7020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|