1
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Carobeli LR, Santos ABC, Martins LBM, Damke E, Consolaro MEL. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Rev Anticancer Ther 2024; 24:263-282. [PMID: 38549400 DOI: 10.1080/14737140.2024.2337259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Despite the evidence that photodynamic therapy (PDT) associated with chemotherapy presents great potential to overcome the limitations of monotherapy, little is known about the current status of this combination against cervical cancer. This systematic review aimed to address the currently available advances in combining PDT and chemotherapy in different research models and clinical trials of cervical cancer. METHODS We conducted a systematic review based on PRISMA Statement and Open Science Framework review protocol using PubMed, Web of Science, Embase, Scopus, LILACS, and Cochrane databases. We selected original articles focusing on 'Uterine Cervical Neoplasms' and 'Photochemotherapy and Chemotherapy' published in the last 10 years. The risk of bias in the studies was assessed using the CONSORT and SYRCLE tools. RESULTS Twenty-three original articles were included, focusing on HeLa cells, derived from endocervical adenocarcinoma and on combinations of several chemotherapeutics. Most of the combinations used modern drug delivery systems for improved simultaneous delivery and presented promising results with increased cytotoxicity compared to monotherapy. CONCLUSION Despite the scarcity of animal studies and the absence of clinical studies, the combination of chemotherapy with PDT presents a potential option for cervical cancer therapy requiring additional studies. OSF REGISTRATION https://doi.org/10.17605/OSF.IO/WPHN5 [Figure: see text].
Collapse
Affiliation(s)
- Lucimara Rodrigues Carobeli
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Beatriz Camillo Santos
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
3
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
5
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Butnarasu C, Petrini P, Bracotti F, Visai L, Guagliano G, Fiorio Pla A, Sansone E, Petrillo S, Visentin S. Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform. Adv Healthc Mater 2022; 11:e2200340. [PMID: 35608152 PMCID: PMC11468529 DOI: 10.1002/adhm.202200340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Mucus is a complex barrier for pharmacological treatments and overcoming it is one of the major challenges faced during transmucosal drug delivery. To tackle this issue, a novel class of glycosylated nanoparticles, named "mucosomes," which are based on the most important protein constituting mucus, the mucin, is introduced. Mucosomes are designed to improve drug absorption and residence time on the mucosal tissues. Mucosomes are produced (150-300 nm), functionalized with glycans, and loaded with the desired drug in a single one-pot synthetic process and, with this method, a wide range of small and macro molecules can be loaded with different physicochemical properties. Various in vitro models are used to test the mucoadhesive properties of mucosomes. The presence of functional glycans is indicated by the interaction with lectins. Mucosomes are proven to be storable at 4 °C after lyophilization, and administration through a nasal spray does not modify the morphology of the mucosomes. In vitro and in vivo tests indicate mucosomes do not induce adverse effects under the investigated conditions. This study proposes mucosomes as a ground-breaking nanosystem that can be applied in several pathological contexts, especially in mucus-related disorders.
Collapse
Affiliation(s)
- Cosmin Butnarasu
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Paola Petrini
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Francesco Bracotti
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Livia Visai
- Molecular Medicine Department (DMM)Centre for Health Technologies (CHT)UdR INSTMUniversity of PaviaPavia27100Italy
- Medicina Clinica‐SpecialisticaUOR5 Laboratorio di NanotecnologieICS MaugeriIRCCSPavia27100Italy
| | - Giuseppe Guagliano
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Ettore Sansone
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| |
Collapse
|
7
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
8
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
9
|
Kumar R, Pulikanti GR, Shankar KR, Rambabu D, Mangili V, Kumbam LR, Sagara PS, Nakka N, Yogesh M. Surface coating and functionalization of metal and metal oxide nanoparticles for biomedical applications. METAL OXIDES FOR BIOMEDICAL AND BIOSENSOR APPLICATIONS 2022:205-231. [DOI: 10.1016/b978-0-12-823033-6.00007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Dag A, Cakilkaya E, Omurtag Ozgen PS, Atasoy S, Yigit Erdem G, Cetin B, Çavuş Kokuroǧlu A, Gürek AG. Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules 2021; 22:1555-1567. [PMID: 33793222 DOI: 10.1021/acs.biomac.0c01811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combination cancer therapy based on multifunctional nanomaterials has attracted great attention. The present work focuses on the preparation of the glycopolymeric nanoparticle, which contains a photosensitizer (zinc(II)phthalocyanine, ZnPc) and an anticancer drug (Doxorubicin, Dox). First, a novel mono azide-functional ZnPc-N3 with seven hydrophilic ethylene oxide chains was synthesized. Next, ZnPc alone or together with Dox bearing glycopolymers was synthesized via the RAFT polymerization method and then self-assembled into glyconanoparticles (GNPs) with narrow particle size distribution. Then the evaluation of the biological activity of GNPs (GNPs-ZnPc and GNPs-ZnPc/Dox) for dual photodynamic therapy (PDT) and chemotherapy against human breast cancer cells was investigated. The constructed GNPs were identified via general characterization methods, including dynamic light scattering (DLS) and transmission electron microscopy (TEM). The prepared GNPs-ZnPc/Dox demonstrated remarkable photophysical and photochemical properties, involving good colloidal stability in biological conditions, pH-responsive drug release, and the capacity to generate singlet oxygen under light irradiation. The outer layer of nanoparticles covered by fructose sugar moieties achieves a targeted cancer therapy owing to GLUT5 (a well-known fructose transporter) overexpression toward breast cancer cells. In vitro experiments were then performed to evaluate the chemo/phototoxicity, cellular uptake, and anticancer efficacy of GNPs-ZnPc/Dox. In comparison with free Dox, human breast cancer cells treated with GNPs-ZnPc/Dox exhibited a higher cellular internalization via GLUT5 targeting. In particular, the GNPs-ZnPc/Dox nanoplatform revealed an excellent synergistic anticancer activity in comparison with free ZnPc-N3 and free Dox, representing a novel and promising chemo-photodynamic combination therapeutic methodology to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey.,Drug Application and Research Center, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Eda Cakilkaya
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Pinar Sinem Omurtag Ozgen
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, 34815 Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Gulsah Yigit Erdem
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Busra Cetin
- Institute of Natural and Applied Sciences, Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
13
|
Zhen Y, Chen L, Ma X, Ding G, Zhang D, Chen Q. β-Amyloid Peptide 1-42-Conjugated Magnetic Nanoparticles for the Isolation and Purification of Glycoproteins in Egg White. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14028-14036. [PMID: 33730480 DOI: 10.1021/acsami.1c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aβ1-42-conjugated magnetic nanoparticles, Aβ1-42@MNP, were prepared by covalently coupling Aβ1-42 to hyperbranched polyethyleneimine (PEI)-modified magnetic nanoparticles via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). Aβ1-42's high binding capacity to glycosyl groups facilitates Aβ1-42@MNP composite to be a promising selective adsorbent for glycoproteins in egg whites. In our study, under conditions of pH 4.0, the adsorption efficiency of Aβ1-42@MNP composite for ovalbumin (100 μg mL-1) was 98.4% and its maximum adsorption capacity was 344.8 mg g -1; under the condition of pH 4.0 and 200 mmol L-1 NaCl, its adsorption efficiencies for ovalbumin and ovotransferrin were 96.9% and 60.0%, respectively. According to these primary data, in practice, ovalbumin was removed from egg white by Aβ1-42@MNP composite at pH 4.0 (step I), and then after adding NaCl until the final salt concentration reached 200 mmol L-1 (pretreated egg white), we utilized the same adsorbent to further isolate/purify glycoproteins (step II). SDS-PAGE results showed that Aβ1-42@MNP composite could largely remove ovalbumin in step I and could isolate/purify the remaining ovalbumin and ovotransferrin in step II. LC-MS/MS analysis results showed that the removal of ovalbumin reduced its percentage in egg white samples from 32.93% to 11.05% in step I and the remaining ovalbumin and ovotransferrin were enriched in step II, where the final percentage reached 11.6% and 12.6%, respectively. In summary, 81 protein species were identified after two-step extraction with Aβ1-42@MNP on egg white, while only 46 protein species were identified directly from raw egg white without any pretreatment. This work well illustrates the excellent adsorption performance of Aβ1-42@MNP composite to glycoproteins and its potential in the application of proteomic studies on low-abundance proteins in egg white.
Collapse
Affiliation(s)
- Yi Zhen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Lei Chen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xiaoyi Ma
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Guoyu Ding
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Dandan Zhang
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Qing Chen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
14
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
15
|
Wang Z, Meng Q, Li S. The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy. Curr Med Chem 2020; 27:5510-5529. [PMID: 31244415 DOI: 10.2174/0929867326666190627123719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. OBJECTIVE This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. RESULTS Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. CONCLUSION We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.
Collapse
Affiliation(s)
- Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Calabro RL, Karna P, Kim DY, Yang DS. Controlled synthesis and characterization of NaYF 4:Yb/Er upconverting nanoparticles produced by laser ablation in liquid. J Chem Phys 2020; 153:064701. [DOI: 10.1063/5.0021011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rosemary L. Calabro
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Priya Karna
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Doo Young Kim
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
17
|
Wei Z, Liu X, Niu D, Qin L, Li Y. Upconversion Nanoparticle-Based Organosilica–Micellar Hybrid Nanoplatforms for Redox-Responsive Chemotherapy and NIR-Mediated Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4655-4664. [DOI: 10.1021/acsabm.0c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenyang Wei
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohang Liu
- Department of Radiology,Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Limei Qin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
|
19
|
Kalita H, Patowary M. Fluorescent tumor-targeted polymer-bioconjugate: A potent theranostic platform for cancer therapy. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Hong T, Jiang Y, Yue Z, Song X, Wang Z, Zhang S. Construction of Multicolor Upconversion Nanotheranostic Agent for in-situ Cooperative Photodynamic Therapy for Deep-Seated Malignant Tumors. Front Chem 2020; 8:52. [PMID: 32117878 PMCID: PMC7026389 DOI: 10.3389/fchem.2020.00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
Upconversion nanoparticles (UCNPs)-based photodynamic nanotheranostic agents could address the main drawbacks of photosensitizer molecules (PSs) including instability in aqueous solution and rapid clearance. Due to the relatively weak luminescence intensity of UCNPs and insufficient reactive oxygen species (ROSs), UCNPs-based photodynamic therapy (UCNPs-PDT) was discounted for deep-seated tumors. Thus, we proposed a PSs-modulated sensitizing switch strategy. Indocyanine green (ICG) as an NIR organic dye was proved to effectively enhance the luminescence intensity of UCNPs. Herein, four-color UCNPs were coated with a silica layer which loaded ICG and PSs while the thickness of silica layer was controlled to assist the sensitization function of ICG and activation of PSs. Under the drive of mitochondria-targeting ligand, the prepared nanotheranostic agent would accumulate in the mitochondria where ROSs were in-situ produced and then cell apoptosis was induced. Due to the cooperative PDT and high tissue-penetration depth of NIR laser, the prepared upconversion nanotheranostic agent could achieve significant inhibition on the deep-seated tumors.
Collapse
Affiliation(s)
- Tongtong Hong
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yanxialei Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Zihong Yue
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
21
|
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26:416-432. [PMID: 30929527 PMCID: PMC6450553 DOI: 10.1080/10717544.2019.1588424] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have been developed for tumor treatment due to the enhanced permeability and retention effects. However, lack of specific cancer cells selectivity results in low delivery efficiency and undesired side effects. In that case, the stimuli-responsive nanoparticles system designed for the specific structure and physicochemical properties of tumors have attracted more and more attention of researchers. Esterase-responsive nanoparticle system is widely used due to the overexpressed esterase in tumor cells. For a rational designed esterase-responsive nanoparticle, ester bonds and nanoparticle structures are the key characters. In this review, we overviewed the design of esterase-responsive nanoparticles, including ester bonds design and nano-structure design, and analyzed the fitness of each design for different application. In the end, the outlook of esterase-responsive nanoparticle is looking forward.
Collapse
Affiliation(s)
- Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
22
|
Wang L, Song Y, Parikh A, Joyce P, Chung R, Liu L, Afinjuomo F, Hayball JD, Petrovsky N, Barclay TG, Garg S. Doxorubicin-Loaded Delta Inulin Conjugates for Controlled and Targeted Drug Delivery: Development, Characterization, and In Vitro Evaluation. Pharmaceutics 2019; 11:pharmaceutics11110581. [PMID: 31698755 PMCID: PMC6920814 DOI: 10.3390/pharmaceutics11110581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to utilize this property to develop a system to target anti-cancer drugs to lymphoid organs. We investigated, therefore, whether MPI could be used as a vehicle to deliver doxorubicin selectively, thereby reducing the toxicity of this antibiotic anthracycline drug. Doxorubicin was covalently attached to the surface of MPI using an acid–labile linkage to enable pH-controlled release. The MPI-doxorubicin conjugate was characterized using FTIR and SEM, confirming covalent attachment and indicating doxorubicin coupling had no obvious impact on the physical nanostructure, integrity, and cellular uptake of the MPI particles. To simulate the stability of the MPI-doxorubicin in vivo, it was stored in artificial lysosomal fluid (ALF, pH 4.5). Although the MPI-doxorubicin particles were still visible after 165 days in ALF, 53% of glycosidic bonds in the inulin particles were hydrolyzed within 12 days in ALF, reflected by the release of free glucose into solution. By contrast, the fructosidic bonds were much more stable. Drug release studies of the MPI-doxorubicin in vitro, demonstrated a successful pH-dependent controlled release effect. Confocal laser scanning microscopy studies and flow cytometric analysis confirmed that when incubated with live cells, MPI-doxorubicin was efficiently internalized by immune cells. An assay of cell metabolic activity demonstrated that the MPI carrier alone had no toxic effects on RAW 264.7 murine monocyte/macrophage-like cells, but exhibited anti-cancer effects against HCT116 human colon cancer cells. MPI-doxorubicin had a greater anti-cancer cell effect than free doxorubicin, particularly when at lower concentrations, suggesting a drug-sparing effect. This study establishes that MPI can be successfully modified with doxorubicin for chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Lixin Wang
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - Paul Joyce
- Division of Biological Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Rosa Chung
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Adelaide SA 5000, Australia; (L.L.); (J.D.H.)
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Adelaide SA 5000, Australia; (L.L.); (J.D.H.)
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia;
- Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, Australia
| | - Thomas G. Barclay
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Australia; (L.W.); (Y.S.); (A.P.); (R.C.); (F.A.); (T.G.B.)
- Correspondence: ; Tel.: +61-8-8302-1067
| |
Collapse
|
23
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
24
|
Pinto da Silva L, Núnez-Montenegro A, Magalhães CM, Ferreira PJO, Duarte D, González-Berdullas P, Rodríguez-Borges JE, Vale N, Esteves da Silva JCG. Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer. Eur J Med Chem 2019; 183:111683. [PMID: 31514060 DOI: 10.1016/j.ejmech.2019.111683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/14/2023]
Abstract
While photodynamic therapy is known for significant advantages over conventional cancer therapies, its dependence on light has limited it to treating tumors on or just under the skin or on the outer lining of organs/cavities. Herein, we have developed a single-molecule photosensitizer capable of intracellular self-activation and with potential tumor-selectivity due to a chemiluminescent reaction involving only a cancer marker. Thus, the photosensitizer is directly chemiexcited to a triplet excited state capable of generating singlet oxygen, without requiring either a light source or any catalyst/co-factor. Cytotoxicity assays involving the photosensitizer show significant toxicity toward tumor cells, even better than reference drugs, while not inducing toxicity toward normal cells. This work provides a proof-of-concept for a novel type of photosensitizer that eliminates the current restrictions that photodynamic therapy presents regarding tumor size and localization.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal.
| | - Ara Núnez-Montenegro
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal
| | - Carla M Magalhães
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal
| | - Paulo J O Ferreira
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal
| | - Diana Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Patricia González-Berdullas
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal
| | - José E Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 697, 4169-007, Porto, Portugal
| |
Collapse
|
25
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
26
|
Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29579-29592. [PMID: 31359756 DOI: 10.1021/acsami.9b09671] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tumor hypoxia and the short half-life of reactive oxygen species (ROS) with small diffusion distance have greatly limited the therapeutic effect of photodynamic therapy (PDT). Here, a multifunctional nanoplatform is developed to enhance the PDT effect through increasing the oxygen concentration in tumor cells by the Fenton reaction and reducing the distance between the ROS and the target site by mitochondrial targeting. Fe3O4@Dex-TPP nanoparticles are first prepared by coprecipitation in the presence of triphenylphosphine (TPP)-grafted dextran (Dex-TPP) and Fe2+/Fe3+, which have a magnetic resonance imaging effect. Next, the photosensitizers of protoporphyrin IX (PpIX) and glutathione-responsive mPEG-ss-COOH are grafted on Fe3O4@Dex-TPP to form Fe3O4@Dex/TPP/PpIX/ss-mPEG nanoparticles. After the nanoparticles are internalized, part of Fe3O4 are decomposed into Fe2+/Fe3+ in the acidic lysosome and then Fe2+/Fe3+ diffused into the cytoplasm, and subsequently, Fe2+ reacted with the overproduced H2O2 to produce O2 and •OH. The undecomposed nanoparticles enter the cytoplasm by photoinduced internalization and targeted to the mitochondria, leading to ROS direct generation around the mitochondria. Simultaneously, the produced O2 by the Fenton reaction can serve as a raw material for PDT to continuously exert PDT effect. As a result, the Fenton reaction-assisted PDT can significantly improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Huabo Hou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Guoqing Wei
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Yi Wang
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| |
Collapse
|
27
|
Pinto da Silva L, Magalhães CM, Núñez-Montenegro A, Ferreira PJO, Duarte D, Rodríguez-Borges JE, Vale N, Esteves da Silva JCG. Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer Treatment. Biomolecules 2019; 9:biom9080384. [PMID: 31434290 PMCID: PMC6722738 DOI: 10.3390/biom9080384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a very challenging disease to treat, both in terms of treatment efficiency and side-effects. To overcome these problems, there have been extensive studies regarding the possibility of improving treatment by employing combination therapy, and by exploring therapeutic modalities with reduced side-effects (such as photodynamic therapy (PDT)). Herein, this work has two aims: (i) to develop self-activating photosensitizers for use in light-free photodynamic therapy, which would eliminate light-related restrictions that this therapy currently possesses; (ii) to assess their co-treatment potential when combined with reference chemotherapeutic agents (Tamoxifen and Metformin). We synthesized three new photosensitizers capable of self-activation and singlet oxygen production via a chemiluminescent reaction involving only a cancer marker and without requiring a light source. Cytotoxicity assays demonstrated the cytotoxic activity of all photosensitizers for prostate and breast tumor cell lines. Analysis of co-treatment effects revealed significant improvements for breast cancer, producing better results for all combinations than just for the individual photosensitizers and even Tamoxifen. By its turn, co-treatment for prostate cancer only presented better results for one combination than for just the isolated photosensitizers and Metformin. Nevertheless, it should be noted that the cytotoxicity of the isolated photosensitizers in prostate tumor cells was already very appreciable.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Carla M Magalhães
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ara Núñez-Montenegro
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Paulo J O Ferreira
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Diana Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José E Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
28
|
Xu H, Ohulchanskyy TY, Yakovliev A, Zinyuk R, Song J, Liu L, Qu J, Yuan Z. Nanoliposomes Co-Encapsulating CT Imaging Contrast Agent and Photosensitizer for Enhanced, Imaging Guided Photodynamic Therapy of Cancer. Theranostics 2019; 9:1323-1335. [PMID: 30867833 PMCID: PMC6401496 DOI: 10.7150/thno.31079] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/08/2019] [Indexed: 01/21/2023] Open
Abstract
Fluorescence (FL) and X-ray computed tomography (CT) imaging-guided photodynamic therapy (PDT) can provide a powerful theranostic tool to visualize, monitor, and treat cancer and other diseases with enhanced accuracy and efficacy. Methods: In this study, clinically approved iodinated CT imaging contrast agent (CTIA) iodixanol and commercially available photosensitizer (PS) meso-tetrakis (4-sulphonatophenyl) porphine (TPPS4) were co-encapsulated in biocompatible PEGylated nanoliposomes (NL) for enhanced anticancer PDT guided by bimodal (FL and CT) imaging. Results: The NL co-encapsulation of iodixanol and TPPS4 (LIT) lead to an increase in singlet oxygen generation by PS via the intraparticle heavy-atom (iodine) effect on PS molecules, as it was confirmed by both direct and indirect measurements of singlet oxygen production. The confocal imaging and PDT of cancer cells were performed in vitro, exhibiting the cellular uptake of TPPS4 formulations and enhanced PDT efficacy of LIT. Meanwhile, bimodal (FL and CT) imaging was also conducted with tumor-bearing mice and the imaging results manifested high-efficient accumulation and retention of LIT in tumors. Moreover, PDT of tumor in vivo was shown to be drastically more efficient with LIT than with other formulations of TPPS4. Conclusion: This study demonstrated that LIT can serve as a highly efficient theranostic nanoplatform for enhanced anticancer PDT guided by bimodal (FL and CT) imaging.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| | - Tymish Y. Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Artem Yakovliev
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Roman Zinyuk
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| |
Collapse
|
29
|
Liu W, Liu H, Peng X, Zhou G, Liu D, Li S, Zhang J, Wang S. Hypoxia-Activated Anticancer Prodrug for Bioimaging, Tracking Drug Release, and Anticancer Application. Bioconjug Chem 2018; 29:3332-3343. [PMID: 30192132 DOI: 10.1021/acs.bioconjchem.8b00511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel anticancer theranostic prodrug, FDU-DB-NO2, specifically activated by hypoxia for selective two-photon imaging hypoxia status, real-time tracking drug release, and solid tumor therapy was designed. The devised prodrug consists of an anticancer drug floxuridine (FDU), a fluorescence dye precursor 4'-(diethylamino)-1,1'-biphenyl-2-carboxylate (DB), and a hypoxic trigger 4-nitrobenzyl group. In normal cells, FDU-DB-NO2 is "locked". Whereas in tumor cells, the prodrug is "unlocked" by hypoxia and results in fluorescent dye 7-(diethylamino)coumarin (CM) generation along with FDU release. The amounts and rates of CM formation and FDU release were controlled by hypoxic status and increased with the decreasing of the O2 concentration. The hypoxic status, distribution of oxygen, and amount of FDU release in tumor cells, spheroids, and tumor tissue could be visualized by fluorescence. FDU-DB-NO2 showed high cytotoxicity against hypoxic MCF-7 and MCG-803 cell lines and no cytotoxicity against normoxic BRL-3A cells and exhibited effective inhibition on tumor growth of MCF-7-cell-inoculated xenograft nude mice. This strategy may provide a promising platform for selective two-photon imaging hypoxia status, real-time tracking drug release, and personalized solid tumor treatment.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Haitong Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Xiaoran Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Shenghui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Shuxiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| |
Collapse
|
30
|
Nag OK, Naciri J, Erickson JS, Oh E, Delehanty JB. Hybrid Liquid Crystal Nanocarriers for Enhanced Zinc Phthalocyanine-Mediated Photodynamic Therapy. Bioconjug Chem 2018; 29:2701-2714. [DOI: 10.1021/acs.bioconjchem.8b00374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Jawad Naciri
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Jeffrey S. Erickson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| |
Collapse
|
31
|
Meng Z, Zhang L, He Z, Lian H. Mucosal Penetrating Bioconjugate Coated Upconverting Nanoparticles That Integrate Biological Tracking and Photodynamic Therapy for Gastrointestinal Cancer Treatment. ACS Biomater Sci Eng 2018; 4:2203-2212. [DOI: 10.1021/acsbiomaterials.8b00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Gou Y, Miao D, Zhou M, Wang L, Zhou H, Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front Pharmacol 2018; 9:421. [PMID: 29755355 PMCID: PMC5934525 DOI: 10.3389/fphar.2018.00421] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023] Open
Abstract
Over the past decade, more interests have been aroused in engineering protein-based nanoformulations for cancer treatment. This excitement originates from the success of FDA approved Abraxane (Albumin-based paclitaxel nanoparticles) in 2005. The new generation of biocompatible endogenous protein-based nanoformulations is currently constructed through delivering cancer therapeutic and diagnostic agents simultaneously, as named potential theranostics. Protein nanoformulations are commonly incorporated with dyes, contrast agents, drug payloads or inorganic nanoclusters, serving as imaging-guided combinatorial cancer therapeutics. Employing the nature identity of proteins, the theranostics, escape the clearance by reticuloendothelial cells and have a long blood circulation time. The nanoscale sizet allows them to be penetrated deeply into tumor tissues. In addition, stimuli release and targeted molecules are incorporated to improve the delivery efficiency. The ongoing advancement of protein-based nanoformulations for cancer theranostics in recent 5 years is reviewed in this paper. Fine-designed nanoformulations based on albumin, ferritin, gelatin, and transferrin are highlighted from the literature. Finally, the current challenges are identified in translating protein-based nanoformulations from laboratory to clinical trials.
Collapse
Affiliation(s)
- Yi Gou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Dandan Miao
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Min Zhou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Lijuan Wang
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Hongyu Zhou
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Gaoxing Su
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
33
|
Denkova AG, de Kruijff RM, Serra‐Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv Healthc Mater 2018; 7:e1701211. [PMID: 29282903 DOI: 10.1002/adhm.201701211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) both utilize light to induce a therapeutic effect. These therapies are rapidly gaining importance due to the noninvasiveness of light and the limited adverse effect associated with these treatments. However, most preclinical studies show that complete elimination of tumors is rarely observed. Combining PDT and PTT with chemotherapy or radiotherapy can improve the therapeutic outcome and simultaneously decrease side effects of these conventional treatments. Nanocarriers can help to facilitate such a combined treatment. Here, the most recent advancements in the field of photochemotherapy and photoradiotherapy, in which nanocarriers are employed, are reviewed.
Collapse
Affiliation(s)
- Antonia G. Denkova
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Robine M. de Kruijff
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Pablo Serra‐Crespo
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
34
|
Cao J, Chen Z, Chi J, Sun Y, Sun Y. Recent progress in synergistic chemotherapy and phototherapy by targeted drug delivery systems for cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:817-830. [PMID: 29405791 DOI: 10.1080/21691401.2018.1436553] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although it's pharmacological effect for cancer therapy, conventional chemotherapy has been compromised by a series of shortcomings such as limited stability, nonspecific tumour targeting ability and severe toxic side effects. To overcome these limitations, multifunctional targeted drug delivery systems for combinatorial therapeutics have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Among them, synergistic phototherapy and chemotherapy have demonstrated their abilities to enhance therapeutic efficacies and reduce unwanted side effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of targeted drug delivery systems with combinations of phototherapy and chemotherapy and discuss the important roles of phototherapy agents involved in those non-conventional therapeutic strategies.
Collapse
Affiliation(s)
- Jie Cao
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Zuxian Chen
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Jinnan Chi
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Yalin Sun
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| | - Yong Sun
- a Department of Pharmaceutics , School of Pharmacy, Qingdao University , Qingdao , China
| |
Collapse
|
35
|
Yue Z, Hong T, Song X, Wang Z. Construction of a targeted photodynamic nanotheranostic agent using upconversion nanoparticles coated with an ultrathin silica layer. Chem Commun (Camb) 2018; 54:10618-10621. [DOI: 10.1039/c8cc05121f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A photodynamic nanotheranostic agent prepared using UCNPs coated with an ultrathin silica layer was applied in living cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Zihong Yue
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Qingdao University
- Shandong 266071
- P. R. China
| | - Tongtong Hong
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Qingdao University
- Shandong 266071
- P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- Linyi University
- Linyi 276005
- P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Qingdao University
- Shandong 266071
- P. R. China
| |
Collapse
|
36
|
Xu X, Cui Y, Bu H, Chen J, Li Y, Tang G, Wang LQ. A photosensitizer loaded hemoglobin–polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J Mater Chem B 2018; 6:1825-1833. [DOI: 10.1039/c7tb03109b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hemoglobin–polymer conjugate (HbTcMs) with oxygen supply was applied to generate more singlet oxygen for enhanced photodynamic therapy.
Collapse
Affiliation(s)
- Xin Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yuecheng Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Huixuan Bu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jiaming Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yang Li
- Department of Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Guping Tang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310028
- China
| | - Li-Qun Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
37
|
Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702299. [PMID: 28961374 DOI: 10.1002/smll.201702299] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Indexed: 05/21/2023]
Abstract
Nowadays, photodynamic therapy (PDT) is under the research spotlight as an appealing modality for various malignant tumors. Compared with conventional PDT treatment activated by ultraviolet or visible light, near infrared (NIR) light-triggered PDT possessing deeper penetration to lesion area and lower photodamage to normal tissue holds great potential for in vivo deep-seated tumor. In this review, recent research progress related to the exploration of NIR light responsive PDT nanosystems is summarized. To address current obstacles of PDT treatment and facilitate the effective utilization, several innovative strategies are developed and introduced into PDT nanosystems, including the conjugation with targeted moieties, O2 self-sufficient PDT, dual photosensitizers (PSs)-loaded PDT nanoplatform, and PDT-involved synergistic therapy. Finally, the potential challenges as well as the prospective for further development are also discussed.
Collapse
Affiliation(s)
- Kerong Deng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Zhiyao Hou
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Jun Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
38
|
Huang N, Chen X, Zhu X, Xu M, Liu J. Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials 2017; 141:296-313. [DOI: 10.1016/j.biomaterials.2017.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 11/30/2022]
|
39
|
Zhao N, Wu B, Hu X, Xing D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials 2017; 141:40-49. [DOI: 10.1016/j.biomaterials.2017.06.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/26/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
|
40
|
Cao Q, He N, Wang Y, Lu Z. Self-assembled nanostructures from amphiphilic globular protein–polymer hybrids. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2176-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017; 7:3667-3689. [PMID: 29109768 PMCID: PMC5667340 DOI: 10.7150/thno.19365] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Biosafety is the primary concern in clinical translation of nanomedicine. As an intrinsic ingredient of human blood without immunogenicity and encouraged by its successful clinical application in Abraxane, albumin has been regarded as a promising material to produce nanoparticles for bioimaging and drug delivery. The strategies for synthesizing albumin-based nanoparticles could be generally categorized into five classes: template, nanocarrier, scaffold, stabilizer and albumin-polymer conjugate. This review introduces approaches utilizing albumin in the preparation of nanoparticles and thereby provides scientists with knowledge of goal-driven design on albumin-based nanomedicine.
Collapse
Affiliation(s)
- Fei-Fei An
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, 413 E 69th St, New York, NY, 10065
| | - Xiao-Hong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
42
|
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14:228-241. [PMID: 28884040 PMCID: PMC5570600 DOI: 10.20892/j.issn.2095-3941.2017.0052] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
Collapse
Affiliation(s)
- Yanru Xin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingming Yin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyuan Zhao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
43
|
Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017; 5:4365-4392. [DOI: 10.1039/c7tb00403f] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shining a light on spectrally converting lanthanide (Ln3+)-doped nanoparticles: progress, trends, and challenges in Ln3+-nanoprobes for near-infrared bioimaging, nanothermometry, and photodynamic therapy.
Collapse
Affiliation(s)
- E. Hemmer
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa (ON)
- Canada
| | - P. Acosta-Mora
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - J. Méndez-Ramos
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - S. Fischer
- Department of Materials Science and Engineering, University of California—Berkeley
- Berkeley
- USA
| |
Collapse
|