1
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2025; 18:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Josline MJ, Ghods S, Kosame S, Choi JH, Kim W, Kim S, Chang S, Hyun SH, Kim SI, Moon JY, Park HG, Cho SB, Ju H, Lee JH. Uniform Synthesis of Bilayer Hydrogen Substituted Graphdiyne for Flexible Piezoresistive Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307276. [PMID: 38196162 DOI: 10.1002/smll.202307276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Graphdiyne (GDY) has garnered significant attention as a cutting-edge 2D material owing to its distinctive electronic, optoelectronic, and mechanical properties, including high mobility, direct bandgap, and remarkable flexibility. One of the key challenges hindering the implementation of this material in flexible applications is its large area and uniform synthesis. The facile growth of centimeter-scale bilayer hydrogen substituted graphdiyne (Bi-HsGDY) on germanium (Ge) substrate is achieved using a low-temperature chemical vapor deposition (CVD) method. This material's field effect transistors (FET) showcase a high carrier mobility of 52.6 cm2 V-1 s-1 and an exceptionally low contact resistance of 10 Ω µm. By transferring the as-grown Bi-HsGDY onto a flexible substrate, a long-distance piezoresistive strain sensor is demonstrated, which exhibits a remarkable gauge factor of 43.34 with a fast response time of ≈275 ms. As a proof of concept, communication by means of Morse code is implemented using a Bi-HsGDY strain sensor. It is believed that these results are anticipated to open new horizons in realizing Bi-HsGDY for innovative flexible device applications.
Collapse
Affiliation(s)
- Mukkath Joseph Josline
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Soheil Ghods
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Saikiran Kosame
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jun-Hui Choi
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Woongchan Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sein Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - SooHyun Chang
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Sang Hwa Hyun
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seung-Il Kim
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Hyeong Gi Park
- AI-Superconvergence KIURI Translational Research Center, Ajou University, School of Medicine, Suwon, 16499, South Korea
| | - Sung Beom Cho
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam, South Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
- Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
3
|
Obeid E, Younes K. Uncovering Key Factors in Graphene Aerogel-Based Electrocatalysts for Sustainable Hydrogen Production: An Unsupervised Machine Learning Approach. Gels 2024; 10:57. [PMID: 38247780 PMCID: PMC10815819 DOI: 10.3390/gels10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The application of principal component analysis (PCA) as an unsupervised learning method has been used in uncovering correlations among diverse features of aerogel-based electrocatalysts. This analytical approach facilitates a comprehensive exploration of catalytic activity, revealing intricate relationships with various physical and electrochemical properties. The first two principal components (PCs), collectively capturing nearly 70% of the total variance, attested the reliability and efficacy of PCA in unveiling meaningful patterns. This study challenges the conventional understanding that a material's reactivity is solely dictated by the quantity of catalyst loaded. Instead, it unveils a complex perspective, highlighting that reactivity is intricately influenced by the material's overall design and structure. The PCA bi-plot uncovers correlations between pH and Tafel slope, suggesting an interdependence between these variables and providing valuable insights into the complex interactions among physical and electrochemical properties. Tafel slope stands to be positively correlated with PC1 and PC2, showing an evident positive correlation with the pH. These findings showed that the pH can have a positive correlation with the Tafel slope, however, it does not necessarily reflect a direct positive correlation with the overpotential. The impact of pH on current density (j)and Tafel slope underscores the importance of adjusting pH to lower overpotential effectively, enhancing catalytic activity. Surface area (from 30 to 533 m2 g-1) emerges as a key physical property, inclusively inverse correlation with overpotential, indicating its direct role in lowering overpotential and increasing catalytic activity. The introduction of PC3, in conjunction with PC1, enriches the analysis by revealing consistent trends despite a slightly lower variance (60%). This reinforces the robustness of PCA in delineating distinct characteristics of graphene aerogels, affirming their potential implications in diverse electrocatalytic applications. In summary, PCA proves to be a valuable tool for unraveling complex relationships within aerogel-based electrocatalysts, extending insights beyond catalytic sites to emphasize the broader spectrum of material properties. This approach enhances comprehension of dataset intricacies and holds promise for guiding the development of more effective and versatile electrocatalytic materials.
Collapse
Affiliation(s)
- Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
4
|
Feng W, Zhang W, Lin Q, Zhang H, Qiao J, Xia L, Moloto N, He W, Sun Z. Metal–support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:18866-18878. [DOI: 10.1039/d4ta02079k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The synthesis, modulation and effect of MSI on 2D carbon-based heterogeneous catalysts for the HER.
Collapse
Affiliation(s)
- Weihang Feng
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Quanying Lin
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Heshuang Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jingyuan Qiao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Linhong Xia
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhengming Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Jin J, Xue Y, Zhao Y, Luo Q, Mao L, Wang F. Molecular unravelling of the mechanism of overpotential change at the carbon nanotubes-modified gold electrode surface. Chem Commun (Camb) 2023. [PMID: 37326456 DOI: 10.1039/d3cc01818k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using liquid secondary ion mass spectrometry, we in situ unraveled that the single walled carbon nanotubes-modified gold electrode surface is free of a dense adsorption phase and abundant in water molecules, which facilitated the electro-oxidation reaction of ascorbate. Such an understanding will expedite the knowledge-based development of electrochemical interfaces.
Collapse
Affiliation(s)
- Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Prospects of 2D graphdiynes and their applications in desalination and wastewater remediation. RSC Adv 2023; 13:18568-18604. [PMID: 37346946 PMCID: PMC10281012 DOI: 10.1039/d3ra01370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Water is an indispensable part of human life that affects health and food intake. Water pollution caused by rapid industrialization, agriculture, and other human activities affects humanity. Therefore, researchers are prudent and cautious regarding the use of novel materials and technologies for wastewater remediation. Graphdiyne (GDY), an emerging 2D nanomaterial, shows promise in this direction. Graphdiyne has a highly symmetrical π-conjugated structure consisting of uniformly distributed pores; hence, it is favorable for applications such as oil-water separation and organic-pollutant removal. The acetylenic linkage in GDY can strongly interact with metal ions, rendering GDY applicable to heavy-metal adsorption. In addition, GDY membranes that exhibit 100% salt rejection at certain pressures are potential candidates for wastewater treatment and water reuse via desalination. This review provides deep insights into the structure, properties, and synthesis methods of GDY, owing to which it is a unique, promising material. In the latter half of the article, various applications of GDY in desalination and wastewater treatment have been detailed. Finally, the prospects of these materials have been discussed succinctly.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta JD-2, Sector-III, Saltlake City Kolkata-700098 WB India
| |
Collapse
|
7
|
Yin J, Liang J, Yuan C, Zheng W. Facile Synthesis of Hydrogen-Substituted Graphdiyne Powder via Dehalogenative Homocoupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1018. [PMID: 36985912 PMCID: PMC10055811 DOI: 10.3390/nano13061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Graphdiyne and its analogs are a series of artificial two-dimensional nanomaterials with sp hybridized carbon atoms, which can be viewed as the insertion of two acetylenic units between adjacent aromatic rings, evenly expanded on a flat surface. Although developed in recent years, new synthetic strategies for graphdiyne analogs are still required. This work proposed a new method to prepare hydrogen-substituted graphdiyne powder via a dehalogenative homocoupling reaction. The polymerization was unanticipated while the initial goal was to synthesize a γ-graphyne analog via Sonogashira cross-coupling reaction. Compared with previous synthetic strategies, the reaction time was conspicuously shortened and the Pd catalyst was inessential. The powder obtained exhibited a porous structure and high electrocatalytic activity in the hydrogen/oxygen evolution reaction, which has the potential for application in electrochemical catalysis. The reported methodology provides an efficient synthetic strategy for large-scale preparation.
Collapse
|
8
|
Xu J, Liu Y, Huang KJ, Hou YY, Sun X, Li J. Real-Time Biosensor Platform Based on Novel Sandwich Graphdiyne for Ultrasensitive Detection of Tumor Marker. Anal Chem 2022; 94:16980-16986. [PMID: 36445725 DOI: 10.1021/acs.analchem.2c04278] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Realization of a highly sensitive analysis and sensing platform is important for early-stage tumor diagnosis. In this work, a self-powered biosensor with a novel sandwich graphdiyne (SGDY) combined with an aptamer-specific recognition function was developed to sensitively and accurately detect tumor markers. Results indicated that the detection limits of microRNA (miRNA)-21 and miRNA-141 were 0.15 and 0.30 fM (S/N = 3) in the linear range of 0.05-10000 and 1-10000 fM, respectively. The newly designed platform has great promise for early-stage tumor diagnosis.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yinbing Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoxuan Sun
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiaqiang Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
CuS nanoparticles: An Efficient Electrocatalyst for Hydrogen Evolution Reaction in a wide pH range. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Liu X, Li G, Liu J, Zhao J. Transition metal atoms anchored on square graphyne as multifunctional electrocatalysts: A computational investigation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Liu Y, Ma X, Jiang X, Jin Z. Phosphorus-modified two-dimensional graphdiyne (C nH 2n-2)/ZnCdS forms S-scheme heterojunctions for photocatalytic hydrogen production. NANOSCALE 2022; 14:12077-12089. [PMID: 35947054 DOI: 10.1039/d2nr02671f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphdiyne (GDY) is a new type of carbon allotrope material with a network structure composed of sp- and sp2-hybridized carbon, and its excellent photoelectrochemical properties have an extraordinary impact on energy materials. In this work, a graphite alkyne material was calcined and used as an anchor substrate to fix bimetallic sulfide-zinc-cadmium sulfide to form a phosphorus-doped graphdiyne (GDY-P)/zinc-cadmium sulfide (ZnCdS) heterojunction photocatalyst. The close contact between the 2D/0D binary heterojunction interfaces produced a strong interfacial force, and the final hydrogen evolution rate of the GDY-P/ZnCdS structure reached 10 395.57 μmol g-1 h-1, which was 2.57 and 240 times those of ZnCdS and GDY, respectively. The S-scheme heterojunction constructed by GDY-P and ZnCdS accelerates the formation of electron-hole pairs, improves the utilization of strongly reduced electrons, and overcomes the self-agglomeration of ZnCdS, ensuring the high hydrogen evolution activity of the binary structure. This work provides a new application paradigm for the construction of S-scheme heterojunctions for hydrogen evolution using new carbon materials in the field of photocatalysis.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Xiaohua Ma
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Xudong Jiang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China.
| |
Collapse
|
12
|
Nouseen S, Singh P, Lavate S, Chattopadhyay J, Kuchkaev AM, Yakhvarov DG, Srivastava R. Transition metal based ternary hierarchical metal sulphide microspheres as electrocatalyst for splitting of water into hydrogen and oxygen fuel. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
14
|
Shi M, Sun X, Bai Q, Zhang Y, Yu S, Liu M, Wang L, Yu WW, Sui N. Graphdiyne/graphene heterostructure supported NiFe layered double hydroxides for oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Zheng E, He G, Shang C, Chen B, Wang Q, Liu Y. Insights into graphdiyne-supported single Ti for water dissociation reaction. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Ali M, Pervaiz E, Rabi O. Enhancing the Overall Electrocatalytic Water-Splitting Efficiency of Mo 2C Nanoparticles by Forming Hybrids with UiO-66 MOF. ACS OMEGA 2021; 6:34219-34228. [PMID: 34963908 PMCID: PMC8696999 DOI: 10.1021/acsomega.1c03115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 05/25/2023]
Abstract
For efficient electrocatalytic water-splitting, developing a nonprecious-metal-based stable and highly active material is the most challenging task. In this paper, we have devised a synthesis strategy for a hybrid catalyst composed of molybdenum carbide (Mo2C) and a Zr-based metal-organic framework (MOF) (UiO-66) via the solvothermal process. Synergistic effects between Mo2C and UiO-66 lead to a decrease in the hydrogen adsorption energy on the catalysts, and Mo2C/UiO-66 hybrids offer excellent catalytic activity in an alkaline environment for water-splitting. Particularly, the optimized Mo2C/UiO-66 hybrid, termed MCU-2 with 50:50 wt % of both components, displayed the best catalytic performance for both hydrogen and oxygen evolution reactions (HER/OER). It offered a small overpotential of 174.1 mV to attain a current density of 10 mA/cm2 and a Tafel plot value of 147 mV/dec for HER. It also offered a low overpotential of around 180 mV to attain a current density of 20 mA/cm2 and a Tafel plot value of 134 mV/dec for OER. Additionally, the catalyst was stable for over 24 h and ∼1000 cycles with a very minute shift in performance, and the electrolyzer indicates that a potential of ∼1.3 V is required to reach 10 mA/cm2 current density. It can be inferred from the results that the Mo2C/UiO-66 hybrid is a promising candidate as a nonexpensive and active catalyst for overall electrocatalytic water-splitting as the devised catalyst exhibits enhanced kinetics for both OER and HER, a more exposed surface area, faster electron transport, and enhanced diffusion of the electrolyte.
Collapse
|
17
|
Yao F, Wang W, Shi H, Xu Z, Zeng M, Hu Y, Liu L, Ji X. Graphynes: Electronic Properties, Synthesis, and Applications in Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fengting Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ming Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanli Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liyan Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyi Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
18
|
Qi Q, Xu L, Du J, Yang N, Wang D. Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1362-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
|
21
|
Zhang C, Li Y. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1349-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63601-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Yao Y, Zhu Y, Pan C, Wang C, Hu S, Xiao W, Chi X, Fang Y, Yang J, Deng H, Xiao S, Li J, Luo Z, Guo Y. Interfacial sp C-O-Mo Hybridization Originated High-Current Density Hydrogen Evolution. J Am Chem Soc 2021; 143:8720-8730. [PMID: 34100598 DOI: 10.1021/jacs.1c02831] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High-current density (≥1 A cm-2) is a critical factor for large-scale industrial application of water-splitting electrocatalysts, especially seawater-splitting. However, it still remains a great challenge to reach high-current density due to the lack of active and stable intrinsic catalytic active sites in catalysts. Herein, we report an original three-dimensional self-supporting graphdiyne/molybdenum oxide (GDY/MoO3) material for efficient hydrogen evolution reaction via a rational design of "sp C-O-Mo hybridization" on the interface. The "sp C-O-Mo hybridization" creates new intrinsic catalytic active sites (nonoxygen vacancy sites) and increases the amount of active sites (eight times higher than pure MoO3). The "sp C-O-Mo hybridization" facilitates charge transfer and boosts the dissociation process of H2O molecules, leading to outstanding HER activity with high-current density (>1.2 A cm-2) in alkaline electrolyte and a decent activity and stability in natural seawater. Our results show that high-current density electrocatalysts can be achieved by interfacial chemical bond engineering, three-dimensional structure design, and hydrophilicity optimization.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chenyang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen Xiao
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Xiao Chi
- Singapore Synchrotron Light Source National University of Singapore 5 Research Link, 117603, Singapore
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, P.R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
24
|
Wu J, Liang J, Zhang Y, Zhao X, Yuan C. Synthesis of hydrogen-substituted graphdiynes via dehalogenative homocoupling reactions. Chem Commun (Camb) 2021; 57:5036-5039. [PMID: 33881054 DOI: 10.1039/d1cc00453k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method is introduced to prepare hydrogen-substituted graphdiynes (HsGDYs) via the dehalogenative homocoupling of terminal alkynyl bromides. Compared with previous synthetic strategies, the reaction conditions are moderate and the time is shortened. HsGDYs exhibit porous structures and hydrogen/oxygen evolution reaction (HER/OER) catalytic activity, endowing applications in electrochemical catalysis.
Collapse
Affiliation(s)
- Jiasheng Wu
- College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | | | | | | | | |
Collapse
|
25
|
Zhang C, Zhang Y, Xiao H, Zhang J, Li L, Wang L, Bai Q, Liu M, Wang Z, Sui N. Superior catalytic performance and CO tolerance of PtCu/graphdiyne electrocatalyst toward methanol oxidation reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Tareen AK, Khan K, Aslam M, Liu X, Zhang H. Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2020.100294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Cui M, Hu T, Chen L, Li P, Gong Y, Wu Z, Wang S. Recent Progress in Graphdiyne for Electrocatalytic Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Cui
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
| | - Tingting Hu
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
- Qingdao University of Science & Technology College of Chemical Engineering 53 Zhengzhou Road, Shibei District 260042 Qingdao China
| | - Lulu Chen
- China University of Petroleum (East China) School of Materials Science and Engineering 66 Changjiang West Road, Huangdao District 266580 Qingdao China
| | - Ping Li
- Ocean University of China School of Materials Science and Engineering 238 Songling Road, Laoshan District 266100 Qingdao China
| | - Yinghua Gong
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
- Gubkin University Department of Physical and Colloid Chemistry 65 Leninsky prospekt, Building 1 119991 Moscow Russian Federation
| | - Zexing Wu
- Qingdao University of Science & Technology Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering 53 Zhengzhou Road, Shibei District 266042 Qingdao China
| | - Shuai Wang
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
| |
Collapse
|
28
|
Song B, Chen M, Zeng G, Gong J, Shen M, Xiong W, Zhou C, Tang X, Yang Y, Wang W. Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122957. [PMID: 32474321 DOI: 10.1016/j.jhazmat.2020.122957] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The development of carbon materials brings a new two-dimensional catalyst support, graphdiyne (GDY), which is attracting increasing interest in the field of catalysis. This article presents a systematical review of recent studies about the characteristics, design strategies, and applications of GDY-supported catalysts. The sp- and sp2-hybridized carbon, high electrical conductivity, direct band gap, and high intrinsic carrier mobility are key characteristics for GDY to serve as a competitive catalyst support. Hydrothermal method (or solvothermal method), GDY in-situ growth, and electrochemical deposition are commonly used to load catalysts on GDY support. In the applications of GDY-supported photocatalysts, GDY mainly serves as an electron or hole transfer material. For the electrocatalytic hydrogen production, the unique electronic structure and high electrical conductivity of GDY can promote the electron transfer and water splitting kinetics. This review is expected to provide meaningful insight and guidance for the design of GDY-supported catalysts and their applications.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
29
|
Rong W, Zou H, Zang W, Xi S, Wei S, Long B, Hu J, Ji Y, Duan L. Size‐Dependent Activity and Selectivity of Atomic‐Level Copper Nanoclusters during CO/CO
2
Electroreduction. Angew Chem Int Ed Engl 2020; 60:466-472. [DOI: 10.1002/anie.202011836] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Weifeng Rong
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
- School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China
| | - Wenjie Zang
- Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore Singapore 117574 Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) 1 Pesek Road Jurong Island 627833 Singapore
| | - Shuting Wei
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Baihua Long
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Junhui Hu
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 P. R. China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
30
|
Rong W, Zou H, Zang W, Xi S, Wei S, Long B, Hu J, Ji Y, Duan L. Size‐Dependent Activity and Selectivity of Atomic‐Level Copper Nanoclusters during CO/CO
2
Electroreduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Weifeng Rong
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
- School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 P. R. China
| | - Wenjie Zang
- Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore Singapore 117574 Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) 1 Pesek Road Jurong Island 627833 Singapore
| | - Shuting Wei
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Baihua Long
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Junhui Hu
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 P. R. China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs institute Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
31
|
Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO 2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun 2020; 11:4465. [PMID: 32901012 PMCID: PMC7479592 DOI: 10.1038/s41467-020-18267-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
Titanium implants have been widely used in bone tissue engineering for decades. However, orthopedic implant-associated infections increase the risk of implant failure and even lead to amputation in severe cases. Although TiO2 has photocatalytic activity to produce reactive oxygen species (ROS), the recombination of generated electrons and holes limits its antibacterial ability. Here, we describe a graphdiyne (GDY) composite TiO2 nanofiber that combats implant infections through enhanced photocatalysis and prolonged antibacterial ability. In addition, GDY-modified TiO2 nanofibers exert superior biocompatibility and osteoinductive abilities for cell adhesion and differentiation, thus contributing to the bone tissue regeneration process in drug-resistant bacteria-induced implant infection.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Feiyan Xu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China
| | - Yun Qiu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Qin Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Jiaguo Yu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China.
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China.
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China.
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China.
| |
Collapse
|
32
|
Li Y, Yang H, Wang G, Ma B, Jin Z. Distinctive Improved Synthesis and Application Extensions Graphdiyne for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem 2020. [DOI: 10.1002/cctc.201902405] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yanbing Li
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan 750021 P.R. China
| | - Hao Yang
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan 750021 P.R. China
| | - Guorong Wang
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan 750021 P.R. China
| | - Bingzhen Ma
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan 750021 P.R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan 750021 P.R. China
| |
Collapse
|
33
|
Zhang F, Liu G, Yuan J, Wang Z, Tang T, Fu S, Zhang H, Man Z, Xing F, Xu X. 2D graphdiyne: an excellent ultraviolet nonlinear absorption material. NANOSCALE 2020; 12:6243-6249. [PMID: 32150179 DOI: 10.1039/c9nr10704e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With an sp2-hybridized carbon atom structure, graphene is recognized as a nonlinear absorption (NLA) material, which has motivated scientists to explore new allotropes of carbon. Different from graphene, graphdiyne (GDY) consists of sp- and sp2-hybridized carbon atoms. An sp-hybridized carbon-carbon triple bond structure will bring in novel nonlinear optical properties, which are different from other allotropes of carbon. In this study, we investigated the broadband NLA properties (ultraviolet-infrared waveband) of GDY nanosheets, exfoliated using a liquid-phase exfoliation (LPE) method. The short ultraviolet cut-off wavelength (around 200 nm-220 nm) forebodes the potential application of GDY as an ultraviolet optical material. The outstanding NLA resulting in an ultraviolet waveband attests that the GDY nanosheets are veritable ultraviolet NLA materials, which have potential applications in ultraviolet optics. Our study broadens the application scopes of nanomaterials.
Collapse
Affiliation(s)
- Fang Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guowei Liu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Junjie Yuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Zhengping Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Tianhong Tang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Zhongsheng Man
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xinguang Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
34
|
Xie J, Yang X, Xie Y. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution. NANOSCALE 2020; 12:4283-4294. [PMID: 32043515 DOI: 10.1039/c9nr09753h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) is an efficient and economic pathway to generate clean hydrogen energy in a sustainable manner. To improve the HER activity of Earth-abundant catalysts, reducing the dimension of materials is an effective strategy, and in this context two-dimensional (2D) materials have received substantial research attention owing to their large surface area and 2D charge transport channels. However, the thermodynamically stable basal surface of 2D catalysts is usually inactive in catalysis, which significantly impedes further optimization of the 2D HER catalysts. In this Minireview, we highlight in detail that defect engineering in 2D catalysts could bring multiple benefits in improving the HER activity. From the point of view of kinetics, defect sites could serve as active sites for catalyzing the HER process directly, and the introduction of defect structures may result in the optimization of electronic structures of the catalysts, thereby facilitating the HER process. Besides, for catalytically inert substrate materials, the defect sites could act as anchoring sites for catalyst loading, thus realizing efficient HER performance with the aid of enhanced electric conductivity. We anticipated that this Minireview could provide useful guidance for designing advanced HER catalysts in the future.
Collapse
Affiliation(s)
- Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Xueying Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
35
|
Guo S, Yu P, Li W, Yi Y, Wu F, Mao L. Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis. J Am Chem Soc 2020; 142:2074-2082. [DOI: 10.1021/jacs.9b13678] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuyue Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Key Laboratory of Organic Solids, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Yu H, Xue Y, Li Y. Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803101. [PMID: 31119816 DOI: 10.1002/adma.201803101] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Graphdiyne (GDY), a novel one-atom-thick carbon allotrope that features assembled layers of sp- and sp2 -hybridized carbon atoms, has attracted great interest from both science and industry due to its unique and fascinating structural, physical, and chemical properties. GDY-based materials with different morphologies, such as nanowires, nanotube arrays, nanosheets, and ordered stripe arrays, have been applied in various areas such as catalysis, solar cells, energy storage, and optoelectronic devices. After an introduction to the fundamental properties of GDY, recent advances in the fabrication of GDY-based nanostructures and their applications, and corresponding mechanisms, are covered, and future critical perspectives are also discussed.
Collapse
Affiliation(s)
- Huidi Yu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
37
|
Liu J, Chen C, Zhao Y. Progress and Prospects of Graphdiyne-Based Materials in Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804386. [PMID: 30773721 DOI: 10.1002/adma.201804386] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Graphdiyne is a new member of the family of carbon-based nanomaterials that possess two types of carbon atoms, sp- and sp2 -hybridized carbon atoms. As a novel 2D carbon-based nanomaterial with unique planar structure, such as uniformly distributed nanopores and large conjugated structure, graphdiyne has shown many fascinating properties in mechanics, electronics, and optics since it was first experimentally synthesized in 2010. Up to now, graphdiyne and its derivatives have been reported to be successfully applied in many areas, such as catalysis, energy, environment, and biomedicine, due to these excellent properties. Herein, the current research progress of graphdiyne-based materials in biomedical fields is summarized, including biosensing, biological protection, cancer therapy, tissue engineering, etc. The advantages of graphdiyne and its derivatives are presented and compared with other carbon-based materials. Considering the potential biomedical and clinical applications of graphdiyne-based materials, the toxicity and biocompatibility are also discussed based on current studies. Finally, future perspectives and possible biomedical applications of graphdiyne-based materials are also discussed.
Collapse
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The Accelerating World of Graphdiynes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804211. [PMID: 31222848 DOI: 10.1002/adma.201804211] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/27/2019] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY), a 2D allotrope of graphene, is first synthesized in 2010 and has attracted attention as a new low-dimensional carbon material. This work surveys the literature on GDYs. The history of GDYs is summarized, including their relationship with 2D graphyne carbons and yearly publication trends. GDY is a molecule-based nanosheet woven from a molecular monomer, hexaethynylbenzene; thus, it is synthesized by bottom-up approaches, which allow rich variation via monomer design. The GDY family and the synthetic procedures are also described. Highly developed π-conjugated electronic structures are common important features in GDY and graphene; however, the coexistence of sp and sp2 carbons differentiates GDY from graphene. This difference gives rise to unique physical properties, such as high conductivity and large carrier mobility. Next, the theoretical and experimental studies of these properties are described in detail. A wide variety of applications are proposed for GDYs, including electrocatalysts and energy devices, which exploit the carbon-rich nature, porous framework, and expanded π-electron system of these compounds. Finally, potential uses are discussed.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Maeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsuoka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
39
|
Zuo Z, Wang D, Zhang J, Lu F, Li Y. Synthesis and Applications of Graphdiyne-Based Metal-Free Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803762. [PMID: 30259581 DOI: 10.1002/adma.201803762] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/10/2018] [Indexed: 05/24/2023]
Abstract
The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts for their sustainable application. Graphdiyne, the rising-star carbon allotrope, is a big family with many members, and first realized the coexistence of sp- and sp2 -hybridized carbon atoms in a 2D planar structure. Different from the prevailing carbon materials, its nonuniform distribution in the electronic structure and wide tunability in bandgap show many possibilities and special inspirations to construct new-concept metal-free catalysts, and provide many opportunities for achieving a catalytic activity comparable with that of noble-metal catalysts. Herein, the recent progress in synthetic methodologies, theoretical predictions, and experimental investigations of graphdiyne for metal-free catalysts is systematically summarized. Some new perspectives of the opportunities and challenges in developing high-performance graphdiyne-based metal-free catalysts are demonstrated.
Collapse
Affiliation(s)
- Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fushen Lu
- Department of Chemistry and Guangdong Key Laboratory for Preparation and Application of Ordered Structural Materials, Shantou University, Guangdong, 515063, China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Sadhanala HK, Harika VK, Penki TR, Aurbach D, Gedanken A. Ultrafine Ruthenium Oxide Nanoparticles Supported on Molybdenum Oxide Nanosheets as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. ChemCatChem 2019. [DOI: 10.1002/cctc.201801990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hari Krishna Sadhanala
- Bar Ilan Institute for Nanotechnology and Advanced MaterialsDepartment of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Villa Krishna Harika
- Bar Ilan Institute for Nanotechnology and Advanced MaterialsDepartment of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Tirupathi Rao Penki
- Bar Ilan Institute for Nanotechnology and Advanced MaterialsDepartment of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Doron Aurbach
- Bar Ilan Institute for Nanotechnology and Advanced MaterialsDepartment of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Aharon Gedanken
- Bar Ilan Institute for Nanotechnology and Advanced MaterialsDepartment of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
41
|
Gao X, Liu H, Wang D, Zhang J. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev 2019; 48:908-936. [PMID: 30608070 DOI: 10.1039/c8cs00773j] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphdiyne (GDY), a new two-dimensional (2D) carbon allotrope, has been receiving increased attention. Its unique sp-sp2 carbon atoms, uniform pores, and highly π-conjugated structure provide promising potential in practical applications, such as gas separation, catalysis, water remediation, humidity sensor, and energy-related fields. In the recent years, considerable efforts have been expended toward the development of well-defined GDY. However, GDY materials still face numerous challenges, including the need for a more thorough understanding of the growth mechanism, strategies for synthesizing one- or few-layer single-crystalline GDY films, characterization of basic physicochemical properties, and achievement of promising applications. This review aims at providing a comprehensive update on the synthesis of GDY and GDY-based materials, as well as their properties, including structural, electronic, mechanical, and spectral properties, and their applications in nanotechnology.
Collapse
Affiliation(s)
- Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | | | | | | |
Collapse
|
42
|
Bao H, Wang L, Li C, Luo J. Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2717-2729. [PMID: 29845862 DOI: 10.1021/acsami.8b05051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY) is a two-dimensional (2D) carbon allotrope consisting of sp2- and sp-hybridized carbon atoms. It and GDY-based materials have tremendous application potentials in the fields of catalysis, energy, sensor, electronics and optoelectronics because of their excellent chemical and physical properties. Thus, the explorations to synthesize high-quality GDY and GDY-based materials and to reveal the relationship between their structures and properties are of significance, in which their structural characterization and identification are a crucial step. In this review, we focus on advanced structural characterization techniques and results on GDY, GDY derivatives, GDY composites and doped GDY, including scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDS). This review can provide a systemic understanding of the structural characterization and identification of GDY and GDY-based materials and help their development for high-performance applications.
Collapse
Affiliation(s)
- Haihong Bao
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Lei Wang
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Chao Li
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Jun Luo
- Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| |
Collapse
|
43
|
Liu J, Shen X, Baimanov D, Wang L, Xiao Y, Liu H, Li Y, Gao X, Zhao Y, Chen C. Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2647-2654. [PMID: 29707939 DOI: 10.1021/acsami.8b03118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphdiyne (GDY) is a novel two-dimensional (2D) carbon allotrope with sp-hybridized carbon atoms and hexagonal rings. Because of its unique structure and electronic property, GDY was reported as a promising candidate applied in energy storage, catalysis, biosensing and so on. However, using GDY as a platform to immobilize metal ion or enzyme was still not reported. Here, we presented a GDY-based composite with dual-enzyme activity by immobilizing ferrous ion and glucose oxidase onto GDY sheet. GDY showed great adsorption capacity and maintained the high catalytic activity of ferrous ion. The ferrous ion preferred to adsorb in between the neighboring two C-C triple bonds of GDY with lower adsorption energy (-5.64 eV) if compared to graphene (-1.69 eV). Meanwhile, GDY exhibited the ability of adsorbing glucose oxidase while did not obviously influence the structure and catalytic activity of the enzyme. The as-prepared composite was successfully used in one-step blood glucose detection. This work provides a new insight on ion and enzyme immobilization by 2D material.
Collapse
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
| | - Yating Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
44
|
Shi G, Yu C, Fan Z, Li J, Yuan M. Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2662-2669. [PMID: 29767495 DOI: 10.1021/acsami.8b03345] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphdiyne (GDY), a novel two-dimensional full-carbon material, has attracted lots of attention because of its high conjugated system comprising sp2 and sp-hybridized carbons. The distinctive structure characteristics endow it unique electronic structure, uniform distributed pores and excellent chemical stability. A novel GDY-supported NiFe layered double hydroxide (LDH) composite was successfully prepared for the first time. By taking advantage of the increased surface active areas and improved conductivity, the designed hierarchical GDY@NiFe composite exhibits outstanding catalytic activity that only required a small overpotential about 260 mV to achieve the current density of 10 mA cm-2. The nanocomposite shows excellent durability in alkaline medium implying a superior OER electrocatalytic activity. It is anticipated that the as-prepared GDY@NiFe composite electrocatalyst provide new insights in designing graphdiyne-supported electrocatalyst materials for oxygen evolution application.
Collapse
Affiliation(s)
- Guodong Shi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Cong Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Xiongchu Avenue , Wuhan 430073 , P. R. China
| | - Zixiong Fan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Xiongchu Avenue , Wuhan 430073 , P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , P. R. China
| |
Collapse
|
45
|
Hui L, Jia D, Yu H, Xue Y, Li Y. Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2618-2625. [PMID: 29558102 DOI: 10.1021/acsami.8b01887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We employed a two-step strategy for preparing ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets on nickel foam (FeCH@GDY/NF) as the efficient catalysts toward the electrical splitting water. The introduction of naturally porous GDY nanolayers on FeCH surface endows the pristine catalyst with structural advantages for boosting catalytic performances. Benefited from the protection of robust GDY nanolayers with intimate contact between GDY and FeCH, the combined material exhibits high long-term durability of 10 000 cycles for oxygen-evolution reaction (OER) and 9000 cycles for hydrogen evolution reaction (HER) in 1.0 M KOH. Such excellent bifunctional OER/HER performance makes FeCH@GDY/NF quite qualified for alkaline two-electrode electrolyzer. Remarkably, such electrocatalyst can drive 10 and 100 mA cm-2 at 1.49 and 1.53 V, respectively. These results demonstrate the decisive role of GDY in the improvement of electrocatalytic performances, and open up new opportunities for designing cost-effective, efficient, and stable electrocatalysts for sustainable oxygen/hydrogen generation.
Collapse
Affiliation(s)
- Lan Hui
- Institute of Applied Chemistry , Xinjiang University , Urumqi 830046 , Xinjiang , P. R. China
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Dianzeng Jia
- Institute of Applied Chemistry , Xinjiang University , Urumqi 830046 , Xinjiang , P. R. China
| | - Huidi Yu
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yurui Xue
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yuliang Li
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
46
|
Lin T, Wang J. Applications of Graphdiyne on Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2638-2646. [PMID: 29683637 DOI: 10.1021/acsami.8b02671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphdiyne (GD) is a novel two-dimensional carbon material composed of sp and sp2-hybridized carbon atoms. This kind of carbon allotrope has attracted more and more attention not only because of the distinctive porous structure but also because of its intriguing electronic properties such as high mobility and conductivity, good field emission properties, and tunable natural band gap. In this review, some representative applications of GD on a variety of optoelectronic devices are described. Starting from the methods of introducing GD into the devices, we analyze the interactions between GD and other device components, summarize the general mechanism of how GD improves performance of the devices, and provide a glimpse into the future of GD at the end.
Collapse
Affiliation(s)
- Tao Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Jizheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
47
|
Muthukumar P, Moon D, Anthony SP. Copper coordination polymer electrocatalyst for strong hydrogen evolution reaction activity in neutral medium: influence of coordination environment and network structure. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00759h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Water-coordinated copper coordination polymer exhibited strong enhancement of HER activity in neutral medium with good stability compared to non-water-coordinated coordination polymer.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Dohyun Moon
- Beamline Department
- Pohang Accelerator Laboratory
- Pohang
- Korea
| | | |
Collapse
|
48
|
Hashemniaye-Torshizi R, Ashraf N, Arbab-Zavar MH, Dianat S. Tungsten-inert gas welding electrodes as low-cost, green and pH-universal electrocatalysts for the hydrogen evolution reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj02298h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lanthanated tungsten electrodes were shown to be green, durable, low-cost, pH-universal and efficient electrocatalysts for the hydrogen evolution reaction.
Collapse
Affiliation(s)
| | - Narges Ashraf
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | | | - Somayeh Dianat
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 71961
- Iran
| |
Collapse
|
49
|
Affiliation(s)
| | - Philippe Serp
- LCC CNRS-UPR 8241 ENSIACET Université de Toulouse Toulouse France
| |
Collapse
|
50
|
Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Progress in Research into 2D Graphdiyne-Based Materials. Chem Rev 2018; 118:7744-7803. [DOI: 10.1021/acs.chemrev.8b00288] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
| | - Yurui Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|