1
|
Alipour B, Veisi Malekshahi Z, Pourjafar F, Faridi-Majidi R, Negahdari B. Anticancer effects of simvastatin-loaded albumin nanoparticles on monolayer and spheroid models of breast cancer. Biochem Biophys Res Commun 2024; 734:150591. [PMID: 39255745 DOI: 10.1016/j.bbrc.2024.150591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and statin medications like simvastatin. The objective of this study was to prepare albumin nanoparticles incorporating simvastatin by the self-assembly method and evaluate their impact on breast cancer metastasis and apoptosis. The data showed the prepared nanoparticles have a diameter of 185 ± 24nm and a drug loading capacity of 8.85 %. The findings exhibit improved release in a lysosomal-like environment and under acidic pH conditions. MTT data showed that nanoparticles do not exhibit a dose-dependent effect on cells. Additionally, the results from MTT, flow cytometry, and qPCR analyses demonstrated that nanoparticles have a greater inhibitory and lethal effect on MDA-MB-231 cells compared to normal simvastatin. And cause cells to accumulate in the G0/G1 phase, initiating apoptotic pathways by inhibiting cell cycle progression. Nanoparticles containing simvastatin can prevent cell invasion and migration in both monolayer and spheroid models, as compared to simvastatin alone, at microscopic levels and in gene expression. The obtained data clearly showed that, compared to simvastatin, nanoparticles containing simvastatin demonstrated significant efficacy in suppressing the growth, proliferation, invasion, and migration of cancer cells in monolayer (2D) and spheroid (3D) models.
Collapse
Affiliation(s)
- Behruz Alipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Pourjafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sun X, Li D, Lv Y, Zhang M, Qiao D, Zhang Z, Ren H, Zhang Y, Yang Z, Gao J. Nanomaterials for the Diagnosis and Treatment of Triple-Negative Breast Cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2019. [PMID: 39654400 DOI: 10.1002/wnan.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent years, the diagnosis and treatment at the early stages significantly raise the survival rate of breast cancer patients. Moreover, antibody drugs pave the way toward precision target therapy. However, the treatment and survival of triple-negative breast cancer (TNBC) patients is still worrying, which needs further understanding and study. During the last several years, nanomaterials attracted extensive research interests in TNBC diagnosis and therapy. In this review, we summarize recent advances of nanomaterial-based strategies for diagnosing and treating TNBC. Specifically, treatments for TNBC utilizing nanomaterials are classified into monotherapy, combined therapy, and multimodal therapy based on the complexity of the treatment. Nanomaterials also offer the opportunity to integrating diagnosis with treatment, which are introduced and summarized in this review. By summarizing the design principles in detail, some insights into the challenges and opportunities are provided to inspire further research and clinical translation in this field. The scope of this review is to summarize the development of nanomaterials for diagnosis and treatment of TNBC, and to discuss future directions to improve the clinical outcome of TNBC patients.
Collapse
Affiliation(s)
- Xuan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, People's Republic of China
| | - Dandan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yue Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Mengnan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Dianhe Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zuyuan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Han Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Yao K, Peng Y, Tang Q, Liu K, Peng C. Human Serum Albumin/Selenium Complex Nanoparticles Protect the Skin from Photoaging Injury. Int J Nanomedicine 2024; 19:9161-9174. [PMID: 39258006 PMCID: PMC11383846 DOI: 10.2147/ijn.s446090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/11/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Photoaging-induced skin damage leads to appearance issues and dermatoma. Selenium nanoparticles (SeNPs) possess high antioxidant properties but are prone to inactivation. In this study, human serum albumin/SeNPs (HSA-SeNPs) were synthesized for enhanced stability. Methods HSA-SeNPs were prepared by self-assembling denatured human serum albumin and inorganic selenite. The cytotoxicity of HSA-SeNPs was assessed using the MTT method. Cell survival and proliferation rates were tested to observe the protective effect of HSA-SeNPs on human skin keratinocytes against photoaging. Simultaneously, ICR mice were used for animal experiments. H&E and Masson trichromatic staining were employed to observe morphological changes in skin structure and collagen fiber disorders after UVB irradiation. Quantitative RT-PCR was utilized to measure changes in mRNA expression levels of factors related to collagen metabolism, inflammation, oxidative stress regulation, and senescence markers. Results The HSA-SeNPs group exhibited significantly higher survival and proliferation rates of UVB-irradiated keratinocytes than the control group. Following UVB irradiation, the back skin of ICR mice displayed severe sunburn with disrupted collagen fibers. However, HSA-SeNPs demonstrated superior efficacy in alleviating these symptoms compared to SeNPs alone. In a UVB-irradiated mice model, mRNA expression of collagen type I and III was dysregulated while MMP1, inflammatory factors, and p21 mRNA expression were upregulated; concurrently Nrf2 and Gpx1 mRNA expression were downregulated. In contrast, HSA-SeNPs maintained the mRNA expression of those factors to be stable In addition, the level of SOD decreased, and MDA elevated significantly in the skin after UVB irradiation, but no significant differences in SOD and MDA levels between the HSA-SeNPs group with UVB irradiation and the UVB-free untreated group. Discussion HSA-SeNPs have more anti-photoaging effects on the skin than SeNPs, including the protective effects on skin cell proliferation, cell survival, and structure under photoaging conditions. HSA-SeNPs can be used to protect skin from photoaging and repair skin injury caused by UVB exposure.
Collapse
Affiliation(s)
- Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yongbo Peng
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiyu Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Kaixuan Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
4
|
Zafar H, Zhang J, Raza F, Pan X, Hu Z, Feng H, Shen Q. Biomimetic gold nanocages incorporating copper-human serum albumin for tumor immunotherapy via cuproptosis-lactate regulation. J Control Release 2024; 372:446-466. [PMID: 38917953 DOI: 10.1016/j.jconrel.2024.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Cancer immunotherapy remains a significant challenge due to insufficient proliferation of immune cells and the sturdy immunosuppressive tumor microenvironment. Herein, we proposed the hypothesis of cuproptosis-lactate regulation to provoke cuproptosis and enhance anti-tumor immunity. For this purpose, copper-human serum albumin nanocomplex loaded gold nanocages with bacterial membrane coating (BAu-CuNCs) were developed. The targeted delivery and disassembly of BAu-CuNCs in tumor cells initiated a cascade of reactions. Under near infrared (NIR) laser irradiation, the release of copper-human serum albumin (Cu-HSA) was enhanced that reacted with intratumoral glutathione (GSH) via a disulfide exchange reaction to liberate Cu2+ ions and exert cuproptosis. Subsequently, the cuproptosis effect triggered immunogenic cell death (ICD) in tumor by the release of damage associated molecular patterns (DAMPs) to realize anti-tumor immunity via robust production of cytotoxic T cells (CD8+) and helper T cells (CD4+). Meanwhile, under NIR irradiation, gold nanocages (AuNCs) promoted excessive reactive oxygen species (ROS) generation that played a primary role in inhibiting glycolysis, reducing the lactate and ATP level. The combine action of lower lactate level, ATP reduction and GSH depletion further sensitized the tumor cells to cuproptosis. Also, the lower lactate production led to the significant blockage of immunosuppressive T regulatory cells (Tregs) and boosted the anti-tumor immunity. Additionally, the effective inhibition of breast cancer metastasis to the lungs enhanced the anti-tumor therapeutic impact of BAu-CuNCs + NIR treatment. Hence, BAu-CuNCs + NIR concurrently induced cuproptosis, ICD and hindered lactate production, leading to the inhibition of tumor growth, remodeling of the immunosuppressive tumor microenvironment and suppression of lung metastasis. Therefore, leveraging cuproptosis-lactate regulation, this approach presents a novel strategy for enhanced tumor immunotherapy.
Collapse
Affiliation(s)
- Hajra Zafar
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Faisal Raza
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiuhua Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zongwei Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hanxiao Feng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China..
| |
Collapse
|
5
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
7
|
Meng Y, Han S, Yin J, Wu J. Therapeutic Copolymer from Salicylic Acid and l-Phenylalanine as a Nanosized Drug Carrier for Orthotopic Breast Cancer with Lung Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41743-41754. [PMID: 37610187 DOI: 10.1021/acsami.3c08608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nanoparticle (NP)-mediated drug delivery systems are promising for treating various diseases. However, clinical translation has been delayed by a variety of limitations, such as weak drug loading, nonspecific drug leakage, lack of bioactivity, and short blood circulation. These issues are in part due to the unsatisfactory function of biomaterials for nanocarriers. In addition, the synthesis procedures of drug carrier materials, especially polymers, were usually complicated and led to high cost. In this report, a bioactive copolymer of hydroxy acid and amino acid, poly(salicylic acid-co-phenylalanine) (PSP), was developed for the first time via a one-step rapid and facile synthesis strategy. The PSP could self-assemble into NPs (PSP-NPs) to co-load relatively hydrophilic sphingosine kinase 1 inhibitor (PF543 in HCl salt format) and highly hydrophobic paclitaxel (PTX) to form PF543/PTX@PSP-NPs with efficient dual drug loading. Encouragingly, PF543/PTX@PSP-NPs showed long blood circulation, good stability, and high tumor accumulation, leading to significantly enhanced therapeutic effects on breast cancer. Furthermore, PF543/PTX@PSP-NPs could additionally suppress the lung metastasis of breast cancer, and more importantly, the PSP-NPs themselves as therapeutic nanocarriers also showed an anti-breast cancer effect. With these combined advantages, this new polymer and corresponding NPs will provide valuable insights into the development of new functional polymers and nanomedicines for important diseases.
Collapse
Affiliation(s)
- Yabin Meng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong China
- Division of Life Science, The Hong Kong University of Science and Technology, Hongkong SAR, China
| |
Collapse
|
8
|
Son B, Kim M, Won H, Jung A, Kim J, Koo Y, Lee NK, Baek SH, Han U, Park CG, Shin H, Gweon B, Joo J, Park HH. Secured delivery of basic fibroblast growth factor using human serum albumin-based protein nanoparticles for enhanced wound healing and regeneration. J Nanobiotechnology 2023; 21:310. [PMID: 37658367 PMCID: PMC10474766 DOI: 10.1186/s12951-023-02053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. RESULTS In this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtained via a simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. CONCLUSION Consequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Minju Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyosub Won
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Ara Jung
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun Kim
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Yonghoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Korea
| | - Uiyoung Han
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Materials Research Science and Engineering Center, University of California, San Diego, La Jolla, United States.
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Li J, Zhang W, Liu S, Yang F, Zhou Y, Cao L, Li Y, Guo Y, Qi X, Xu G, Peng J, Zhao Y. Preclinical Evaluation of a Protein-Based Nanoscale Contrast Agent for MR Angiography at an Ultralow Dose. Int J Nanomedicine 2023; 18:4431-4444. [PMID: 37555188 PMCID: PMC10404595 DOI: 10.2147/ijn.s416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE BSA-biomineralized Gd nanoparticles (Gd@BSA NPs) have been recognized as promising nanoscale MR contrast agents. The aim of this study was to carry out a preclinical evaluation of these NPs in a middle-sized animal model (rabbits). METHODS New Zealand white rabbits were treated intravenously with Gd@BSA NPs (0.02 mmol Gd/kg) via a clinically-used high-pressure injector, with commercial Gd-diethylene triamine pentaacetate (Gd-DTPA)-injected group as control. Then MR angiography was performed according to the standard clinical protocol with a 3.0-T MR scanner. The SNR and CNR of the main arteries and branches were monitored. Pharmacokinetics and bioclearance were continuously evaluated in blood, urine, and feces. Gd deposition in vital organs was measured by ICP‒MS. Weight monitoring, HE staining, and blood biochemical analysis were also performed to comprehensively estimate systemic toxicity. RESULTS The ultrasmall Gd@BSA NPs (<6 nm) exhibited high stability and T1 relaxivity. Compared to Gd-DTPA, Gd@BSA NPs demonstrated superior vascular system imaging performance at ultralow doses, especially of the cardiac artery and other main branches, and exhibited a significantly higher SNR and CNR. Notably, the Gd@BSA NPs showed a shorter half-life in blood, less retention in organs, and improved biocompatibility. CONCLUSION The preclinical evaluations here demonstrated that Gd@BSA NPs are promising and advantageous MR CA candidates that can be used at a low dose with excellent MR imaging performance, thus suggesting its further clinical trials and applications.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Fan Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yupeng Zhou
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiang Qi
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Guoping Xu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Zhao H, Gong L, Wu H, Liu C, Liu Y, Xiao C, Liu C, Chen L, Jin M, Gao Z, Guan Y, Huang W. Development of Novel Paclitaxel-Loaded ZIF-8 Metal-Organic Framework Nanoparticles Modified with Peptide Dimers and an Evaluation of Its Inhibitory Effect against Prostate Cancer Cells. Pharmaceutics 2023; 15:1874. [PMID: 37514059 PMCID: PMC10383971 DOI: 10.3390/pharmaceutics15071874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG2000-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles. The results suggest that Di-PEG@PTX@ZIF-8, as a zeolitic imidazolate frameworks-8-loaded paclitaxel nanoparticle, has promising potential for the treatment of prostate cancer, which may provide a novel strategy for the delivery system targeting prostate cancer.
Collapse
Affiliation(s)
- Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenfei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Yang J, Guo W, Huang R, Bian J, Zhang S, Wei T, He C, Hu Z, Li J, Zhou C, Lu M. Self-assembled albumin nanoparticles induce pyroptosis for photodynamic/photothermal/immuno synergistic therapies in triple-negative breast cancer. Front Immunol 2023; 14:1173487. [PMID: 37342347 PMCID: PMC10279487 DOI: 10.3389/fimmu.2023.1173487] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high degree of malignancy, early metastasis, limited treatment, and poor prognosis. Immunotherapy, as a new and most promising treatment for cancer, has limited efficacy in TNBC because of the immunosuppressive tumor microenvironment (TME). Inducing pyroptosis and activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway to upregulate innate immunity have become an emerging strategy for enhancing tumor immunotherapy. In this study, albumin nanospheres were constructed with photosensitizer-IR780 encapsulated in the core and cGAS-STING agonists/H2S producer-ZnS loaded on the shell (named IR780-ZnS@HSA). In vitro, IR780-ZnS@HSA produced photothermal therapy (PTT) and photodynamic therapy (PDT) effects. In addition, it stimulated immunogenic cell death (ICD) and activated pyroptosis in tumor cells via the caspase-3-GSDME signaling pathway. IR780-ZnS@HSA also activated the cGAS-STING signaling pathway. The two pathways synergistically boost immune response. In vivo, IR780-ZnS@HSA + laser significantly inhibited tumor growth in 4T1 tumor-bearing mice and triggered an immune response, improving the efficacy of the anti-APD-L1 antibody (aPD-L1). In conclusion, IR780-ZnS@HSA, as a novel inducer of pyroptosis, can significantly inhibit tumor growth and improve the efficacy of aPD-L1.
Collapse
Affiliation(s)
- Jianquan Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wen Guo
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rong Huang
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiaojiao Bian
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Siqi Zhang
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wei
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuanshi He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziyue Hu
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Juan Li
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chunyang Zhou
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Man Lu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Jiang Q, Hu Y, Liu Q, Tang Y, Wu X, Liu J, Tu G, Li G, Lin X, Qu M, Cai Y, Huang X, Xu J, Deng Y, Chen Z, Wu L. Albumin-encapsulated HSP90-PROTAC BP3 nanoparticles not only retain protein degradation ability but also enhance the antitumour activity of BP3 in vivo. J Drug Target 2023; 31:411-420. [PMID: 36866593 DOI: 10.1080/1061186x.2023.2185247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Proteolysis-targeting chimaera (PROTAC) has received extensive attention in industry. However, there are still some limitations that hinder its further development. In a previous study, our group first demonstrated that the HSP90 degrader BP3 synthesised by the principle of PROTACs showed therapeutic potential for cancer. However, its application was hindered by its high molecular weight and water insolubility. Herein, we aimed to improve these properties of HSP90-PROTAC BP3 by encapsulating it into human serum albumin nanoparticles (BP3@HSA NPs). The results demonstrated that BP3@HSA NPs showed a uniform spherical shape with a size of 141.01 ± 1.07 nm and polydispersity index < 0.2; moreover, BP3@HSA NPs were more readily taken up by breast cancer cells and had a stronger inhibitory effect in vitro than free BP3. BP3@HSA NPs also demonstrated the ability to degrade HSP90. Mechanistically, the improved inhibitory effect of BP3@HSA NPs on breast cancer cells was related to its stronger ability to induce cell cycle arrest and apoptosis. Furthermore, BP3@HSA NPs improved PK properties and showed stronger tumour suppression in mice. Taken together, this study demonstrated that hydrophobic HSP90-PROTAC BP3 nanoparticles encapsulated by human serum albumin could improve the safety and antitumour efficacy of BP3.
Collapse
Affiliation(s)
- Qingna Jiang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yan Hu
- Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Quanyu Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
- School of Pharmacy, Fujian Health College, Fuzhou, P.R. China
| | - Yuanling Tang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xinhua Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Jingwen Liu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Guihui Tu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Ge Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xiaoqing Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Minghui Qu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yajuan Cai
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Xiuwang Huang
- Department of Public Technology Service Center, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Yanping Deng
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, P.R. China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University (FMU), Fuzhou, P.R. China
- Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University (FMU), Fuzhou, P.R. China
| |
Collapse
|
14
|
Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
15
|
Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv 2022; 19:1449-1470. [PMID: 36253957 DOI: 10.1080/17425247.2022.2134341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Human serum albumin is the most abundant transport protein in plasma, which has recently been extensively utilized to form nanoparticles for drug delivery in cancer. The primary reason for selecting albumin protein as drug delivery cargo is its excellent biocompatibility, biodegradability, and non-immunogenicity. Moreover, the albumin structure containing three homologous domains constituted of a single polypeptide (585 amino acid) incorporates various hydrophobic drugs by non-covalent interactions. Albumin shows active tumor targeting via their interaction with gp60 and SPARC proteins abundant in the tumor-associated endothelial cells and the tumor microenvironment. AREAS COVERED The review discusses the importance of albumin as a drug-carrier system, general procedures to prepare albumin NPs, and the current trends in using albumin-based nanomedicines to deliver various chemotherapeutic agents. The various applications of albumin in the nanomedicines, such as NPs surface modifier and fabrication of hybrid/active-tumor targeted NPs, are delineated based on current trends. EXPERT OPINION Nanomedicines have the potential to revolutionize cancer treatment. However, clinical translation is limited majorly due to the lack of suitable nanomaterials offering systemic stability, optimum drug encapsulation, tumor-targeted delivery, sustained drug release, and biocompatibility. The potential of albumin could be explored in nanomedicines fabrication for superior treatment outcomes in cancer.
Collapse
Affiliation(s)
- Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| |
Collapse
|
16
|
CD44-targeted nanoparticles with GSH-responsive activity as powerful therapeutic agents against breast cancer. Int J Biol Macromol 2022; 221:1491-1503. [PMID: 36130642 DOI: 10.1016/j.ijbiomac.2022.09.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
DOX-loaded nanoparticles able to actively target CD44-receptors and respond to redox stimuli were proposed as non-conventional chemotherapeutic strategy in breast cancer. A covalent conjugate of human serum albumin and hyaluronic acid was prepared and assembled by a GSH-mediated desolvation in disulfide-crosslinked solid nanoparticles with mean diameter of 120 nm ± 3.4. The effective internalization of nanoparticles in cancer cells via CD44-receptors, together with the more efficient intracellular release, resulted in a significant increase of drug efficacy, with IC50 reduced from 0.9959 and 2.516 μg mL-1 to 0.4014 and 0.3094 μg mL-1 for MCF-7 and MDA-MB-231, respectively. Conversely, no enhancement in drug toxicity was recorded in healthy MCF-10A cells. The efficacy of the proposed formulation was further investigated in the different biological steps involved in metastasis process, paving the way for further in vivo experiments.
Collapse
|
17
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
19
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
20
|
Zhang Z, Yang T, Zhang J, Li W, Li S, Sun H, Liang H, Yang F. Developing a Novel Indium(III) Agent Based on Human Serum Albumin Nanoparticles: Integrating Bioimaging and Therapy. J Med Chem 2022; 65:5392-5406. [PMID: 35324188 DOI: 10.1021/acs.jmedchem.1c01790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To effectively integrate diagnosis and therapy for tumors, we proposed to develop an indium (In) agent based on the unique property of human serum albumin (HSA) nanoparticles (NPs). A novel In(III) quinoline-2-formaldehyde thiosemicarbazone compound (C5) was optimized with remarkable cytotoxicity and fluorescence to cancer cells in vitro. An HSA-C5 complex NP delivery system was then successfully constructed. Importantly, the HSA-C5 complex NPs have stronger bioimaging and therapeutic efficiency relative to C5 alone in vivo. Besides, the results of gene chip analysis revealed that C5/HSA-C5 complex NPs act on cancer cells through multiple mechanisms: inducing autophagy, apoptosis, and inhibiting the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
21
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Liu Y, Wen N, Li K, Li M, Qian S, Li S, Jiang T, Wang T, Wu Y, Liu Z. Photolytic Removal of Red Blood Cell Membranes Camouflaged on Nanoparticles for Enhanced Cellular Uptake and Combined Chemo-Photodynamic Inhibition of Cancer Cells. Mol Pharm 2022; 19:805-818. [PMID: 35148115 DOI: 10.1021/acs.molpharmaceut.1c00720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomimetic therapeutics offer great potential for drug delivery that avoids immune recognition. However, the coated cell membrane usually hinders the cellular uptake of nanoparticles; thus, structure-changeable formulations have attracted increasing attention. Herein, we report photolytic pyropheophorbide a (PA)-inserted red blood cell (RBC) membrane-camouflaged curcumin dimeric prodrug (CUR2-TK)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles [(CUR2-TK)-PLGA@RBC-PA] for enhanced cancer therapy. In these nanoparticles, the inner core was constructed using PLGA and loaded with our synthesized reactive oxygen species (ROS)-responsive cleavable curcumin dimeric prodrug (CUR2-TK). The nanoparticles generated ROS in response to the light irradiation attributed to the incorporated PA. The ROS further triggered the lysis of the cell membrane and exposed the nanoparticles for enhanced tumor cellular uptake, and the ROS also cleaved CUR2-TK for controlled CUR drug release. Moreover, the ROS performed photodynamic therapy (PDT). The chemotherapy and PDT produced a combined effect in the treatment of cancer cells, thus enhancing anticancer therapeutic efficacy.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Minquan Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shengnan Qian
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shiran Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P. R. China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410008, P. R. China
| |
Collapse
|
23
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Beh CY, Prajnamitra RP, Chen LL, Hsieh PCH. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021; 26:molecules26165052. [PMID: 34443638 PMCID: PMC8401254 DOI: 10.3390/molecules26165052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.
Collapse
|
25
|
Lee C, Kang S. Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on the SpyTag/SpyCatcher System for Photothermal Therapy. Biomacromolecules 2021; 22:2649-2658. [PMID: 34060808 DOI: 10.1021/acs.biomac.1c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The successful development of targeted nanoparticle (NP)-based therapeutics depends on the effective conjugation of targeting ligands to the NP. However, conventional methods based on chemical reactive groups such as N-hydroxysuccinimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and maleimide have several limitations, including low binding efficiency, complex reaction methods, long reaction times, and reduced activity of the targeting ligand. In this study, we developed a novel method for conjugating targeting ligands to albumin NPs using the recently developed bacterial superglue the SpyTag/SpyCatcher (ST/SC) ligation system. This method involves a rapid one-step conjugation process with almost 100% efficiency. Albumin NPs conjugated to human epidermal growth factor receptor 2 (HER2) affibody molecules using the ST/SC system showed strong binding to HER2-overexpressing cells. In addition, NPs encapsulated with indocyanine green accumulated in cells overexpressing HER2 and exhibited superior photothermal treatment effects. Thus, surface functionalization of NPs using the ST/SC reaction may be used to develop new nanosystems that exhibit improved therapeutic benefits.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
26
|
Wang DD, Zhang XN. Advances in receptor modulation strategies for flexible, efficient, and enhanced antitumor efficacy. J Control Release 2021; 333:418-447. [PMID: 33812919 DOI: 10.1016/j.jconrel.2021.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Tumor-sensitivity, effective transport, and precise delivery to tumor cells of nano drug delivery systems (NDDs) have been great challenges to cancer therapy in recent years. The conventional targeting approach involves actively installing the corresponding ligand on the nanocarriers, which is prone to recognize the antigen blasts overexpressed on the surface of tumor cells. However, there are some probable limitations for the active tumor-targeting systems in vivo as follows: a. the limited ligand amount of modifications; b. possible steric hindrance, which was likely to prevent ligand-receptor interaction during the delivery process. c. the restrained antigen saturation highly expressed on the cell membrane, will definitely decrease the specificity and often lead to "off-target" effects of NDDs; and d. water insolubility of nanocarriers due to excess of ligands modification. Obviously, any regulation of receptors on surface of tumor cells exerted an important influence on the delivery of targeting systems. Herein, receptor upregulation was mostly desired for enhancing targeted therapy from the cellular level. This technique with the amplification of receptors has the potential to enhance tumor sensitivity towards corresponding ligand-modified nanoparticles, and thereby increasing the effective therapeutic concentration as well as improving the efficacy of chemotherapy. The enhancement of positively expressed receptors on tumor cells and receptor-dependent therapeutic agents or NDDs with an assembled "self-promoting" effect contributes to increasing cell sensitivity to NPs, and will provide a basic platform for clinical therapeutic practice. In this review, we highlight the significance of modulating various receptors on different types of cancer cells for drug delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
27
|
Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. J Control Release 2021; 333:374-390. [PMID: 33798666 DOI: 10.1016/j.jconrel.2021.03.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer metastasis and recurrence accounts for vast majority of breast cancer-induced mortality. Tumor microenvironment (TME) plays an important role at each step of metastasis, evasion of immunosurveillance, and therapeutic resistance. Consequently, TME-targeting alternatives to traditional therapies focused on breast cancer cells are gaining increasing attention. These new therapies involve the use of tumor cells, and key TME components or secreted bioactive molecules as therapeutic targets, alone or in combination. Recently, TME-related nanoparticles have been developed to deliver various agents, such as bioactive ingredients extracted from natural sources or chemotherapeutic agents, genes, proteins, small interfering RNAs, and vaccines; they have shown great therapeutic potential against breast cancer metastasis. Among various types of nanoparticles, biomimetic nanovesicles are a promising means of addressing the limitations of conventional nanocarriers. This review highlights various nanoparticles related to or mediated by TME according to the key TME components responsible for metastasis. Furthermore, TME-related biomimetic nanoparticles against breast cancer metastasis have garnered attention owing to their promising efficiency, especially in payload delivery and therapeutic action. Here, we summarize recent representative studies on nanoparticles related to cancer-associated fibroblasts, extracellular matrix, endothelial cells, angiogenesis, and immune cells, as well as advanced biomimetic nanoparticles. Future challenges and opportunities in the field are also discussed.
Collapse
|
28
|
Zhang G, Cheng W, Du L, Xu C, Li J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J Nanobiotechnology 2021; 19:9. [PMID: 33407570 PMCID: PMC7789325 DOI: 10.1186/s12951-020-00749-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Phototherapy is a promising strategy for cancer therapy by reactive oxygen species (ROS) of photodynamic therapy (PDT) and hyperthermia of photothermal therapy (PTT). However, the therapeutic efficacy was restricted by tumor hypoxia and thermal resistance of increased expression of heat shock protein (Hsp). In this study, we developed albumin nanoparticles to combine hypoxia relief and heat shock protein inhibition to overcome these limitations for phototherapy enhancement. RESULTS Near-infrared photosensitizer (IR780) and gambogic acid (GA, Hsp90 inhibitor) were encapsulated into albumin nanoparticles via hydrophobic interaction, which was further deposited MnO2 on the surface to form IGM nanoparticles. Both in vitro and in vivo studies demonstrated that IGM could catalyze overexpress of hydrogen peroxide to relive hypoxic tumor microenvironment. With near infrared irradiation, the ROS generation was significantly increase for PDT enhancement. In addition, the release of GA was promoted by irradiation to bind with Hsp90, which could reduce cell tolerance to heat for PTT enhancement. As a result, IGM could achieve better antitumor efficacy with enhanced PDT and PTT. CONCLUSION This study develops a facile approach to co-deliver IR780 and GA with self-assembled albumin nanoparticles, which could relive hypoxia and suppress Hsp for clinical application of cancer phototherapy.
Collapse
Affiliation(s)
- Gutian Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Wenting Cheng
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Lin Du
- Department of Urology, Drum Tower Hospital, Medical School of Southeast University, Nanjing, 210008, China
| | - Chuanjun Xu
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
29
|
Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:930-946. [PMID: 35582218 PMCID: PMC8992568 DOI: 10.20517/cdr.2020.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Circumvention of cancer drug resistance is one of the major investigations in nanomedicine. In this regard, nanotechnology-based drug delivery has offered various implications. However, protein-based nanocarriers have been a versatile choice compared to other nanomaterials, provided by their favorable characteristics and safety profiles. Specifically, albumin-based nanoparticles have been demonstrated to be an effective drug delivery system, owing to the inherent targeting modalities of albumin, through gp60- and SPARC-mediated receptor endocytosis. Furthermore, surface functionalization was exploited for active targeting, due to albumin’s abundance of carboxylic and amino groups. Stimuli-responsive drug release has also been pertained to albumin nano-systems. Therefore, albumin-based nanocarriers could potentially overcome cancer drug resistance through bypassing drug efflux, enhancing drug uptake, and improving tumor accumulation. Moreover, albumin nanocarriers improve the stability of various therapeutic cargos, for instance, nucleic acids, which allows their systemic administration. This review highlights the recent applications of albumin nanoparticles to overcome cancer drug resistance, the nano-fabrication techniques, as well as future perspectives and challenges.
Collapse
Affiliation(s)
- Islam Hassanin
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
30
|
Yang H, Mu W, Wei D, Zhang Y, Duan Y, Gao J, Gong X, Wang H, Wu X, Tao H, Chang J. A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902906. [PMID: 33042734 PMCID: PMC7539195 DOI: 10.1002/advs.201902906] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) remains the most prevalent neurodegenerative disease, and no effective treatment is available yet. Metal-ion-triggered aggregates of amyloid-beta (Aβ) peptide and acetylcholine imbalance are reported to be possible factors in AD pathogenesis. Thus, a combination therapy that can not only inhibit and reduce Aβ aggregation but also simultaneously regulate acetylcholine imbalance that can serve as a potential treatment for AD is needed. Here, clioquinol (metal-ion chelating agent) and donepezil (acetylcholinesterase (AChE) inhibitor) co-encapsulated human serum albumin (HSA) nanoparticles (dcHGT NPs) are designed, which are modified with transcriptional activator protein (TAT) and monosialotetrahexosylganglioside (GM1). The GM1 lipid and TAT peptide endow this drug delivery nanosystem with high brain entry efficiency and long-term retention capabilities through intranasal administration. It is found that dcHGT NPs can significantly inhibit and eliminate Aβ aggregation, relieve acetylcholine-related inflammation in microglial cells, and protect primary neurons from Aβ oligomer-induced neurotoxicity in vitro. The alleviation of Aβ-related inflammation and AChE-inhibited effect further synergistically adjust acetylcholine imbalance. It is further demonstrated that dcHGT NPs reduce Aβ deposition, ameliorate neuron morphological changes, rescue memory deficits, and greatly improve acetylcholine regulation ability in vivo. This multifunctional synergetic nanosystem can be a new candidate to achieve highly efficient combination therapy for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Weihang Mu
- Department of RehabilitationTianjin Children's Hospital238 Longyan Road, Beichen DistrictTianjin300072P. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Duan
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Jun‐xiao Gao
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐qun Gong
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Han‐jie Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐li Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Huaying Tao
- Department of NeurologyTianjin Medical University General Hospital154 Anshan Road, Heping DistrictTianjin300072P. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| |
Collapse
|
31
|
Hassanin IA, Elzoghby AO. Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs. Expert Opin Drug Deliv 2020; 17:1437-1458. [DOI: 10.1080/17425247.2020.1813713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Islam A. Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, MA, USA
| |
Collapse
|
32
|
Xiang J, Zhang S, Zhang G, Li X, Zhang C, Luo J, Yu R, Su Z. Recovery of human serum albumin by dual-mode chromatography from the waste stream of Cohn fraction V supernatant. J Chromatogr A 2020; 1630:461451. [PMID: 32937265 DOI: 10.1016/j.chroma.2020.461451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
Plasma fractionation industry is by far the largest protein pharmaceutical provider, but there are still some plasma components in its industrial waste liquid that have not been utilized. This study aimed to develop a simple and efficient method for plasma protein recovery from Cohn fraction V supernatant (FVS), an effluent containing about 40% ethanol. A new affinity chromatography medium was synthesized with a fatty acid ligand. When the medium was applied to recovery of human serum albumin (HSA) from FVS at physiological pH7.4, the process was unsuccessful due to substantial decrease in capacity in the presence of high ethanol concentration. Nevertheless, change of pH from 7.4 to 4.2 emerged an improved adsorption capacity. The carboxyl group of the ligand began to act as cationic ion exchange role. Both HSA and α2HS-glycoprotein were adsorbed by the column, but α2HS-glycoprotein could be eluted by increasing pH from 4.2 to 7.4, while HSA was retained by the column and could only be eluted by addition of fatty acid. Therefore, the adsorption of albumin under pH 4.2 is charge-induced affinity adsorption, not simple ion exchange. The so-called dual-mode adsorption depends not only on the chromatographic medium but also on the separated object and environment. HPSEC showed that the purity of recovered HSA was greater than 98%. Circular dichroism and fluorescence spectra were consistent with that of the commercial product. Furthermore, the measurement by isothermal titration calorimetry showed that the separated HSA still maintained the binding activities with the ligands of warfarin and naproxen. It is therefore possible to directly recover high-purity and high-quality human serum albumin from the effluent of plasma fractionation industry by one-step chromatography.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiunan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China
| | - Jian Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rong Yu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
33
|
Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and Evaluation of Cabazitaxel-Loaded Bovine Serum Albumin Nanoparticles for Prostate Cancer. Int J Nanomedicine 2020; 15:5333-5344. [PMID: 32801692 PMCID: PMC7402868 DOI: 10.2147/ijn.s258856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Cabazitaxel (CBZ) is a new taxane-based antitumor drug approved by the FDA for the treatment of prostate cancer, especially for patients with advanced prostate cancer for whom docetaxel is ineffective or causes aggravation. However, Tween 80 injection can cause serious allergic reactions, and CBZ itself has strong toxicity, adverse reactions, and poor tumor selectivity, which greatly limits its clinical applications. Therefore, the CBZ-loaded bovine serum albumin nanoparticles (CBZ-BSA-Gd-NPs) were developed to overcome the allergenic response of Tween 80 and realize the integration of diagnosis and treatment. METHODS CBZ-BSA-Gd-NPs were prepared by the biomineralization method. The characterization, magnetic resonance imaging (MRI), safety, and antitumor activity of the nanoparticles were evaluated in vitro and in vivo. RESULTS The prepared nanoparticles were uniform in size (166 nm), with good MRI performance and stability over 24 h. Compared with CBZ-Tween 80 injection, CBZ-BSA-Gd-NPs showed much lower hemolysis, similar tumor inhibition, and enhanced cellular uptake in vitro. The pharmacokinetic behavior of CBZ-BSA-Gd-NPs in rats showed that the retention time of the nanoparticles was prolonged, the clearance rate decreased, and the area under the drug-time curve increased. The distribution of CBZ-BSA-Gd-NPs in nude mice was characterized by UPLC-MS/MS and MRI, and the results showed that CBZ-BSA-Gd-NPs could effectively target tumor tissues with reduced distribution in the heart, liver, spleen, lungs, and kidneys compared with CBZ-Tween 80, which indicated that CBZ-BSA-Gd-NPs not only had a passive targeting effect on tumor tissue but also achieved the integration of diagnosis and treatment. In vivo, CBZ-BSA-Gd-NPs showed improved tumor inhibitory effect with a safer profile. CONCLUSION In summary, CBZ-BSA-Gd-NPs can serve as an effective therapeutic drug carrier to deliver CBZ into prostate cancer, and realize the integration of diagnosis and therapy.
Collapse
Affiliation(s)
- Zhong Wan
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai200438, People’s Republic of China
| | - Liang Wang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai201204, People’s Republic of China
| | - Guoqing Zhang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai200438, People’s Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai201204, People’s Republic of China
| |
Collapse
|
34
|
Zhang L, Xu H, Wu X, Huang W, Zhang T, Hao P, Peng B, Zan X. A Strategy to Fight against Triple-Negative Breast Cancer: pH-Responsive Hexahistidine-Metal Assemblies with High-Payload Drugs. ACS APPLIED BIO MATERIALS 2020; 3:5331-5341. [PMID: 35021707 DOI: 10.1021/acsabm.0c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Long Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Tinghong Zhang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Peng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| |
Collapse
|
35
|
Wang D, Chen W, Li H, Huang G, Zhou Y, Wang Y, Wan W, You B, Liu Y, Zhang X. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery. Int J Pharm 2020; 585:119456. [DOI: 10.1016/j.ijpharm.2020.119456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
|
36
|
Gong C, Yu X, You B, Wu Y, Wang R, Han L, Wang Y, Gao S, Yuan Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnology 2020; 18:92. [PMID: 32546174 PMCID: PMC7298843 DOI: 10.1186/s12951-020-00649-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Benming You
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Lu Han
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
37
|
Taki AC, Francis JE, Skakic I, Dekiwadia C, McLean TR, Bansal V, Smooker PM. Protein-only nanocapsules induce cross-presentation in dendritic cells, demonstrating potential as an antigen delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102234. [PMID: 32522709 DOI: 10.1016/j.nano.2020.102234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
Templating has been demonstrated to be an efficient method of nanocapsule preparation. However, there have been no reports of using protein-only nanocapsules as an antigen delivery system. Such a system would enable the delivery of antigen without additional polymers. This study focused on defining the structural and cellular characteristics of nanocapsules consisting of antigen (ovalbumin) alone, synthesized by the templating method using highly monodispersed solid core mesoporous shell (SC/MS) and mesoporous (MS) silica nanoparticles of 410 nm and 41 nm in diameter, respectively. The synthesized ovalbumin nanocapsules were homogeneous in structure, and cellular uptake was observed in DC2.4 murine immature dendritic cells with minimal cytotoxicity. The nanocapsules were localized intracellularly and induced antigen presentation by the cross-presentation pathway. The templating system, using SC/MS and MS silica nanoparticles, was demonstrated to be an effective nanocapsule synthesis method for a new antigen delivery system.
Collapse
Affiliation(s)
- Aya C Taki
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Jasmine E Francis
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Ivana Skakic
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, Australia.
| | - Thomas R McLean
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Vipul Bansal
- RMIT NanoBiotechnology Research Laboratory, Ian Potter NanoBioSensing Facility, School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Peter M Smooker
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
38
|
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, Yang Y, Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater 2020; 108:285-299. [PMID: 32251785 DOI: 10.1016/j.actbio.2020.03.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Biomimetic nanotechnology represents a promising approach for the delivery of therapeutic agents for the treatment of complex diseases. Recently, neuronal mitochondria have been proposed to serve as a promising therapeutic target for sporadic Alzheimer's disease (AD). However, the efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge due to the complicated physiological and pathological environment. Herein, we devised and tested a strategy for functional antioxidant delivery to neuronal mitochondria by loading antioxidants into red blood cell (RBC) membrane-camouflaged human serum albumin nanoparticles bearing T807 and triphenylphosphine (TPP) molecules attached to the RBC membrane surface (T807/TPP-RBC-NPs). With the advantage of the suitable physicochemical properties of the nanoparticles and the unique biological functions of the RBC membrane, the T807/TPP-RBC-NPs are stabilized and promote sustained drug release, providing improved biocompatibility and long-term circulation. Under the synergistic effects of T807 and TPP, T807/TPP-RBC-NPs can not only penetrate the blood-brain barrier (BBB) but also target nerve cells and further localize in the mitochondria. After encapsulating curcumin (CUR) as the model antioxidant, the research data demonstrated that CUR-loaded T807/TPP-RBC-NPs can relieve AD symptoms by mitigating mitochondrial oxidative stress and suppressing neuronal death both in vitro and in vivo. In conclusion, the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems provides an effective drug delivery platform for brain diseases. STATEMENT OF SIGNIFICANCE: The efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge for drug delivery due to the complicated physiological and pathological environment. To address this need, various types of nanovessels have been fabricated using a variety of materials in the last few decades. However, problems with the synthetic materials still exist and even cause toxicology issues. New findings in nanomedicine are promoting the development of biomaterials. Herein, we designed a red blood cell (RBC) membrane-coated human serum albumin nanoparticle dual-modified with T807 and TPP (T807/TPP-RBC-NPs) to accomplish these objectives. After encapsulating curcumin as the model drug, the research data demonstrated that the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems are a promising therapeutic candidate for mitochondrial dysfunction in Alzheimer's disease (AD).
Collapse
|
39
|
Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020; 15:1405-1419. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Inspired by the diverse protein-based structures and materials in organisms, proteins have been expected as promising biological components for constructing nanomaterials toward various applications. In numerous studies protein-based nanomaterials have been constructed with the merits of abundant bioactivity and good biocompatibility. However, self-assembly of proteins as a dominant approach in constructing anticancer nanodrugs has not been reviewed. Here, we provide a comprehensive account of the role of protein self-assembly in fabrication, regulation, and application of anticancer nanodrugs. The supramolecular strategies, building blocks, and molecular interactions of protein self-assembly as well as the properties, functions, and applications of the resulting nanodrugs are discussed. The applications in chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, gene therapy, and combination therapy are included. Especially, manipulation of molecular interactions for realizing cancer-specific response and cancer theranostics are emphasized. By expounding the impact of molecular interactions on therapeutic activity, rational design of highly efficient protein-based nanodrugs for precision anticancer therapy can be envisioned. Also, the challenges and perspectives in constructing nanodrugs based on protein self-assembly are presented to advance clinical translation of protein-based nanodrugs and next-generation nanomedicine.
Collapse
Affiliation(s)
- Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Li Z, Wang Y, Zhu J, Zhang Y, Zhang W, Zhou M, Luo C, Li Z, Cai B, Gui S, He Z, Sun J. Emerging well-tailored nanoparticulate delivery system based on in situ regulation of the protein corona. J Control Release 2020; 320:1-18. [PMID: 31931050 DOI: 10.1016/j.jconrel.2020.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
The protein corona significantly changes the nanoparticle (NP) identity both physicochemically and biologically, and in situ regulation of specific plasma protein adsorption on NP surfaces has emerged as a promising strategy for disease-targeting therapy. In the past decade, great progress in protein corona regulation has been achieved via surface chemistry-based nanomedicine development. This review first outlines the latest advances in bio-nano interactions, with special attention to factors that influence the protein corona, including NP physicochemical properties, the biological environment and the duration time. Second, NP surface chemistry strategies designed to inhibit and regulate protein corona formation are highlighted, with special emphasis on albumin, transferrin, apolipoprotein (apo) E, vascular endothelial growth factor (VEGF) and retinol binding protein 4 (RBP4). Finally, the current techniques used to characterize the protein corona are briefly discussed.
Collapse
Affiliation(s)
- Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China.
| | - Yongqi Wang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Jiaojiao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Wenjing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zegeng Li
- The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Anhui 230038, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China.
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
41
|
Wang Q, Guo X, Chen Y, Wu Z, Zhou Y, Sadaf S, Han L, Ding X, Sun T. Theranostics system caged in human serum albumin as a therapy for breast tumors. J Mater Chem B 2020; 8:6877-6885. [PMID: 32249887 DOI: 10.1039/d0tb00377h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomimetic materials are attracting increasing attention in the field of drug delivery due to their low immunogenicity, good biocompatibility and degradability.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xiaoxia Guo
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Yi Chen
- Department of Interventional Radiology
- Zhongshan Hospital
- Fudan University
- Shanghai Institution of Medical Imaging
- Shanghai
| | - Zhiyuan Wu
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Yu Zhou
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Saima Sadaf
- Institute of Biochemistry and Biotechnology
- University of the Punjab
- Quaid-i-Azam Campus
- Lahore
- Pakistan
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research
- School of Pharmacy
- Soochow University
- Suzhou
- P. R. China
| | - Xiaoyi Ding
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Tao Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research
- School of Pharmacy
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
42
|
Fang H, Zhao X, Gu X, Sun H, Cheng R, Zhong Z, Deng C. CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors in Vivo. Biomacromolecules 2019; 21:104-113. [PMID: 31532629 DOI: 10.1021/acs.biomac.9b01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for >90% of the deaths of breast cancer patients in the clinic. Here, we report on cross-linked multifunctional hyaluronic acid nanoparticles carrying docetaxel (DTX-CMHN) for enhanced suppression of highly metastatic 4T1 breast tumors in vivo. DTX-CMHN was formed from a single and all-natural hyaluronic acid-g-polytyrosine-lipoic acid conjugate (HA-g-PTyr-LA; HA, 20 kDa; PTyr, 2.2 kDa), and the size of DTX-CMHN increased from 69 to 78 to 96 nm as the increasing degree of substitution (DS) of PTyr increased from 4 to 11 to 15, respectively. Robust encapsulation of DTX was obtained when DS ≥ 11. DTX-CMHN while steady in a nonreducing environment was destabilized under 10 mM glutathione releasing ∼90% of the DTX within 24 h. It is noteworthy that DTX-CMHN exhibited better antitumor, antimigration, and anti-invasion activity in CD44-overexpressed 4T1-Luc breast cancer cells than free DTX. Interestingly, DTX-CMHN displayed a long elimination half-life of 5.75 h, in contrast to half-lives of 2.11 and 0.75 h for its non-cross-linked counterpart (DTX-MHN) and free DTX, respectively. In vivo therapeutic studies showed significantly better inhibition of primary 4T1-Luc tumor growth and lung metastasis and lower toxicity of DTX-CMHN compared with that of free DTX. These multifunctional nanoformulations based on a single and all-natural hyaluronic acid conjugate emerge as a potential nanoplatform for targeted treatment of CD44-positive metastatic tumors.
Collapse
Affiliation(s)
- Huimin Fang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Huanli Sun
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| |
Collapse
|
43
|
Maboudi S, Shojaosadati S, Aliakbari F, Arpanaei A. Theranostic magnetite cluster@silica@albumin double-shell particles as suitable carriers for water-insoluble drugs and enhanced T2 MR imaging contrast agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1485-1492. [DOI: 10.1016/j.msec.2019.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 02/03/2023]
|
44
|
Lin Y, Li C, Li J, Deng R, Huang J, Zhang Q, Lyu J, Hao N, Zhong Z. NEP 1-40-modified human serum albumin nanoparticles enhance the therapeutic effect of methylprednisolone against spinal cord injury. J Nanobiotechnology 2019; 17:12. [PMID: 30670038 PMCID: PMC6341626 DOI: 10.1186/s12951-019-0449-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background Frequent injection of high-dose methylprednisolone (MP) is used to treat spinal cord injury (SCI), but free MP is associated with various side effects and its water solubility is low, limiting potential dosing regimes and administration routes. Albumin-based nanoparticles, which can encapsulate therapeutic drugs and release cargo in a controlled pattern, show high biocompatibility and low toxicity. The Nogo protein, expressed on the surface of oligodendrocytes, can inhibit axonal growth by binding with the axonal Nogo receptor (NgR). Peptide NEP1-40, an NgR antagonist, can bind specifically to Nogo, significantly improving functional recovery and axon growth in the corticospinal tract. Therefore, we hypothesized that delivering MP within nanoparticles decorated with NEP1-40 could avoid the disadvantages of free MP and enhance its therapeutic efficacy against SCI. Results We used human serum albumin to prepare MP-loaded NPs (MP-NPs), to whose surface we conjugated NEP1-40 to form NEP1-40-MP-NPs. Transmission electron microscopy indicated successful formation of nanoparticles. NEP1-40-MP-NPs were taken up significantly better than MP-NPs by the Nogo-positive cell line RSC-96 and were associated with significantly higher Basso–Beattie–Bresnahan locomotor scores in rats recovering from SCI. Micro-computed tomography assay showed that NEP1-40-MP-NPs mitigated SCI-associated loss of bone mineral density and accelerated spinal cord repair. Conclusions NEP1-40-MP-NPs can enhance the therapeutic effects of MP against SCI. This novel platform may also be useful for delivering other types of drugs. ![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0449-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jian Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ruolan Deng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Juan Huang
- Luzhou TCM Hospital, Luzhou, 646000, China
| | | | - Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Na Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China. .,Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (Sichuan University), Chengdu, 610000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
45
|
Hashem L, Swedrowska M, Vllasaliu D. Intestinal uptake and transport of albumin nanoparticles: potential for oral delivery. Nanomedicine (Lond) 2018; 13:1255-1265. [PMID: 29949465 DOI: 10.2217/nnm-2018-0029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To explore the potential of albumin nanoparticles for oral drug delivery. METHODS Sub-150 nm human serum albumin nanoparticles were fabricated via a desolvation technique. Nanoparticle cell uptake and epithelial translocation were tested in Caco-2 monolayers, while comparing with albumin solution. RESULTS Data suggest epithelial transcytosis of albumin, applied in solution form, via neonatal Fc receptor. Cell uptake of albumin nanoparticles demonstrated behaviors indicating a different cell uptake pathway compared with albumin solution. Importantly, application of equivalent concentrations of albumin solution or nanoparticles resulted in higher epithelial transport capacity of the latter, suggesting improvement of intestinal delivery via nanoformulation. CONCLUSION This study highlights for the first time that simply fabricated, nontoxic human serum albumin nanoparticles may find application in oral drug delivery.
Collapse
Affiliation(s)
- Lina Hashem
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, SE1 9NH, UK
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, SE1 9NH, UK
| | - Driton Vllasaliu
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, SE1 9NH, UK
| |
Collapse
|
46
|
He X, Cai K, Zhang Y, Lu Y, Guo Q, Zhang Y, Liu L, Ruan C, Chen Q, Chen X, Li C, Sun T, Cheng J, Jiang C. Dimeric Prodrug Self-Delivery Nanoparticles with Enhanced Drug Loading and Bioreduction Responsiveness for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39455-39467. [PMID: 30362704 PMCID: PMC7470019 DOI: 10.1021/acsami.8b09730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Efficient drug accumulation in tumor cells is essential for cancer therapy. Herein, we developed dimeric prodrug self-delivery nanoparticles (NPs) with enhanced drug loading and bioreduction responsiveness for triple negative breast cancer (TNBC) therapy. Specially designed camptothecin dimeric prodrug (CPTD) containing a disulfide bond was constructed to realize intracellular redox potential controlled drug release. Direct conjugation of hydrophobic CPTD to poly(ethylene glycol) PEG5000, a prodrug-based amphiphilic CPTD-PEG5000 co-polymer was synthesized, which could encapsulate parental CPTD prodrug spontaneously and form ultrastable NPs due to the highly analogous structure. Such dimeric prodrug self-delivery nanoparticles showed ultrahigh stability with critical micelle concentration as low as 0.75 μg/mL and remained intact during endocytosis. In addition, neurotensin (NT), a 13 amino acid ligand, was further modified on the nanoparticles for triple negative breast cancer (TNBC) targeting. Optimized NT-CPTD NPs showed improved pharmacokinetics profile and increased drug accumulation in TNBC lesions than free CPT, which largely reduced the systemic toxicity and presented an improved anticancer efficacy in vivo. In summary, with advantages of extremely high drug loading capacity, tumor microenvironmental redox responsiveness, and targeted TNBC accumulation, NT-CPTD NPs showed their potential for effective triple negative breast cancer therapy.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Kaimin Cai
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Chunhui Ruan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Zhang D, Yang J, Guan J, Yang B, Zhang S, Sun M, Yang R, Zhang T, Zhang R, Kan Q, Zhang H, He Z, Shang L, Sun J. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomater Sci 2018; 6:2360-2374. [PMID: 30019051 DOI: 10.1039/c8bm00548f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodrug self-nanoassemblies have many advantages for anticancer drug delivery, including high drug loading rate, resistance to recrystallization, and on-demand drug release. However, few studies have focused on their protein corona, which is inevitably formed after entering the blood and determines their subsequent fates in vivo. To actively tune the protein corona of prodrug nanoassemblies, three maleimide-paclitaxel prodrugs were synthesized via different redox-sensitive linkers (ester bond, thioether bond and disulfide bond). After incubation with rat plasma, the surface maleimide groups effectively captured albumins, resulting in albumin-enriched protein corona. The recruited albumin corona enabled enhanced tumor accumulation and facilitated cellular uptake, ensuring the high-efficiency delivery of nanoassemblies to tumor cells. Surprisingly, we found that the traditionally reduction-sensitive disulfide bond could also be triggered by reactive oxygen species (ROS). Such a redox dual-responsive drug release property of the disulfide bond-containing prodrug nanoassemblies further increased the selectivity in cytotoxicity between normal and tumor cells. Moreover, the disulfide bond-containing prodrug nanoassemblies exhibited the highest antitumor efficacy in vivo compared to marketed Abraxane® and other prodrug nanoassemblies. Thus, the fabrication of the maleimide-decorated disulfide bond bridged prodrug nanoassembly, integrating a tunable protein corona and on-demand drug release, is a promising strategy for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Nanoassembly (NA) based on a D-α-tocopherol succinate (αTS) conjugated lysozyme (Lys) (Lys-αTS) was fabricated for tumor-selective delivery of curcumin (CUR) for breast cancer therapy. Lys and αTS were used as a biocompatible enzyme and a hydrophobic residue, respectively, for the preparation of nanocarriers in this study. Compared with CUR-loaded cross-linked Lys (c-Lys/CUR) NA, Lys-αTS/CUR NA exhibited a smaller hydrodynamic size (213 nm mean diameter), a narrower size distribution, and a more spherical shape. Sustained drug release was observed from the Lys-αTS/CUR NA for five days at a normal physiological pH (pH 7.4). The developed Lys-αTS/CUR NA showed enhanced cellular accumulation, antiproliferative effects, and apoptotic efficacies in MDA-MB-231 human breast adenocarcinoma cells. According to the results of optical imaging test in the MDA-MB-231 tumor-bearing mouse models, the Lys-αTS/CUR NA-injected group exhibited a more tumor-selective accumulation pattern, rather than being distributed in the normal tissues and organs. The observed tumor targetability of Lys-αTS/CUR was further studied, which revealed improved in vivo anticancer activities (better inhibition of tumor growth and induction of apoptosis in the tumor tissue) after an intravenous administration in the MDA-MB-231 tumor-bearing mouse models. All these results indicate that the newly developed enzyme-based nanocarrier, the Lys-αTS NA, can be a promising candidate for the therapy of breast cancers.
Collapse
Affiliation(s)
- Song Yi Lee
- a College of Pharmacy , Kangwon National University , Chuncheon , Republic of Korea
| | - Hyun-Jong Cho
- a College of Pharmacy , Kangwon National University , Chuncheon , Republic of Korea
| |
Collapse
|
49
|
Zhao P, Wang Y, Wu A, Rao Y, Huang Y. Roles of Albumin-Binding Proteins in Cancer Progression and Biomimetic Targeted Drug Delivery. Chembiochem 2018; 19:1796-1805. [PMID: 29920893 DOI: 10.1002/cbic.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Nutrient transporters have attracted significant attention for their promising application in biomimetic delivery. Due to the active consumption of nutrients, cancer cells generally overexpress nutrient transporters to meet their increased need for energy and materials. For example, albumin-binding proteins (ABPs) are highly overexpressed in malignant cells, stromal cells, and tumor vessel endothelial cells responsible for albumin uptake. ABP (e.g., SPARC) is a promising target for tumor-specific drug delivery, and albumin has been widely used as a biomimetic delivery carrier. Apart from the transportation function, ABPs are closely associated with neoplasia, invasion, and metastasis. Herein, a summary of the roles of ABP in cancer progression and the application of albumin-based biomimetic tumor-targeted delivery through the ABP pathway is presented.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,Zhejiang Academy of Medical Science, 182 Tianmushan Road, Hangzhou, 310013, P.R. China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Aihua Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Yuefeng Rao
- The First Affiliated Hospital of the College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
50
|
Liu L, Chen Q, Ruan C, Chen X, Zhang Y, He X, Zhang Y, Lu Y, Guo Q, Sun T, Wang H, Jiang C. Platinum-Based Nanovectors Engineered with Immuno-Modulating Adjuvant for Inhibiting Tumor growth and Promoting Immunity. Theranostics 2018; 8:2974-2987. [PMID: 29896297 PMCID: PMC5996371 DOI: 10.7150/thno.24110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Although there is ample evidence that the chemotherapeutic drugs trigger an immune response, the efficient tumor rejection or regression is not guaranteed probably due to the massive immunosuppression within the tumor microenvironment. Thus, a rational delivery platform that overcomes immunosuppression is needed to maximally achieve both cytotoxic and immune-modulatory functions of chemotherapeutics. Accumulating evidence suggests that platinum-based drugs might be suitable for this application. Methods: The dendrigraft polylysine (DGL) with its uniform size and multifunctional groups was employed as the polymeric core and conjugated with platinum-based compounds as therapeutics and WKYMVm peptide (Wpep) as a targeting ligand to construct the novel delivery platform Wpep-DGL/Pt. A series of in vitro and in vivo analyses, including physical and chemical characterizations, targeting property, biosafety, and antitumor efficacy of Wpep-DGL/Pt were systematically carried out. Results: Wpep-DGL/Pt showed potent antitumor efficacy in MDA-MB-231 cells tumor-bearing nude mice with a deficient immune system, demonstrating targeted delivery of chemotherapeutics and the resultant cytotoxicity. Furthermore, in immunocompetent mice bearing 4T1 cells tumors, Wpep-DGL/Pt activated immune cells and induced cell death proving their dual function of chemotherapeutic and immunomodulatory efficacy. Conclusion: This work represents a novel approach for cancer immunotherapy by integrating nanotechnology and platinum-based therapeutics which not only efficiently exerts the chemotherapeutic cytotoxic effect on tumor cell but also restores immune response of immunological cells within the tumor microenvironment.
Collapse
|