1
|
Liu A, Fu J, Liu Z, Shi S, Zhang WX. Interfacial reactions and speciation identification during arsenic treated with nanoscale zerovalent iron (nZVI) in water: A review. WATER RESEARCH 2025; 283:123829. [PMID: 40414096 DOI: 10.1016/j.watres.2025.123829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
This perspective briefly summarized the progress of inorganic arsenic (As) treated with nanoscale zerovalent iron (nZVI) in water over the past two decades. The intrinsic interfacial reaction between As and nZVI encompassed multiple effects, such as complexation, oxidation, reduction, and co-precipitation, ascribed to core-shell structure of nZVI and environmental behavior of As in water. Surface complexation occurred via ligand exchange of arsenate anions with Fe-OH groups on the iron oxide shell. However, interfacial oxidation of As(III) to As(V) was attributed to form a Fe(III) oxide-Fe(II)-As(III) ternary surface complex under anoxic conditions, as well as generate reactive oxygen species (e.g., H2O2, •OH) from iron reacted with O2 under oxic conditions. Reduction of As(III) to As(0) was followed by subsurface accumulation near the Fe(0) core. Advanced characterization techniques, including high-resolution X-ray photoelectron spectroscopy, in situ X-ray absorption spectroscopy, spherical aberration-corrected scanning transmission electron microscope, and density functional theory combined with quick-scanning extended X-ray absorption fine structure, have unraveled the multi-tiered distributions of As on nZVI at atomic scale. This review highlights critical gaps in understanding As-Fe redox dynamics and advocates for future research to engineer nZVI with tailored surface properties for enhanced As sequestration.
Collapse
Affiliation(s)
- Airong Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Jiahui Fu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Zhaoli Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Shuangjia Shi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Wei-Xian Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
2
|
Mao J, Yang L, Yu X, Wang N, Yin X, Wei Y, Wang X. Morphology Effect of FeWO 4 Boosting Efficiency of Photocatalytic Uranium Extraction under Visible Light and Mechanism Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7648-7658. [PMID: 40084661 DOI: 10.1021/acs.langmuir.4c05301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Wolframite (FeWO4) is a type of polyoxometalate known for its high chemical stability and electronic properties, which makes it an excellent photocatalyst. While FeWO4 has been widely utilized in the domain of organic catalysis, there are currently no documented reports regarding its use in the degradation of U(VI). In this study, the effect of changing the microscopic morphology of the FeWO4 catalyst to enhance its photocatalytic activity was explored. We effectively adjusted the microstructure and crystallinity of the FeWO4 catalyst by varying the hydrothermal synthesis temperature, subsequently analyzed in detail using synchrotron radiation and theoretical calculations. Additionally, the degradation rate of U(VI) in nuclear wastewater reached 98.8% using the FeWO4 catalyst samples synthesized at 200 °C, and the effect of coexisting ions on the performance of FeWO4 was studied, and the results showed that the degradation effect of certain amounts of Na+, Mg2+, K+, and Ca2+ on U(VI) was almost negligible, and it still maintained more than 90% of its initial performance after six cycles, which highlights the wide application prospects of the catalyst in the field of nuclear wastewater treatment in the future. Therefore, FeWO4 exhibits excellent photocatalytic uranium-extraction ability, anti-interference ability, stability, and a low-cost advantage. It holds great application prospects in the field of extracting radioactive uranium from nuclear wastewater.
Collapse
Affiliation(s)
- Jianglin Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China
| | - Libo Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China
| | - Xinyu Yu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, P.R. China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, P.R. China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R. China
| |
Collapse
|
3
|
Zhang Y, Yu H, Liu G, Guo H, Yan S, Han L, Jin X, Luo Q, Wang L. Nano boron carbide effectively boost Fenton-like performance of hematite mediated systems: Roles of hematite exposed facets and synergistic catalysis between Fe and B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125050. [PMID: 39369866 DOI: 10.1016/j.envpol.2024.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The inherent properties of exposed facets of iron minerals played key roles in heterogeneous reactions at the mineral interface, and the addition of co-catalysts has been elucidated to further enhance the reactions for contaminants degradation. Here, synergistic Fenton-like catalytic reactivity of different hematite dominant exposed facets ({001}, {012}, {100}, and {113}) with nano boron carbide (B4C) was revealed. In 5 h, as compared with the cumulative •OH in the B4C/H2O2 system (96.9 μM), while that in the {001}/B4C/H2O2 system was decreased by 19.6%, those in the {012}/B4C/H2O2, {100}/B4C/H2O2, and {113}/B4C/H2O2 systems were increased by 53.8%, 75.9%, and 84.0%, respectively. Significantly, {113}/B4C/H2O2 system exhibited strong capability for degradation of a broad spectrum of organic pollutants, including typical phenol, endocrine disruptor (bisphenol A), antibiotic (sulfanilamide), dyes (Rhodamine B and methylene blue), and pesticide (atrazine). During the Fenton-like reactions, higher synergy factor, Fe(III)/Fe(II) cycling rate, and amount of Fe-O-B bond in the {113}/B4C/H2O2 system were shown than those in other systems, thus exhibiting its desirable catalytic performance for •OH production and pollutants oxidation. Iron species and X-ray photoelectron spectroscopy (XPS) analyses indicated that B-B bond and interfacial suboxide boron (e.g., B-O) could provide electrons to facilitate Fe(III) reduction for boosting the Fe(III)/Fe(II) cycling. Density functional theory (DFT) results demonstrated the formation of Fe-O-B bond on hematite {113}, {100}, and {012} facets, which were beneficial to the breakage of O-O bond of bound H2O2 molecule and thus improved the generation of •OH. This study emphasized the essential role of B4C in developing tailored hematite facets as a contaminant remediation substrate, and provided important insights into the design of efficient heterogeneous Fenton-like systems.
Collapse
Affiliation(s)
- Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110003, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Xinxin Jin
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China
| | - Qing Luo
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110003, China
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian, 116021, China.
| |
Collapse
|
4
|
Li X, Xie G, Gu X, Zhang G, Da Y, Wang Y, Liang H, Li Y, Wang B. A tartaric acid (TA)-coated iron-based biochar as heterogeneous fenton catalyst for enhanced degradation of dibutyl phthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124976. [PMID: 39293661 DOI: 10.1016/j.envpol.2024.124976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Iron-biochar composite is a promising catalyst in Fenton-like system for removal of organic pollutants. Nevertheless, low cycling rate of Fe(III)/Fe(II), high iron leaching and low H2O2 utilization efficiency impedes its application. Herein, a iron-based biochar (C-Fe) coated with tartaric acid (TA) was synthesized. The specific structure of inherent graphitized carbon and TA coating improved the removal efficiency of dibutyl phthalate (DBP) to 93%, promoted 2-fold increase in HO• production in H2O2 activation, improved the cycling rate of Fe(III)/Fe(II), and mitigated Fe leaching significantly. The developed HO• and 1O2 dominated Fenton-like system had an excellent pH universality and anti-interference to inorganic ions and real water matrixes. Moreover, C-Fe-TA has been shown to efficiently degrade DBP by using the dissolved oxygen in water to generate HO•. This work provided a novel insight for sustainable and efficient HO• and 1O2 generation, which motivated the development of new water treatment technology based on efficient iron-biochar catalyst.
Collapse
Affiliation(s)
- Xi Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, PR China.
| | - Guotuan Xie
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Xue Gu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Guisen Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Yinliang Da
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Yanghaofan Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China
| | - Hong Liang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, PR China
| | - Yongtao Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, PR China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610500, PR China
| |
Collapse
|
5
|
Xie DH, Li WQ, Xu N, Yuan L, Zhang WH, Huang TY, Sheng GP. Sulfur doping-induced morphological and electronic structure modification of polyoxometalate FeWO 4 for enhanced removal of organic pollutants from water. WATER RESEARCH 2024; 257:121695. [PMID: 38723352 DOI: 10.1016/j.watres.2024.121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.
Collapse
Affiliation(s)
- Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Hua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Yin Huang
- National and Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, 215009, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NFY, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. WATER RESEARCH 2024; 256:121568. [PMID: 38593607 DOI: 10.1016/j.watres.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yanqin Peng
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ruomei Liao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon 999077, Hong Kong, China
| | - Longzhen Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
7
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Li M, Lu Z, Fang C, Zheng B, Fu Y, Li X. Cobalt-based hybrid nanoparticles loaded with curcumin for ligand-enhanced synergistic nanocatalytic therapy/chemotherapy combined with calcium overload. J Mater Chem B 2024; 12:4642-4654. [PMID: 38592460 DOI: 10.1039/d4tb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The therapeutic efficacy of Fenton or Fenton-like nanocatalysts is usually restricted by the inappropriate pH value and limited concentration of hydrogen peroxide (H2O2) at the tumor site. Herein, calcium carbonate (CaCO3)-mineralized cobalt silicate hydroxide hollow nanocatalysts (CSO@CaCO3, CC) were synthesized and loaded with curcumin (CCC). This hybrid system can simultaneously realize nanocatalytic therapy, chemotherapy and calcium overload. With the stabilization of liposomes, CCC is able to reach the tumor site smoothly. The CaCO3 shell first degrades in an acidic tumor environment, releasing Cur and Ca2+, and the pH value of the tumor is increased simultaneously. Then the exposed CSO catalyzes the Fenton-like reaction to convert H2O2 into ˙OH and enhances the cytotoxicity of curcumin (Cur) by catalytically oxidizing it to a ˙Cur radical. Curcumin not only induces the chemotherapy effect but also serves as a nucleophilic ligand and an electron donor in the catalytic system, enhancing the Fenton-like activity of CCC by electron transfer. In addition, calcium overload also amplifies the efficacy of ROS-based therapy. In vitro and in vivo results show that CCC exhibited an excellent synergistic tumor inhibition effect without any clear side effect. This work proposes a novel concept of nanocatalytic therapy/chemotherapy synergistic mechanism by the ligand-induced enhancement of Fenton-like catalytic activity, and inspires the construction of combined therapeutic nanoplatforms and multifunctional nanocarriers for drug and ion delivery in the future.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Zijie Lu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Chao Fang
- iBioMat PharmTek (Hangzhou) Co., Ltd., Hangzhou 311121, P. R. China
| | - Bingzhu Zheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
- iBioMat PharmTek (Hangzhou) Co., Ltd., Hangzhou 311121, P. R. China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China
| |
Collapse
|
9
|
Wang X, Zhi M, Li J, Lin K, Lin X, Hu Y. Ascorbic acid promoted sulfadimidine degradation in the magnetite-activated persulfate system by facilitating the Fe(III)/Fe(II) cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6481-6491. [PMID: 38148457 DOI: 10.1007/s11356-023-31566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Persulfate (PS) activation technologies were of significant importance to the organic contaminant treatment. In this study, ascorbic acid (AA) was introduced to the traditional PS-activated process by using magnetite (Fe3O4) as the activator; herein, the degradation efficiency of sulfadimidine (SM2) was improved from 30 to 93% within 3 h, and the observed removal rate was about 8.0 times higher than that of the Fe3O4/PS system. These improvements were found to be induced by the added AA because it could reduce the surface Fe(III) to Fe(II) on Fe3O4 and thus facilitate the Fe(III)/Fe(II) cycle, which was conducive to producing reactive oxygen species (ROSs) in the oxidation process during PS activation. Meanwhile, AA could also promote the Fe(III)/Fe(II) cycle in the homogeneous solution, further advancing the PS decomposition for SM2 degradation. The ROS trapping experiments indicated that SM2 removal in the Fe3O4/PS/AA system was attributed to •OH and •SO4-, and •SO4- was the dominant ROS. Moreover, the reusability test experiment revealed that magnetite retained good activity after five cycles in the Fe3O4/AA/PS system. This study provides a promising PS activation technology for efficient organics contaminant treatment.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Meiting Zhi
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Jingyi Li
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Kunchuang Lin
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Xueqin Lin
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China
| | - Yue Hu
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, People's Republic of China.
| |
Collapse
|
10
|
Zheng T, Zhou Q, Tao Z, Ouyang S. Magnetic iron-based nanoparticles biogeochemical behavior in soil-plant system: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166643. [PMID: 37647959 DOI: 10.1016/j.scitotenv.2023.166643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Increasing attention is being given to magnetic iron-based nanoparticles (MINPs) because of their potential environmental benefits. Owing to the earth abundance and high utilization of MINPs, as well as the significant functions of Fe in sustainable agriculture and environmental remediation, an understanding of the environmental fate of MINPs is indispensable. However, there are still knowledge gaps regarding the largely unknown environmental behaviors and fate of MINPs in soil-plant system. Thus, this review summarizes recent literature on the biogeochemical behavior (uptake, transportation, and transformation) of MINPs in soil and plants. The different possible uptake (e.g., foliar and root adsorption) and translocation (e.g., xylem, phloem, symplastic/apoplastic pathway, and endocytosis) pathways are discussed. Furthermore, drivers of MINPs uptake and transportation (e.g., soil characteristics, fertilizer treatments, copresence of inorganic and organic anions, meteorological conditions, and cell wall pores) in both soil and plant environments are summarized. This review also details the physical, chemical, and biological transformations of MINPs in soil-plant system. More importantly, a metadata analysis from the existing literature was employed to investigate the distinction between MINPs and other engineering nanoparticles biogeochemical behavior. In the future, more attention should be given to understanding the behavior of MINPs in soil-plant system and improving the capabilities of predictive models. This review thus highlights the main knowledge gaps regarding MINPs behavior and fate to provide guidance for their safe application in agrochemicals, crop production, and soil health.
Collapse
Affiliation(s)
- Tong Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Fang L, Chi J, Shi Q, Wu Y, Li F. Facet-dependent electron transfer induces distinct arsenic reallocations on hematite. WATER RESEARCH 2023; 242:120180. [PMID: 37320876 DOI: 10.1016/j.watres.2023.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The interfacial electron transfer (ET) between electron shuttling compounds and iron (Fe) oxyhydroxides plays a crucial role in the reductive dissolution of Fe minerals and the fate of surface-bound arsenic (As). However, the impact of exposed facets of highly crystalline hematite on reductive dissolution and As immobilization is poorly understood. In this study, we systematically investigated the interfacial processes of the electron shuttling compound cysteine (Cys) on various facets of hematite and the reallocations of surface-bound As(III) or As(V) on the respective surfaces. Our results demonstrate that the ET process between Cys and hematite generates Fe(II) and leads to reductive dissolution, with more Fe(II) generated on {001} facets of exposed hematite nanoplates (HNPs). Reductive dissolution of hematite leads to significantly enhanced As(V) reallocations on hematite. Nevertheless, upon the addition of Cys, a raipd release of As(III) can be halted by its prompt re-adsorption, leaving the extent of As(III) immobilization on hematite unchanged throughout the course of reductive dissolution. This is due to that Fe(II) can form new precipitates with As(V), a process that is facet-dependent and influenced by water chemistry. Electrochemical analysis reveals that HNPs exhibit higher conductivity and ET ability, which is beneficial for reductive dissolution and As reallocations on hematite. These findings highlight the facet-dependent reallocations of As(III) and As(V) facilitated by electron shuttling compounds and have implications for the biogeochemical processes of As in soil and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Rudel HE, Zimmerman JB. Elucidating the Role of Capping Agents in Facet-Dependent Adsorption Performance of Hematite Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34829-34837. [PMID: 37441746 PMCID: PMC10502695 DOI: 10.1021/acsami.3c05104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(N-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.
Collapse
Affiliation(s)
- Holly E. Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
| | - Julie B. Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT 06511
- School of the Environment, Yale University, New Haven, CT 06511
| |
Collapse
|
13
|
Ma B, Yao J, Knudsen TŠ, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131797. [PMID: 37302188 DOI: 10.1016/j.jhazmat.2023.131797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions, leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for p-chloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Universit´e de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
14
|
Zhong D, Zhang J, Huang J, Ma W, Li K, Li J, Zhang S, Li Z. Accelerated electron transfer process via MOF-derived FeCo/C for enhanced degradation of antibiotic contaminants towards heterogeneous electro-Fenton system. CHEMOSPHERE 2023:138994. [PMID: 37211168 DOI: 10.1016/j.chemosphere.2023.138994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The Fe(III) to Fe(II) process limits the rate of the electro-Fenton system. In this study, MIL-101(Fe) derived porous carbon skeleton-coated FeCo bimetallic catalyst Fe4/Co@PC-700 was prepared as a heterogeneous electro-Fenton (EF) catalytic process. The experimental results showed its good performance in catalytic removal of antibiotic contaminants, the rate constant of tetracycline (TC) degradation catalyzed by Fe4/Co@PC-700 was 8.93 times higher than that of Fe@PC-700 under the pH conditions of raw water (pH = 5.86), exhibited good removal of TC, oxytetracycline (OTC), hygromycin (CTC), chloramphenicol (CAP) and ciprofloxacin (CIP). It was shown that the introduction of Co promoted more Fe0 production, allowing the material to exhibit faster Fe(III)/Fe(II) cycling rates. 1O2 and high-priced metal oxygen species were identified as the main active species of the system, in addition to the analysis of possible degradation pathways and toxicity of intermediates of TC. Finally, the stability and adaptability of Fe4/Co@PC-700 and EF systems to different water matrices were evaluated, showing that Fe4/Co@PC-700 was easy to recover and could be applied to different water matrices. This study provides a reference for the design and system application of heterogeneous EF catalysts.
Collapse
Affiliation(s)
- Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China.
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhaopeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
15
|
Zeng G, Wang J, Dai M, Meng Y, Luo H, Zhou Q, Lin L, Zang K, Meng Z, Pan X. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161826. [PMID: 36708820 DOI: 10.1016/j.scitotenv.2023.161826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Natural iron-bearing minerals are widely distributed in the environment and show prominent catalytic performance in pollutant removal. This work provides an overview of groundwater restoration technologies utilizing heterogeneous electro-Fenton (HEF) techniques with the aid of different iron forms as catalysts. In particular, applications of natural iron-bearing minerals in groundwater in the HEF system have been thoroughly summarized from either the view of organic pollutant removal or degradation. Based on the analysis of the catalytic mechanism in the HEF process by pyrite (FeS2), goethite (α-FeOOH), and magnetite (Fe3O4) and the geochemistry analysis of these natural iron-bearing minerals in groundwater, the feasibility and challenges of HEF for organic degradation by using typical iron minerals in groundwater have been discussed, and natural factors affecting the HEF process have been analyzed so that appropriate in situ remedial measures can be applied to contaminated groundwater.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ji Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutong Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academic of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Liang C, Qian L, Li H, Dong X, Zheng T, Chen M. New insight into the activation mechanism of hydrogen peroxide by greigite (Fe 3S 4) for benzene removal: The combined action of dissolved and surface bounded ferrous iron. CHEMOSPHERE 2023; 321:138111. [PMID: 36780998 DOI: 10.1016/j.chemosphere.2023.138111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Iron sulfides have attracted growing concern in heterogeneous Fenton reaction. However, the structure of iron sulfides is different from that of iron oxides and how the structures affect the activation property of hydrogen peroxide (H2O2) remains unclear. This study investigated benzene removal through the activation of H2O2 by the synthesized magnetite (Fe3O4) and greigite (Fe3S4). The structures of Fe3O4 and Fe3S4 were characterized by XRD and EPR, the electron transfer properties of Fe3O4 and Fe3S4 were analyzed by electrochemical workstation, XPS and DFT. It is revealed that the effective benzene removal rate of 88.86% in the Fe3S4/H2O2 was achieved, which compared to 15.58% obtainable from the Fe3O4/H2O2, with the apparent rate constant in the Fe3S4/H2O2 being approximately 65 times over that in the Fe3O4/H2O2. The better H2O2 activation by Fe3S4 was attributed to the significant roles of S (-II) and S vacancies in regulating the dissolution of ferrous iron ions, thus generating abundant free •OH radical. In addition, surface bounded ferrous iron of Fe3S4 could transfer more electrons to H2O2 and O2 to generate more surface bounded •OH and •O2-. This study revealed the combined action of dissolved and surface bounded ferrous iron of greigite on H2O2 activation, and provides an efficient heterogeneous H2O2 activator for the remediation of organic contaminants in groundwater.
Collapse
Affiliation(s)
- Cong Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China.
| | - Hangyu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Xinzhu Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Tao Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China.
| |
Collapse
|
17
|
Hong Z, Li F, Borch T, Shi Q, Fang L. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2162-2174. [PMID: 36703566 DOI: 10.1021/acs.est.2c07065] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dark production of reactive oxygen species (ROS) coupled to biogeochemical cycling of iron (Fe) plays a pivotal role in controlling arsenic transformation and detoxification. However, the effect of secondary atom incorporation into Fe(III) oxyhydroxides on this process is poorly understood. Here, we show that the presence of oxygen vacancy (OV) as a result of Cu incorporation in goethite substantially enhances the As(III) oxidation by Fe(II) under oxic conditions. Electrochemical and density functional theory (DFT) evidence reveals that the electron transfer (ET) rate constant is enhanced from 0.023 to 0.197 s-1, improving the electron efficiency of the surface-bound Fe(II) on OV defective surfaces. The cascade charge transfer from the surface-bound Fe(II) to O2 mediated by Fe(III) oxyhydroxides leads to the O-O bond of O2 stretching to 1.46-1.48 Å equivalent to that of superoxide (•O2-), and •O2- is the predominant ROS responsible for As(III) oxidation. Our findings highlight the significant role of atom incorporation in changing the ET process on Fe(III) oxyhydroxides for ROS production. Thus, such an effect must be considered when evaluating Fe mineral reactivity toward changing their surface chemistry, such as those noted here for Cu incorporation, which likely determines the fates of arsenic and other redox sensitive pollutants in the environments with oscillating redox conditions.
Collapse
Affiliation(s)
- Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| |
Collapse
|
18
|
Lu D, Yang Q, Chen Z, Zhu F, Liu C, Han S. Fabrication and performance of novel alginate hydrogel system modified with GO and Ascorbic acid. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Monje DS, Mercado DF, Mesa GAP, Valencia GC. Carbon dots decorated magnetite nanocomposite obtained using yerba mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest-part 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3070-3087. [PMID: 35941506 DOI: 10.1007/s11356-022-22405-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Two carbon dots (CD) with diameters of 4.9 ± 1.5 and 4.1 ± 1.2 nm were successfully synthesized through an acid ablation route with HNO3 or H2SO4, respectively, using Ilex paraguariensis as raw material. The CD were used to produce magnetite-containing nanocomposites through two different routes: hydrothermal and in situ. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) indicates that all nanomaterials have spherical-like morphology with a core-shell structure. The composition of this structure depends on the route used: with the hydrothermal route, the shell is composed of the CD, but with the in situ process, the CD act as nucleation centers, and so the iron oxide domains are in the shell. Regarding the photocatalytic mechanism for the degradation of methyl orange, the interaction between the CD and the magnetite plays an important role in the photo-Fenton reaction at pH 6.2, in which ligand-to-metal charge transfer processes (LTMCT) allow Fe2+ regeneration. All materials (100 ppm) showed catalytic activity in the elimination of methyl orange (8.5 ppm), achieving discoloration of up to 98% under visible irradiation over 400 nm in 7 h. This opens very interesting possibilities for the use of agro-industrial residues for sustainable synthesis of catalytic nanomaterials, and the role of the interaction of iron-based catalysts with organic matter in heterogeneous Fenton-based processes.
Collapse
Affiliation(s)
- Dany S Monje
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - D Fabio Mercado
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia.
- LMGP, Grenoble INP, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | - Gustavo A Peñuela Mesa
- Grupo de Diagnóstico Y Control de La Contaminación (GDCON), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Cl. 62 #52-59, Medellín, Colombia
| | - Gloria Cristina Valencia
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| |
Collapse
|
20
|
Lu Y, Hu S, Zhang H, Song Q, Zhou W, Shen X, Xia D, Yang Y, Zhu H, Liu C. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157713. [PMID: 35914600 DOI: 10.1016/j.scitotenv.2022.157713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Interfacial reactions between iron (Fe) (hydr)oxide surfaces and the activity of bacteria during dissimilatory Fe reduction affect extracellular electron transfer. The presence of organic matter (OM) and exposed facets of Fe (hydr)oxides influence this process. However, the underlying interfacial mechanism of facet-dependent hematite and its toxicity toward microbes during bioreduction in the presence of OM remains unknown. Herein, humic acid (HA), as typical OM, was selected to investigate its effect on the bioreduction of hematite {100} and {001}. When HA concentration was increased from 0 to 500 mg L-1, the bioreduction rates increased from 0.02 h-1 to 0.04 h-1 for hematite {100} and from 0.026 h-1 to 0.05 h-1 for hematite {001}. Since hematite {001} owned lower resistance than hematite {100} irrespective of the HA concentration, and hematite {100} was less favorable for reduction. Microscopy-based analysis showed that more hematite {001} nanoparticles adhered to the cell surface and were bound more closely to the bacteria. Moreover, less cell damage was observed in the HA-hematite {001} treatments. As the reaction progressed, some bacterial cells died or were inactivated; confocal laser scanning microscopy showed that bacterial survival was higher in the HA-hematite {001} treatments than in the HA-hematite {100} treatments after bioreduction. Spectroscopic analysis revealed that facet-dependent binding was primarily realized by surface complexation of carboxyl functional groups with structural Fe atoms, and that the binding order of HA functional groups and hematite was affected by the exposed facets. The exposed facets of hematite could influence the electrochemical properties and activity of bacteria, as well as the binding of bacteria and Fe oxides in the presence of OM, thereby governing the extracellular electron transfer and concomitant bioreduction of Fe (hydr)oxides. These results provide new insights into the interfacial reactions between OM and facet-dependent Fe oxides in anoxic, OM-rich soil and sediment environments.
Collapse
Affiliation(s)
- Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Hanyue Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Wenjing Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Di Xia
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), 7 West Street, Yuancun, Guangzhou, Guangdong 510655, People's Republic of China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
21
|
Chen N, Zhao Y, Li M, Wang X, Peng X, Sun H, Zhang L. FeC 2O 4•2H 2O enables sustainable conversion of hydrogen peroxide to hydroxyl radical for promoted mineralization and detoxification of sulfadimidine. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129049. [PMID: 35526344 DOI: 10.1016/j.jhazmat.2022.129049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Safe treatment of antibiotics requires efficient removal of both antibiotics and their degraded intermediates. In this study, we demonstrate that FeC2O4•2H2O enables the more sustainable conversion of H2O2 to •OH than commonly used FeSO4•7H2O, promoting the detoxification of a typical antibiotic sulfadimidine. It was found that the FeC2O4/H2O2 system could completely degrade 250 mg L-1 of sulfadimidine within 40 min at pH 3.0, along with decreasing the contents of chemical oxygen demand and total organic carbon by 295.0 and 33.5 mg L-1, respectively, more efficient than those in a classical Fenton system (FeSO4/H2O2). Analysis of sulfadimidine degraded intermediates and toxicity evaluation suggested that the FeC2O4/H2O2 treatment could more effectively decrease the overall toxicity of the sulfadimidine solution than the FeSO4/H2O2 counterpart. The sustainability of FeC2O4•2H2O in H2O2 conversion to •OH was attributed to its controlled release of Fe2+ into the solution to prevent the quenching of •OH by excessive Fe2+, as well as the simultaneous release of C2O42- to complex with Fe2+ and Fe3+, which could inhibit iron sludge formation and accelerate Fe3+/Fe2+ redox cycle. This study provides a promising Fenton system for the safe treatment of antibiotics and sheds light on the potential of FeC2O4•2H2O in environmental remediation.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ying Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
22
|
Qiu X, Ding L, Zhang C, Ouyang Z, Jia H, Guo X, Zhu L. Exposed facets mediated interaction of polystyrene nanoplastics (PSNPs) with iron oxides nanocrystal. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128994. [PMID: 35490633 DOI: 10.1016/j.jhazmat.2022.128994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs), which are often detected in the natural environment, are regarded as a group of emerging pollutants. Hematite is a substance that exists widely in the surface environment and has an important impact on the environmental behavior of pollutants. Clarifying the migration of NPs requires an in-depth understanding of intrinsic interaction mechanisms of NPs with iron-containing minerals. The interaction process of polystyrene nanoplastics (PSNPs) on the hematite exposed facets was systematically studied by experiments under different conditions, adsorption isotherm curves, Fourier Transform infrared (FTIR) spectroscopy and two-dimensional correlation spectroscopy (2D-COS) analyses. We found that PSNPs were adsorbed on the three exposed faces of hematite ({001}, {012}, and {100}) by electrostatic interaction, respectively, but the capacities for PSNPs were different. Adsorption models were established to explore the preferred interaction surface dependent on the exposed facets, and it was found that {012} surfaces were more favorable for PSNPs adsorption, while {001} surface has better adsorption capacity for PSNPs than {100} surface, which is due to the different density and proportion of hydroxyl groups on the exposed facets of hematite. These findings elucidated the dependence of PSNPs adsorption on the hematite facets, and illustrated t the effect of hematite on the migration of PSNPs in the environment.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Monje DS, Ruiz OS, Valencia GC, Mercado DF. Iron oxide nanoparticles embedded in organic microparticles from Yerba Mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest - Part 1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57127-57146. [PMID: 35344143 DOI: 10.1007/s11356-022-19744-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Seven composites of iron oxide nanoparticles embedded in organic microparticles mediated by Cu(II) were synthesized using yerba mate (Ilex paraguariensis) dry leaf extract as precipitant, capping agent, and dispersant medium, using different Cu/Fe molar ratios. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis-mass spectrometry (TGA-MS), Fourier transform infrared spectrometer (FTIR), and atomic absorption-spectrometry (AA) indicates that all materials have spheric-like morphology with nanoparticles composed by metal oxide phases embedded into organic microparticles. Interestingly, this organic matter is proposed to play an important role in the solids' photocatalytic activity in a photo-Fenton reaction, in which iron photo-leaching was elucidated, and a mechanism through ligand-to-metal charge transfer processes was proposed. All materials showed catalytic activity in the methyl orange elimination, achieving discolorations up to 96% in 2 h under UV irradiation at 375 nm. An experimental correlation between all samples' UV/Vis spectra and their performances for methyl orange discoloration was observed. This process opens a landscape very interesting for the use of agroindustrial residues for green synthesis of metal oxide nanomaterials and their use and understanding of organo-metallic systems participation in Fenton-based processes.
Collapse
Affiliation(s)
- Dany Santiago Monje
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - Orlando Simón Ruiz
- Facultad de Ciencias, Departamento de Geociencias, Universidad Nacional de Colombia-Sede Medellín Medellín, Medellín, Colombia
| | - Gloria Cristina Valencia
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - D Fabio Mercado
- Grupo de Investigación en Aplicaciones Fotoquímicas (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia.
| |
Collapse
|
24
|
Jin Z, Li Q, Tang P, Li G, Liu L, Chen D, Wu J, Chai Z, Huang G, Chen X. Copper-doped carbon dots with enhanced Fenton reaction activity for rhodamine B degradation. NANOSCALE ADVANCES 2022; 4:3073-3082. [PMID: 36133526 PMCID: PMC9417171 DOI: 10.1039/d2na00269h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
The Fenton reaction has attracted extensive attention due to its potential to be a highly efficient and environmentally friendly wastewater treatment technology. Noble copper-doped carbon dots (CuCDs) are prepared through a simple one-step hydrothermal method with 3,4-dihydroxyhydrocinnamic acid, 2,2'-(ethylenedioxy)bis(ethylamine) and copper chloride, endowing the Fenton reaction with enhanced catalytic activity for rhodamine B (RhB) degradation. The effects of the concentration of CuCDs, temperature, pH, oxygen (O2), metal ions and polymers on the catalytic activity of CuCDs are investigated. It is worth noting that electron transfer happening on the surface of CuCDs plays a vital role in the RhB degradation process. As evidenced by radical scavenger experiments and electron spin resonance (ESR) studies, CuCDs significantly boost the formation of hydroxyl radicals (˙OH) and singlet oxygen (1O2), facilitating the Fenton reaction for RhB degradation. Due to the strong oxidation of ROS generated by the Fe2+ + H2O2 + CuCD system, RhB degradation may involve the cleavage of the chromophore aromatic ring and the de-ethylation process. Additionally, the toxicity of RhB degradation filtrates is assessed in vitro and in vivo. The as-prepared CuCDs may be promising catalytic agents for the enhancement of the Fenton reaction.
Collapse
Affiliation(s)
- Zhiru Jin
- School of Public Health, Guangxi Medical University Nanning 530021 China
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University Nanning 530021 China
| | - Qiuying Li
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Peiduo Tang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Ganfeng Li
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Li Liu
- School of Public Health, Guangxi Medical University Nanning 530021 China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Ji Wu
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University Nanning 530021 China
| | - Zhihui Chai
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences Nanning 530007 China
| | - Xing Chen
- School of Public Health, Guangxi Medical University Nanning 530021 China
| |
Collapse
|
25
|
Liu J, Zhang C, Zhao S, Wang Z, Zhang X, Zhu K, Liu Z, Dai Y, Jia H. Coexistence of MnO2 impedes the degradation of BPA in iron oxide/ascorbic acid systems: Disclosing the molecular mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Tian X, Luo T, Nie Y, Shi J, Tian Y, Dionysiou DD, Wang Y. New Insight into a Fenton-like Reaction Mechanism over Sulfidated β-FeOOH: Key Role of Sulfidation in Efficient Iron(III) Reduction and Sulfate Radical Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5542-5551. [PMID: 35412804 DOI: 10.1021/acs.est.2c00132] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal; however, whether this method benefits Fenton-like reactions or not and the possible mechanism are not well understood. In this study, we revealed that surface sulfidation can greatly promote the heterogeneous Fenton activity of β-FeOOH (Fe3S4@β-FeOOH) by 40 times, in which not only the •OH formation was enhanced but also SO4•- as a new oxidation species was generated. Moreover, their contribution to metronidazole (MTZ) degradation was 52.5 and 37.1%, respectively. In comparison, almost no HO2•/O2•- was detected in the Fe3S4@β-FeOOH/H2O2 system. These results were different from some previously reported Fenton counterparts. Based on the characterization and probe experiments, sulfur species, including S2-, S0, and Sn2-, as an electron donor and electron shuttle were responsible for efficient conversion of Fe(III) into Fe(II) other than via the Haber-Weiss mechanism, leading to excellent •OH generation via a Fenton-like mechanism. Most importantly, HSO5- can be generated from SO32- oxidized by •OH, and its scission into SO4•- was not dependent on the extra electric potential or Fe-O2-S(IV) intermediate. These findings provided new insight for utilizing sulfidation to improve the activity of iron-based Fenton catalysts.
Collapse
Affiliation(s)
- Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tiantian Luo
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yayang Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: Performance, mechanism, and degradation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Liu K, Li F, Pang Y, Fang L, Hocking R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127780. [PMID: 34801297 DOI: 10.1016/j.jhazmat.2021.127780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yan Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
29
|
You Y, Huang S, Chen M, Parker KM, He Z. Hematite/selenium disulfide hybrid catalyst for enhanced Fe(III)/Fe(II) redox cycling in advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127376. [PMID: 34879569 DOI: 10.1016/j.jhazmat.2021.127376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Regeneration of Fe(II) is a key issue for heterogeneous advanced oxidation processes (AOPs) using iron-based catalysts. Herein, a hybrid catalyst was developed from α-Fe2O3 and SeS2 to enhance the Fe(III)/Fe(II) redox cycling in both hydrogen peroxide (H2O2) system and persulfate (PS) system. The regeneration of Fe(II) was evidenced by the increased Fe(II)/Fe(III) ratio in the used catalyst (205.8% in the H2O2 system or 125.4% in the PS system), compared to 68.4% in the fresh hybrid catalyst Fe/Se-3. Methyl orange was used as a model pollutant to evaluate the degradation performance of the hybrid catalyst. Owing to the promotion of Fe(II) regeneration, Fe/Se-3 achieved a pollutant removal efficiency of 100.0% in 12 min in both systems, significantly higher than that with pure α-Fe2O3 (33.9 ± 3.6% in the H2O2 system or 30.7 ± 2.8% in the PS system). The dominant active species were identified as hydroxyl radicals in the H2O2 system and sulfate radicals in the PS system. In the proposed mechanism, soluble and surface-bound Fe species are provided by α-Fe2O3 to activate H2O2 or PS to radicals, and SeS2 participates in the reactions via Se(IV) reducing Fe(III) to Fe(II) and S atoms being released through protonation to expose more active Se sites.
Collapse
Affiliation(s)
- Yingying You
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Moshan Chen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kimberly M Parker
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
30
|
Tian Y, Jia N, Zhou L, Lei J, Wang L, Zhang J, Liu Y. Photo-Fenton-like degradation of antibiotics by inverse opal WO 3 co-catalytic Fe 2+/PMS, Fe 2+/H 2O 2 and Fe 2+/PDS processes: A comparative study. CHEMOSPHERE 2022; 288:132627. [PMID: 34678345 DOI: 10.1016/j.chemosphere.2021.132627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Advanced oxidation processes (AOPs) such as Fenton and Fenton-like process for pollutant removal have been widely reported. However, most papers choose one of the popular oxidants (H2O2, peroxymonosulfate (PMS) or peroxydisulfate (PDS)) as the oxidant via AOPs for pollutant degradation. The purpose of this work is to compare the degradation rates of the Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes. Furthermore, to solve the problem of slow regeneration of Fe2+, the visible light irradiation and inverse opal WO3 cocatalyst were added to the Fenton/Fenton-like process. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes greatly improved the degradation efficiency of norfloxacin (NOR), reaching about 30 times, 9 times and 12 times that of the homogeneous Fenton/Fenton-like process, respectively. On average, the TOC removal rates of PMS-based, H2O2-based and PMS-based processes for the five pollutants were 71.6%, 54.0%, and 59.6% within 60 min, and the corresponding co-catalyst treatment efficiencies were 0.215 mmol/g/h, 0.162 mmol/g/h, and 0.179 mmol/g/h, respectively. 1O2 and •O2- have been proven to play a vital role in the degradation of NOR via all the three IO WO3 co-catalytic photo-Fenton-like processes. In addition, the effects of different reaction parameters on the activity of degrading norfloxacin were explored. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes for removal of different persistent organic pollutants and norfloxacin in different actual wastewater have also been studied. Nonetheless, this study proves that IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes could effectively remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Yunhao Tian
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Nan Jia
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Liang Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Juying Lei
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Lingzhi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jinlong Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Yongdi Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
31
|
Lou YY, Xiao C, Fang J, Sheng T, Ji L, Zheng Q, Xu BB, Tian N, Sun SG. High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination. Phys Chem Chem Phys 2022; 24:3896-3904. [PMID: 35089296 DOI: 10.1039/d1cp04975e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of step sites on nanocatalysts in the electrocatalytic dechlorination reaction (ECDR) was studied using 3 Pd nanocatalysts with different densities of step sites, which decreased in the order of: tetrahexahedral Pd{310} nanocrystals (THH Pd{310} NCs) > commercial Pd nanoparticles (Pd black) > cubic Pd{100} NCs. The two well-defined Pd NCs served as model catalysts and were prepared through the electrochemical square-wave potential (SWP) method. The toxic herbicide alachlor was first employed in this study as an objective probe to determine the dechlorination performance, which was quantified by the alachlor removal (Rala), the current efficiency (CEala), and the dechlorination selectivity (Sdes). The experimental results demonstrated that the THH Pd{310} NCs with abundant step sites exhibited much higher electrocatalytic performance compared to the cubic Pd{100} NCs with terrace sites. The combination of cyclic voltammetry studies, electrochemical in situ FTIR analysis, and density functional theory (DFT) calculations revealed that the adsorbed CO bond and generated on the step sites could lower the C-Cl bond splitting barrier, leading to a high ECDR efficiency. Other chlorinated organics with an activated carbon atom were also investigated, which revealed that the superiority of the step sites toward Cl-C bond breaking was particular to the compounds with CO bonds. This study provides a deep understanding of high actvitiy of step sites on Pd NCs in EHDC and a strategy to improve this important environmental electrocatalysis process.
Collapse
Affiliation(s)
- Yao-Yin Lou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Chi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jiayi Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Lifei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bin-Bin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
32
|
Jin L, Liu F, Wu JH, Ma SJ, Li JH, Tian YJ, Liu X, Lin ZX. The construction of a palladium–hydrogen accelerated catalytic Fenton system enhanced by UiO-66(Zr). NEW J CHEM 2022. [DOI: 10.1039/d1nj04550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of H2 and Pd/UiO-66(Zr) accelerated the FeII/FeIII cycle and led to higher contaminant degradation using only a trace level of FeII in several reaction cycles.
Collapse
Affiliation(s)
- Long Jin
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Feng Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jian-hua Wu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - San-Jian Ma
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
- Suzhou Cott Environmental Protection Co., Ltd, Suzhou, Jiangsu Province 215156, China
| | - Juan-Hong Li
- Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu Province 213164, China
| | - Yong-Jing Tian
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Xin Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
33
|
Su X, Lv H, Gong J, Zhou M. Bi/mZVI Combined with Citric Acid and Sodium Citrate to Mineralize Multiple Sulfa Antibiotics: Performance and Mechanism. Antibiotics (Basel) 2022; 11:antibiotics11010051. [PMID: 35052928 PMCID: PMC8773326 DOI: 10.3390/antibiotics11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/02/2022] Open
Abstract
The oxidative mineralization of sulfanilamide drugs (SAs) using micro-size zero-valent iron (mZVI) cooperated with a citric acid buffer solution was evaluated. In this study SM2, SMX, and SD could be removed at 66%, 89%, and 83%, respectively, in a 0.5% Bi/mZVI+CA+NaCA system within 2 h. Based on our analysis, the produced ·OH could be ascribed from the complexation between citrate iron (Fe(II)[Cit]−) and the generated H2O2 resulting from the activation of O2 on the mZVI surface in the Bi/mZVI+CA+NaCA system, further inducing the mineralization of antibiotics. The related possible degradation pathways were proposed. Two similar degradation pathways of SM2, SMX, and SD in the mixed liquid, including hydroxylation and SO2 extrusion, were solved. Meanwhile, there was an additional proposed degradation pathway for SMX to be degraded more effectively, as reflected in the opening of the N-O bond on the benzene ring. Therefore, this work provides an experimental basis and theoretical support for the efficient treatment of antibiotic wastewater in real industry by using an iron-based method.
Collapse
Affiliation(s)
- Xiaoming Su
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
| | - Hao Lv
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
| | - Jianyu Gong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.S.); (H.L.)
- Correspondence: (J.G.); (M.Z.)
| | - Man Zhou
- Hubei Electromechanical Research Institute Co., Ltd., Wuhan 430070, China
- Correspondence: (J.G.); (M.Z.)
| |
Collapse
|
34
|
Qiu W, Gao M, Chen Q, Zheng A, Shi Y, Liu X, Li J, Dai G, Hu Y, Lin Z. Acceleration of Fe
III
/Fe
II
cycle enhanced by Pd/MOF‐808(Zr) composite in hydrogen promotion Fenton system for sulfamethazine elimination. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jing Qiu
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ming‐Wu Gao
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Qi Chen
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ao Zheng
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Yi‐Jia Shi
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Xin Liu
- Tianping College of Suzhou University of Science and Technology Suzhou China
- Institute of Environmental Protection Application Technology, Institute of Solid Waste Pollution Control and Resource Reuse, School of Environmental Science and Engineering Suzhou University of Science and Technology Suzhou China
| | - Juan‐Hong Li
- Changzhou Vocational Institute of Engineering Changzhou China
| | - Guo‐Liang Dai
- School of Chemistry and Life Science Suzhou University of Science and Technology Suzhou China
| | - Yang Hu
- Suzhou Cott Environmental Protection Co., Ltd. Suzhou China
| | - Zi‐Xia Lin
- Testing Center Yangzhou University Yangzhou China
| |
Collapse
|
35
|
Enhanced electrochemical advanced oxidation on boride activated carbon: The influences of boron groups. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
|
37
|
Ren H, He F, Liu S, Li T, Zhou R. Enhancing Fenton-like process at neutral pH by Fe(III)-GLDA complexation for the oxidation removal of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126077. [PMID: 34492897 DOI: 10.1016/j.jhazmat.2021.126077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
N,N-bis(carboxymethyl)glutamic acid (GLDA) was utilized in this study to significantly enhance the Fe(III) mediated Fenton-like oxidation removal of organic pollutants at neutral pH, in which ciprofloxacin (CIP) was used as the model pollutant. The CIP degradation rate in the GLDA/Fe(III)/H2O2 system reached 96.5% within 180 min and was nearly 14 times higher than that in the Fe(III)/H2O2 system. This enhancement was contributed to the acceleration of the cycle of Fe(III)/Fe(II) caused by GLDA, which was verified by UV-vis spectroscopy, cyclic voltammetry, and radical quenching experiments. The results proved that the GLDA could complex with Fe(III) and greatly modify the redox potential of Fe(III)/Fe(II). Moreover, radical quenching experiments confirmed that •OH and O2·- were the mainly species for CIP degradation, and O2·- was responsible for 81.9% •OH generation. In addition, H2O2 utilization kinetic modeling was also investigated. The optimum parameters of the 100 μM Fe(III)-GLDA complex and 15 mM H2O2 were attained by lot-size optimization experiments. Two possible CIP degradation pathways were proposed on the basis of the intermediates identified by MS/MS. The GLDA/Fe(III)/H2O2 system performed better than common chelating agents at the same condition, manifesting good potential for environmental concerns.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Fangru He
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Shuai Liu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Tingting Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
38
|
Rojas-Mantilla HD, Ayala-Duran SC, Pupo Nogueira RF. Nontronite mineral clay NAu-2 as support for hematite applied as catalyst for heterogeneous photo-Fenton processes. CHEMOSPHERE 2021; 277:130258. [PMID: 33774227 DOI: 10.1016/j.chemosphere.2021.130258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This study describes the characterization of Nontronite, a clay mineral with high content of structural iron, before and after iron incorporation and 600 °C heat treatment. The Nontronite was classified as a mesoporous material, with high absorption in the UV-Vis range and band gap energy of 1.9 eV, indicative of the presence of superficial hematite, also verified in XRD analysis. The heat treatment promoted a structure rearrangement and the conversion of other iron phases to hematite, allowing the formation of surface irregular sites on Nontronite and facilitating the access for the decomposition of H2O2 into HO. Its catalytic activity in heterogeneous photo-Fenton process was evaluated during the degradation of the antibiotic sulfathiazole (STZ) and showed high activity achieving undetectable levels of STZ after 20 min under UV-LED irradiation and solar irradiation, and showing no iron leaching under controlled pH = 3. The degradation intermediates identified indicated hydroxylation as the main degradation route.
Collapse
Affiliation(s)
- Hernán D Rojas-Mantilla
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| | - Saidy C Ayala-Duran
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| | - Raquel F Pupo Nogueira
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| |
Collapse
|
39
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
40
|
Lai C, Shi X, Li L, Cheng M, Liu X, Liu S, Li B, Yi H, Qin L, Zhang M, An N. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145850. [PMID: 33631587 DOI: 10.1016/j.scitotenv.2021.145850] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Conventional water treatment methods are difficult to remove stubborn pollutants emerging from surface water. Advanced oxidation processes (AOPs) can achieve a higher level of mineralization of stubborn pollutants. In recent years, the Fenton process for the degradation of pollutants as one of the most efficient ways has received more and more attention. While homogeneous catalysis is easy to produce sludge and the catalyst cannot be cycled. In contrast, heterogeneous Fenton-like reaction can get over these drawbacks and be used in a wider range. However, the reduction of Fe (III) to Fe(II) by hydrogen peroxide (H2O2) is still the speed limit step when generating reactive oxygen species (ROS) in heterogeneous Fenton system, which restricts the efficiency of the catalyst to degrade pollutants. Based on previous research, this article reviews the strategies to improve the iron redox cycle in heterogeneous Fenton system catalyzed by iron materials. Including introducing semiconductor, the modification with other elements, the application of carbon materials as carriers, the introduction of metal sulfides as co-catalysts, and the direct reduction with reducing substances. In addition, we also pay special attention to the influence of the inherent properties of iron materials on accelerating the iron redox cycle. We look forward that the strategy outlined in this article can provide readers with inspiration for constructing an efficient heterogeneous Fenton system.
Collapse
Affiliation(s)
- Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xiaoxun Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ning An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
41
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
42
|
Liu ZX, Liu X, Li Y, Gao SQ. Accelerated Fe III/Fe II redox cycle of Fenton reaction system using Pd/NH 2-MIL-101(Cr) and hydrogen. Turk J Chem 2021; 45:377-386. [PMID: 34104042 PMCID: PMC8164194 DOI: 10.3906/kim-2008-34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/13/2020] [Indexed: 12/01/2022] Open
Abstract
In this paper, a novel improvement in the catalytic Fenton reaction system named MHACF-NH2-MIL-101(Cr) was constructed based on H2 and Pd/NH2-MIL-101(Cr). The improved system would result in an accelerated reduction in FeIII, and provide a continuous and fast degradation efficiency of the 10 mg L-1 4-chlorophenol which was the model contaminant by using only trace level FeII. The activity of Pd/NH2-MIL-101(Cr) decreased from 100% to about 35% gradually during the six consecutive reaction cycles of 18 h. That could be attributed to the irreversible structural damage of NH2-MIL-101(Cr).
Collapse
Affiliation(s)
- Zhong-Xing Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China.,Suzhou Mengli Environmental Technology Co., Ltd., Changshu National New & Hi-tech Industrial Development Zone Suzhou, Jiangsu Province China
| | - Yong Li
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| | - Shi-Qian Gao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| |
Collapse
|
43
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Hu S, Wu Y, Li F, Shi Z, Ma C, Liu T. Fulvic Acid-Mediated Interfacial Reactions on Exposed Hematite Facets during Dissimilatory Iron Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6139-6150. [PMID: 33974438 DOI: 10.1021/acs.langmuir.1c00124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although the dual role of natural organic matter (NOM) as an electron shuttle and an electron donor for dissimilatory iron (Fe) reduction has been extensively investigated, the underlying interfacial interactions between various exposed facets and NOM are poorly understood. In this study, fulvic acid (FA), as typical NOM, was used and its effect on the dissimilatory reduction of hematite {001} and {100} by Shewanella putrefaciens CN-32 was investigated. FA accelerates the bioreduction rates of hematite {001} and {100}, where the rate of hematite {100} is lower than that of hematite {001}. Secondary Fe minerals were not observed, but the HR-TEM images reveal significant defects. The ATR-FTIR results demonstrate that facet-dependent binding mainly occurs via surface complexation between the surface iron atoms and carboxyl groups of NOM. The spectroscopic and mass spectrometry analyses suggest that organic compounds with large molecular weight, highly aromatic and unsaturated structures, and lower H/C ratios are easily adsorbed on Fe oxides or decomposed by bacteria in FA-hematite {001} treatment after iron reduction. Due to the metabolic processes of cells, a significant number of compounds with higher H/C and medium O/C ratios appear. The Tafel curves show that hematite {100} possessed higher resistance (4.1-2.6 Ω) than hematite {001} (3.5-2.2 Ω) at FA concentrations ranging from 0 to 500 mg L-1, indicating that hematite {100} is less conductive during the electron transfer from reduced FA or cells to Fe oxides than hematite {001}. Overall, the discrepancy in the iron bioreduction of two exposed facets is attributed to both the different electrochemical activities of the Fe oxides and the different impacts on the properties and composition of OM. Our findings shed light on the molecular mechanisms of mutual interactions between FA and Fe oxides with various facets.
Collapse
Affiliation(s)
- Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Chao Ma
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, P. R. China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| |
Collapse
|
45
|
Liu M, Feng Z, Luan X, Chu W, Zhao H, Zhao G. Accelerated Fe 2+ Regeneration in an Effective Electro-Fenton Process by Boosting Internal Electron Transfer to a Nitrogen-Conjugated Fe(III) Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6042-6051. [PMID: 33616409 DOI: 10.1021/acs.est.0c08018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The regeneration rate of Fe2+ from Fe3+ dictates the performance of the electro-Fenton (EF) process, represented by the amount of produced hydroxyl radicals (·OH). Current strategies for the acceleration of Fe2+ regeneration normally require additional chemical reagents, to vary the redox potential of Fe2+/Fe3+. Here, we report an attempt at using the intrinsic property of the electrode to our advantage, i.e., nitrogen-doped carbon aerogel (NDCA), as a reducing agent for the regeneration of Fe2+ without using foreign reagents. Moreover, the pyrrolic N in NDCA provides unpaired electrons through the carbon framework to reduce Fe3+, while the graphitic and pyridinic N coordinate with Fe3+ to form a C-O-Fe-N2 bond, facilitating electron transfer from both the external circuit and pyrrolic N to Fe3+. Our Fe2+/NDCA-EF system exhibits a 5.8 ± 0.3 times higher performance, in terms of the amount of generated ·OH, than a traditional Fenton system using the same Fe2+ concentration. In the subsequent reaction, the Fe2+/NDCA-EF system demonstrates 100.0% removal of dimethyl phthalate, 3-chlorophenol, bisphenol A, and sulfamethoxazole with a low specific energy consumption of 0.17-0.36 kW·h·g-1. Furthermore, 90.1 ± 0.6% removal of dissolved organic carbon and 83.3 ± 0.9% removal of NH3-N are achieved in the treatment of domestic sewage. The purpose of this work is to present a novel strategy for the regeneration of Fe2+ in the EF process and also to elucidate the role of different N species of the carbonaceous electrode in contributing to the redox cycle of Fe2+/Fe3+.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Zhiyuan Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
46
|
Han R, Lv J, Zhang S, Zhang S. Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation. WATER RESEARCH 2021; 195:116988. [PMID: 33714011 DOI: 10.1016/j.watres.2021.116988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Microbial dissimilatory iron reduction and aerobic oxidation affect the biogeochemical cycles of many elements. Although the processes have been widely studied, the underlying mechanisms, and especially how the surface structures of iron oxides affect these redox processes, are poorly understood. Therefore, {001} facet-dominated hematite nanoplates (HNP) and {100} facet-dominated hematite nanorods (HNR) were used to explore the effects of surface structure on the microbial dissimilatory iron reduction and aerobic oxidation processes. During the reduction stage, the production of total Fe(II) normalized by specific surface area (SSA) was higher for HNP than HNR due to steric effects and the ligand-bound conformation of the connection between iron on different exposed facets and electron donors from microorganisms. However, during the aerobic oxidation stage, both the SSA- and Fe(II)-normalized reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and hydroxyl radical (•OH), were higher for HNR than HNP. Theoretical calculation results showed that the {100} facets exhibited a lower activation energy barrier for oxygen reduction reaction than {001} facets, supporting the experimental observation that {100} facet-dominated HNR had a higher ROS production efficiency than {001} facet-dominated HNP. These results indicated that surface characteristics not only mediated the microbial reduction of Fe(III) but also affected the aerobic oxidation of microbially reduced Fe(II). Accessibility of electron donors to surface iron atom determined the reduction of Fe(III), and activation energy barrier for oxygen reduction by surface Fe(II) dominated the ROS production during the redox processes. This study advances our understanding of the mechanisms through which ROS are produced by iron (oxyhydr)oxides during microbial dissimilatory iron reduction and aerobic oxidation processes.
Collapse
Affiliation(s)
- Ruixia Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Suhuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Li L, Liu S, Cheng M, Lai C, Zeng G, Qin L, Liu X, Li B, Zhang W, Yi Y, Zhang M, Fu Y, Li M, Long M. Improving the Fenton-like catalytic performance of MnO x-Fe 3O 4/biochar using reducing agents: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124333. [PMID: 33172678 DOI: 10.1016/j.jhazmat.2020.124333] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, a Fenton-like system with MnOx-Fe3O4/biochar composite (FeMn/biochar) and reducing agents (RAs) was constructed for pollutant degradation, aiming to enhance Fenton-like performance from both degradation efficacy and operational cost aspects. Batch experiments revealed that five well-characterized RAs (sodium borohydride (SBH), sodium thiosulfate (STS), ascorbic acid (AA), hydroxylamine (HA) and oxalic acid (OA)) could impact performance of FeMn/biochar-H2O2 system through multiple mechanisms, including variation of solution pH, competition for H2O2, electrostatic attraction and acceleration of metal redox cycle. Significantly, only OA and HA obviously enhanced the catalytic capacity of Fenton-like process and HA increased ciprofloxacin degradation efficiency from 38.2% to 92.8% with a low economic consumption as 4.16 US$/m3, well in agreement with the accelerated Fe(III/II) cycle and Mn(III/II) cycle in FeMn/biochar-H2O2-HA system. The accelerated metal redox cycle could enhance the decomposition of H2O2 into •OH and •O2-, which were verified to be the main reactive oxygen species responsible for ciprofloxacin degradation by radical trapping experiments. Meanwhile, FeMn/biochar-H2O2-HA system could also work effectively in real wastewaters, and exhibited favorable catalytic performance towards oxytetracycline, tetracycline, methyl orange, methylene blue, Rhodamine B, and naphthalene, indicating the applicability of FeMn/biochar-H2O2-HA system in oxidizing refractory pollutants in wastewaters.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yuan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Mei Long
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
48
|
Enhancement of Pentachlorophenol Removal in a Historically Contaminated Soil by Adding Ascorbic Acid to H2O2/Magnetite System. Catalysts 2021. [DOI: 10.3390/catal11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of new tools to improve the efficiency of iron minerals in promoting Fenton oxidation for environmental remediation is a highly promising field. Here, we examine for the first time the role of ascorbic acid (AA) in improving the magnetite (Fe3O4)-mediated Fenton oxidation to remove pentachlorophenol (PCP) in a historically contaminated soil. Experiments were performed in batch and flow-through conditions. In batch slurry experiments, the combination of Fe3O4/AA/H2O2 removed up to 95% of PCP as compared to the 43% removal by Fe3O4/H2O2. Dissolved Fe(II) measurements and Mössbauer spectroscopy highlight the role of AA in increasing the Fe(II) generation. Therefore, its presence enabled the Fe3O4 to maintain its structural Fe(II) content even after the oxidation reaction. Despite kinetic limitations in water-saturated columns, use of Fe3O4/AA/H2O2 removed about 70% of PCP contrary to the 20% PCP removal with Fe3O4/H2O2. This oxidation performance was affected by an injection flow rate or column residence time of AA and H2O2 in columns. Thus, the presence of AA significantly improved the ability of magnetite in promoting the Fenton reaction. Owing to the crucial role of AA in the Fe(II)/Fe(III) redox cycling, a mixed-valent character of magnetite makes it a potential catalyst for Fenton oxidation of organic pollutants.
Collapse
|
49
|
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yanyan Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
50
|
Zong M, Song D, Zhang X, Huang X, Lu X, Rosso KM. Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:677-688. [PMID: 33351596 DOI: 10.1021/acs.est.0c05592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The expression of specific crystal facets in different nanostructures is known to play a vital role in determining the sensitivity toward the photodegradation of organics, which can generally be ascribed to differences in surface structure and energy. Herein, we report the synthesis of hematite nanoplates with controlled relative exposure of basal (001) and edge (012) facets, enabling us to establish direct correlation between the surface structure and the photocatalytic degradation efficiency of methylene blue (MB) in the presence of hydrogen peroxide. MB adsorption experiments showed that the capacity on (001) is about three times larger than on (012). Density functional theory calculations suggest the adsorption energy on the (001) surface is 6.28 kcal/mol lower than that on the (012) surface. However, the MB photodegradation rate on the (001) surface is around 14.5 times faster than on the (012) surface. We attribute this to a higher availability of the photoelectron accepting surface Fe3+ sites on the (001) facet. This facilitates more efficient iron valence cycling and the heterogeneous photo-Fenton reaction yielding MB-oxidizing hydroxyl radicals at the surface. Our findings help establish a rational basis for the design and optimization of hematite nanostructures as photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Meirong Zong
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Duo Song
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiaopeng Huang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xiancai Lu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|