1
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
2
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
3
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
4
|
Yang Y, Peng Y, Du Y, Lin M, Li J, Gao D, Yang Z, Wang W, Zhou Y, Li X, Yan T, Qi X. Hierarchical self-recognition and response in CSC and non-CSC micro-niches for cancer therapy. Biomaterials 2024; 308:122581. [PMID: 38640783 DOI: 10.1016/j.biomaterials.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Cancer stem cells (CSCs) characterized by self-renewal, invasiveness, tumorigenicity and resistance to treatment are regarded as the thorniest issues in refractory tumors. We develop a targeted and hierarchical controlled release nano-therapeutic platform (SEED-NPs) that self-identifies and responds to CSC and non-CSC micro-niches of tumors. In non-CSC micro-niche, reactive oxygen species (ROS) trigger the burst release of the chemotherapeutic drug and photosensitizer to kill tumor cells and reduce tumor volume by combining chemotherapy and photodynamic therapy (PDT). In CSC micro-niche, the preferentially released differentiation drug induces CSC differentiation and transforms CSCs into chemotherapy-sensitive cells. SEED-NPs exhibit an extraordinary capacity for downregulating the stemness of CD44+/CD24- SP (side population) cell population both in vitro and in vivo, and reveal a 4-fold increase of tumor-targeted accumulation. Also, PDT-generated ROS promote the formation of tunneling nanotubes and facilitate the divergent network transport of drugs in deep tumors. Moreover, ROS in turn promotes CSC differentiation and drug release. This positive-feedback-loop strategy enhances the elimination of refractory CSCs. As a result, SEED-NPs achieve excellent therapeutic effects in both 4T1 SP tumor-bearing mice and regular 4T1 tumor-bearing mice without obvious toxicities and eradicate half of mice tumors. SEED-NPs integrate differentiation, chemotherapy and PDT, which proved feasible and valuable, indicating that active targeting and hierarchical release are necessary to enhance antitumor efficacy. These findings provide promising prospects for overcoming barriers in the treatment of CSCs.
Collapse
Affiliation(s)
- Yiliang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Datong Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Wang
- Department of Orthopedics, Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Yanxia Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Taiqiang Yan
- Department of Orthopedics, Peking University First Hospital, Peking University, Beijing, 100034, China.
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Zhou YJ, Zhang J, Cao DX, Tang AN, Kong DM. Telomerase-activated Au@DNA nanomachine for targeted chemo-photodynamic synergistic therapy. RSC Med Chem 2023; 14:2268-2276. [PMID: 37974961 PMCID: PMC10650438 DOI: 10.1039/d3md00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
We successfully designed a smart activatable nanomachine for cancer synergistic therapy. Photodynamic therapy (PDT) and chemotherapy can be activated by intracellular telomerase while anti-cancer drugs can be effectively transported into tumour cells. An Sgc8 aptamer was designed, which can specifically distinguish tumour cells from normal cells and perform targeted therapy. The nanomachine entered the tumour cells by recognising PTK7, which is overexpressed on the surface of cancer cells. Then, the "switch" of the system was opened by TP sequence extension under telomerase stimulus. So, the chemotherapeutic drug DOX was released to achieve the chemotherapy, and the Ce6 labelled Sgc8-apt was released to activate the PDT. It was found that if no telomerase existed, the Ce6 would always be in an "off" state and could not activate the PDT. Telomerase is the key to controlling the activation of the PDT, which effectively reduces the damage photosensitisers cause to normal cells. Using in vitro and in vivo experiments, the nanomachine shows an excellent performance in targeted synergistic therapy, which is expected to be utilised in the future.
Collapse
Affiliation(s)
- Yun-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Dong-Xiao Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|
6
|
Ch S, Padaga SG, Ghosh B, Roy S, Biswas S. Chitosan-poly(lactide-co-glycolide)/poloxamer mixed micelles as a mucoadhesive thermo-responsive moxifloxacin eye drop to improve treatment efficacy in bacterial keratitis. Carbohydr Polym 2023; 312:120822. [PMID: 37059521 DOI: 10.1016/j.carbpol.2023.120822] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
A mucoadhesive self-assembling polymeric system was developed to carry moxifloxacin (M) for treating bacterial keratitis (BK). Chitosan-PLGA (C) conjugate was synthesized, and poloxamers (F68/127) were mixed in different proportions (1: 5/10) to prepare moxifloxacin (M)-encapsulated mixed micelles (M@CF68/127(5/10)Ms), including M@CF68(5)Ms, M@CF68(10)Ms, M@CF127(5)Ms, and M@CF127(10)Ms. The corneal penetration and mucoadhesiveness were determined biochemically, in vitro using human corneal epithelial (HCE) cells in monolayers and spheroids, ex vivo using goat cornea, and in vivo via live-animal imaging. The antibacterial efficacy was studied on planktonic biofilms of P. aeruginosa and S. aureus (in vitro) and Bk-induced mice (in vivo). Both M@CF68(10)Ms and M@CF127(10)Ms demonstrated high cellular uptake, corneal retention, muco-adhesiveness, and antibacterial effect, with M@CF127(10)Ms exhibiting superior therapeutic effects in P. aeruginosa and S. aureus-infected BK mouse model by reducing the corneal bacterial load and preventing corneal damage. Therefore, the newly developed nanomedicine is promising for clinical translation in treating BK.
Collapse
|
7
|
Upconversion Nanostructures Applied in Theranostic Systems. Int J Mol Sci 2022; 23:ijms23169003. [PMID: 36012269 PMCID: PMC9409402 DOI: 10.3390/ijms23169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
Collapse
|
8
|
Vysyaraju NR, Paul M, Ch S, Ghosh B, Biswas S. Olaparib@human serum albumin nanoparticles as sustained drug-releasing tumor-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. J Drug Target 2022; 30:1088-1105. [PMID: 35723068 DOI: 10.1080/1061186x.2022.2092623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitor olaparib demonstrated therapeutic effectiveness in highly metastatic triple-negative breast cancer (TNBC). However, olaparib offers a weak therapeutic response in wild-type BRCA cancers due to the drug's poor bioavailability. Here, a bioinspired/active-tumor targeted nanoparticles system of human serum albumin with physical entrapment of olaparib was prepared via a low-energy desolvation technique using the crosslinker glutaraldehyde. The developed OLA@HSA NPs were nanosize (∼140 nm), kinetically stable with a low polydispersity (0.3), exhibited olaparib entrapment (EE 76.01 ± 2.53%, DL 6.76 ± 0.22%), and sustained drug release at pH 7.4 with an enhancement of drug release in acidic pH. OLA@HSA NPs decreased the half-maximal inhibitory concentrations (IC50) of olaparib by 1.6, 1.8-fold in 24 h and 2.2, 2.4 folds in 48 h for human (MDA-MB 231) and mouse (4T1) TNBC cells, respectively, mediated by their enhanced time-dependent cellular uptake than free olaparib. The OLA@HSA-OA NPs induced concentration-dependent phosphatidylserine (apoptotic marker) externalization and arrested the cell population in the G2/M phase in both the tested cell lines at a higher level than free olaparib. The NPs formulation increased DNA fragmentation, mitochondrial membrane depolarization, and ROS generation than the free olaparib. The in vivo study conducted using 4T1-Luc tumor-bearing mice demonstrated strong tumor growth inhibitory potential of OLA@HSA NPs by elevating apoptosis ROS generation and reducing the level of the antiproliferative marker, Ki-67. OLA@HSA NPs reduced the occurrence of lung metastasis (formation of metastasis nodules decreased by ∼10 fold). OLA@HSA NPs could be a promising nanomedicine for the TNBC treatment.
Collapse
Affiliation(s)
- Nageswara Rao Vysyaraju
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, Telangana, India
| |
Collapse
|
9
|
Surapaneni SG, Ambade AV. Poly( N-vinylcaprolactam) containing solid lipid polymer hybrid nanoparticles for controlled delivery of a hydrophilic drug gemcitabine hydrochloride. RSC Adv 2022; 12:17621-17628. [PMID: 35765442 PMCID: PMC9194946 DOI: 10.1039/d2ra02845j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Folic acid tagged and hydrophilic polymer containing solid lipid nanoparticles (SLNs) were formulated for the controlled and targeted delivery of gemcitabine, a hydrophilic drug. Drug loaded SLNs were prepared by double emulsion method and optimized by 32 level factorial design. Then, a hydrophilic polymer, namely, poly(N-vinylcaprolactam) (PVCL) was incorporated in the optimized SLN batch in the first aqueous phase (W1) to obtain solid lipid polymer hybrid nanoparticles (SLPHNs) that were further decorated with folic acid (F-SLPHNs). TEM analysis of SLNs and SLPHNs revealed the spherical shape with no aggregation while SLPHNs showed higher % EE. SLPHNs exhibited limited burst release of gemcitabine compared to SLNs as well as lower overall % release. All the formulations showed good cytocompatibility against MDA-MB-231 cell lines and folic acid-tagged hybrid particles (F-SLPHNs) showed remarkably higher cellular uptake.
Collapse
Affiliation(s)
- Sai Geetika Surapaneni
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| | - Ashootosh V Ambade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune - 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 201002 India
| |
Collapse
|
10
|
Kumbham S, Paul M, Itoo A, Ghosh B, Biswas S. Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma. Int J Pharm 2022; 614:121479. [PMID: 35041911 DOI: 10.1016/j.ijpharm.2022.121479] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Combination chemotherapy produces a superior therapeutic response than monotherapy in cancer. Human serum albumin and a naturally occurring cancer prophylactic/anticancer triterpenoid, oleanolic acid, were conjugated to form self-assembled nanoparticles that entrapped doxorubicin. Dox@HSA-OA NPs were physicochemically characterized for particle size, zeta potential, drug loading, entrapment efficiency, stability, release, and hemocompatibility. The Dox@HSA-OA NPs (particle size. ∼ 140 nm) showed commendable loading (14.6 %), entrapment (59.01%) of Dox. The in vitro cell uptake study using human oral squamous carcinoma (FaDu-HTB-43) and murine melanoma (B16F10) cells indicated a higher cellular association of Dox@HSA-OA NPs than free Dox. The lowest IC50 of Dox@HSA-OA NPs than Dox against both the cell lines at various time points proved the Dox/HSA-OA-mediated combination chemotherapeutic effect. Dox@HSA-OA NPs demonstrated higher apoptosis and cell cycle arrest (G2/M phase). The Dox@HSA-OA NPs-mediated Dox penetration, cell death/shrinkage were significant in FaDu-HTB-43 spheroids. Dox@HSA-OA NPs showed a better pharmacokinetic profile with increased t1/2 and Cmax than Dox. The in vivo experiment using B16F10 tumor-bearing mice showed tumor regression, DNA damage, oxidative stress, and apoptosis-induction via the intrinsic pathway to a greater extent following Dox@HSA-OA NPs treatment than Dox. Therefore, the Dox@HSA-OA NPs-mediated combination therapy could be a powerful treatment strategy for solid tumors.
Collapse
Affiliation(s)
- Soniya Kumbham
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Asif Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
11
|
Bobde Y, Paul M, Patel T, Biswas S, Ghosh B. Polymeric micelles of a copolymer composed of all-trans retinoic acid, methoxy-poly(ethylene glycol), and b-poly(N-(2 hydroxypropyl) methacrylamide) as a doxorubicin-delivery platform and for combination chemotherapy in breast cancer. Int J Pharm 2021; 606:120866. [PMID: 34237409 DOI: 10.1016/j.ijpharm.2021.120866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022]
Abstract
Delivery of combination chemotherapeutic agents to the tumor via nanovesicles has the potential for superior tumor suppression and reduced toxicity. Herein, we prepare a block copolymer (mPH-RA) composed of methoxy-poly(ethylene glycol) (mPEG), b-poly(N-(2 hydroxypropyl) methacrylamide) (pHPMA), and all-trans retinoic acid (ATRA) by conjugating ATRA to the pre-formed copolymer, mPEG-b-pHPMA(mP-b-pH). Doxorubicin-loaded micelles, Dox@mP-b-pH, and Dox@mPH-RA were characterized by determining particle size, zeta potential, % DL, EE, Dox release, hemolysis study, and by DSC. The Dox@mPH-RA micelles (mPH-RA: Dox ratios of 10:0.5-2) displayed nano-size (36-45 nm), EE. 26-74%, and DL. 2.9-5.6%. Dox@mPH-RA micelles displayed the highest penetrability and cytotoxicity than free Dox and Dox@mP-b-pH micelles in breast cancer cell lines. Dox@mPH-RA exhibited the highest induction of apoptosis (94.1 ± 3%) than Dox (52.1 ± 4.5%), and Dox@mP-b-pH (81.7 ± 3%), and arrested cells in the highest population in G2 and S phase. Dox@mPH-RA increased the t1/2 and Cmax of Dox and demonstrated improved therapeutic efficacy and highest Dox distribution to the tumor. The Dox@mPH-RA increased the levels of apoptosis markers, caspase 3, 7, Ki-67, and caused the highest DNA fragmentation. The presence of RA improved the micelles' physicochemical properties, Dox-loading ability, and the therapeutic potential in Dox@mPH-RA via the combination therapeutic strategy.
Collapse
Affiliation(s)
- Yamini Bobde
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India; Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
12
|
Qiu N, Du X, Ji J, Zhai G. A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev Ind Pharm 2021; 47:839-856. [PMID: 34033496 DOI: 10.1080/03639045.2021.1934869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite a potential drug with multiple pharmacological activities, curcumin has disadvantages of the poor water solubility, rapid metabolism, low bioavailability, which considerably limit its clinical application. Currently, polymeric micelles (PMs) have gained widespread concern due to their advantageous physical and chemical properties, easy preparation, and biocompatibility. They can be used to improve drug solubility, prolong blood circulation time, and allow passive targeted drug delivery to tumor through enhanced penetration and retention effect. Moreover, studies focused on tumor microenvironment offer alternatives to design stimulus-responsive smart PMs based on low pH, high levels of glutathione, altered enzyme expression, increased reactive oxygen species production, and hypoxia. There are various external stimuli, such as light, ultrasound, and temperature. These endogenous/exogenous stimuli can be used for the research of intelligent micelles. Intelligent PMs can effectively load curcumin with improved solubility, and intelligently respond to release the drug at a controlled rate at targeted sites such as tumors to avoid early release, which markedly improves the bioavailability of curcumin. The present review is aimed to discuss and summarize recent developments in research of curcumin-loaded intelligent PMs based on endogenous and exogenous stimuli, and facilitates the development of novel delivery systems for future research.
Collapse
Affiliation(s)
- Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
13
|
Distinct rhodamine B derivatives exhibiting dual effect of anticancer activity and fluorescence property. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Bobde Y, Patel T, Paul M, Biswas S, Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide polymeric micelles as nanocarriers for the delivery of doxorubicin in breast cancer. Colloids Surf B Biointerfaces 2021; 204:111833. [PMID: 34010799 DOI: 10.1016/j.colsurfb.2021.111833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
In the present study, polymeric micelles constituted of N-(2-hydroxypropyl)methacrylamide (HPMA) and methoxypoly(ethylene glycol) (mPEG)-based copolymer, mPEG-b-HPMA was studied for the delivery of an anticancer drug, doxorubicin (DOX) by physically loading the drug into its core. A series of mPEG-b-HPMA copolymers of different molecular weights (MWs, ∼4000-25,000 Da) by using various initiator: monomer feed ratios (1:25/75/125/175) were synthesized by radical polymerization technique. The DOX-loaded micelles were prepared at different drug to polymer ratios by thin film hydration method. Block copolymers were structurally characterized by gel permeation chromatography (GPC), 1H-NMR spectroscopy, fourier transform infrared spectroscopy (FTIR), and critical micelles concentration studies. The DLS and SEM studies indicated that the micelles were spherical with diameters ∼20-100 nm. The DOX-loaded mPEG-b-HPMA micelles, P6-M1, prepared by the polymer synthesized using initiator: monomer feed ratios of 1:175 and at polymer to drug ratios of 10:1 exhibited low particle sizes (∼46.8 nm), highest drug loading and encapsulation efficiencies (5.6 %, and 63.3 %, respectively) compared to the other tested formulations. Confocal microscopy study indicated that the P6-M1 was taken up by breast cancer cell lines, 4T1, MCF-7, and MDA-MB-231in a time-dependent manner. P6-M1 displayed lower half maximal inhibitory concentration (IC50) compared to free drug in all tested treatment durations compared to free DOX. P6-M1 was safe in hemolysis studies with sustained DOX residence in circulation compared to free DOX. The results indicated that mPEG-b-HPMA could be utilized to load DOX effectively, and the optimized nano-micelles, P6-M1 could serve as a promising nanomedicine to treat breast cancer.
Collapse
Affiliation(s)
- Yamini Bobde
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India
| | - Tarun Patel
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
15
|
Wu Y, Lu D, Jiang Y, Jin J, Liu S, Chen L, Zhang H, Zhou Y, Chen H, Nagle DG, Luan X, Zhang W. Stapled Wasp Venom-Derived Oncolytic Peptides with Side Chains Induce Rapid Membrane Lysis and Prolonged Immune Responses in Melanoma. J Med Chem 2021; 64:5802-5815. [PMID: 33844923 DOI: 10.1021/acs.jmedchem.0c02237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide stapling chemistry represents an attractive strategy to promote the clinical translation of protein epitope mimetics, but its use has not been applied to natural cytotoxic peptides (NCPs) to produce new oncolytic peptides. Based on a wasp venom peptide, a series of stapled anoplin peptides (StAnos) were prepared. The optimized stapled Ano-3/3s were shown to be protease-resistant and exerted superior tumor cell-selective cytotoxicity by rapid membrane disruption. In addition, Ano-3/3s induced tumor ablation in mice through the direct oncolytic effect and subsequent stimulation of immunogenic cell death. This synergistic oncolytic-immunotherapy effect is more remarkable on melanoma than on triple-negative breast cancer in vivo. The efficacies exerted by Ano-3/3s on melanoma were further characterized by CD8+ T cell infiltration, and the addition of anti-CD8 antibodies diminished the long-term antitumor effects. In summary, these results support stapled peptide chemistry as an advantageous method to enhance the NCP potency for oncolytic therapy.
Collapse
Affiliation(s)
- Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin Jiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yudong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Biomolecular Sciences and Research of Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,School of Pharmacy, Second Military Medical University, Shanghai 201203, China
| |
Collapse
|
16
|
Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm 2021; 600:120457. [PMID: 33676991 DOI: 10.1016/j.ijpharm.2021.120457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Vitamin E succinate (VES), a succinic acid ester of vitamin E, is one of the most effective anticancer compounds of the vitamin E family. VES can inhibit tumor growth by multiple pathways mainly involve tumor proliferation inhibition, apoptosis induction, and metastasis prevention. More importantly, the mitochondrial targeting and damaging property of VES endows it with great potential in exhibiting synergetic effect with conventional chemotherapeutic drugs and overcoming multidrug resistance (MDR). Given the lipophilicity of VES that hinders its bioavailability and therapeutic activity, nanotechnology with multiple advantages has been widely explored to deliver VES and opened up new avenues for its in vivo application. This review aims to introduce the anticancer mechanisms of VES and summarize its delivery strategies using nano-drug delivery systems. Specifically, VES-based combination therapy for synergetic anticancer effect, MDR-reversal, and oral chemotherapy improvement are highlighted. Finally, the challenges and perspectives are discussed.
Collapse
|
17
|
Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021; 16. [PMID: 33621207 DOI: 10.1088/1748-605x/abe8f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
The use of medicinal plants is as ancient as human civilization. The development of phytochemistry and pharmacology facilitates the identification of natural bioactive compounds and their mechanisms of action, including against cancer. The efficacy and the safety of a bioactive compound depend on its optimal delivery to the target site. Most natural bioactive compounds (phenols, flavonoids, tannins, etc.) are unable to reach their target sites due to their low water solubility, less cellular absorption, and high molecular weight, leading to their failure into clinical translation. Therefore, many scientific studies are going on to overcome the drawbacks of natural products for clinical applications. Several studies in India, as well as worldwide, have proposed the development of natural products-based nanoformulations to increase their efficacy and safety profile for cancer therapy by improving the delivery of natural bioactive compounds to their target site. Therefore, we are trying to discuss the development of natural products-based nanoformulations in India to improve the efficacy and safety of natural bioactive compounds against cancer.
Collapse
Affiliation(s)
- Moumita Kundu
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Ranabir Majumder
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Chandan Kanta Das
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Mahitosh Mandal
- SMST, Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, 721302, INDIA
| |
Collapse
|
18
|
Ma Y, Li D, Xiao Y, Ouyang Z, Shen M, Shi X. LDH-doped electrospun short fibers enable dual drug loading and multistage release for chemotherapy of drug-resistant cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj02159a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
LDH-incorporated PLGA short nanofibers can be loaded with dual drugs for multistage release and chemotherapy of drug-resistant cancer cells.
Collapse
Affiliation(s)
- Yupei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Du Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Yunchao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
19
|
Chen D, Ge S, Zuo L, Wang S, Liu M, Li S. Adjudin-loaded redox-sensitive paclitaxel-prodrug micelles for overcoming multidrug resistance with efficient targeted Colon cancer therapy. Drug Deliv 2020; 27:1094-1105. [PMID: 32706289 PMCID: PMC7470106 DOI: 10.1080/10717544.2020.1797245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is the primary cause for the failure of chemotherapy in the treatment of colon cancer. Recent research has indicated that the combination of a chemotherapeutic agent and a mitochondrial inhibitor might represent a promising strategy to help overcome MDR. However, for this approach to be clinically effective, it is important that the two drugs can be actively and simultaneously delivered into tumor cells at an optimal ratio and completely released drug within cells. To address these challenges, we designed and prepared a folate receptor-targeted and redox-responsive drug delivery system (FA- ss -P/A) that was able to co-deliver paclitaxel (PTX) and adjudin (ADD) to reverse colon cancer MDR. The PTX prodrug was obtained by conjugating PTX to dextrin via a disulfide-linkage. Then, folic acid (FA) was modified on the PTX prodrug. Finally, ADD, a mitochondrial inhibitor, was encapsulated in the PTX prodrug-formed micelles. A series of in vitro and in vivo experiments subsequently demonstrated that FA- ss -P/A can effectively reverse MDR by increasing cell uptake, inhibiting PTX efflux, and improving drug release.
Collapse
Affiliation(s)
- Deli Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
20
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
21
|
Huang Z, Chen X, Li Y, Zhai J, Ma Y. Excogitation and Assessment of Curcumin-Vitamin E Self-assembly PEGylated Nanoparticles by the Route of Oral Administration. J Pharm Sci 2020; 110:146-154. [PMID: 32979362 DOI: 10.1016/j.xphs.2020.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
Curcumin (CUR) has attracted wide research interests due to its abundant bioactivities and potential advantages in cancer treatment. But the poor water solubility, instability, and quick metabolization and elimination after oral administration severely restrict the efficacy and further clinical application of CUR. Derivation is an approach often used to improve the druggability of active ingredients, so the study aim to prepare a CUR derivate with better stability, satisfactory pharmacokinetics, and inherent self-assembled ability in contrast with CUR. The derivate was designed and evaluated in vitro and in vivo. Vitamin E (VE) was used to perform the esterification reaction with CUR, and the cytotoxicity of derivative CUR-VE ester on MCF-7 tumor cells was similar to CUR. Besides the better stability in simulated gastric and intestinal fluid, plasma and liver homogenate, the self-assembly CUR-VE nanoparticles were fabricated by feasible and controllable nanoprecipitation method. The Transmission Electron Microscope (TEM) showed CUR-VE NPs were spherical with an average particle size of 172.9 nm, and drug loading was up to 93%. CUR-VE NPs exhibited a sustained-release behavior and fitted to Fick's diffusion mechanism. Differential Scanning Calorimeter (DSC), X-ray Powder Diffractometer (XRPD) and Fourier Transform Infrared Spectrometer (FTIR) declared no crystalline substances were formed, and the self-assembly process of CUR-VE relied on driving forces including van der Waals forces, hydrogen bonding forces, intermolecular forces. In pharmacokinetics, Cmax and AUC0-∞ of CUR-VE NPs by the route of oral administration were (104.69 ± 40.72) ng/mL and (3496.92 ± 1088.93) ng/mL∗h, which were about three times and 18 times more compared with CUR. The eliminated half-time of CUR-VE extended to 28 h ascribed to the outstanding stability and surface PEGylation of NPs. It prompted that appropriately PEGylated NPs via oral administration was beneficial to prolong systemic circulation similar to intravenous PEGylated NPs. In summary, the study provides a convenient way to fabricate the self-assembled CUR-VE NPs qualified with high drug loading, satisfactory stability and desired pharmacokinetics. CUR-VE has the potent advantage to be an ideal substitute for CUR in the future of healthcare and clinical application.
Collapse
Affiliation(s)
- Zipeng Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinru Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqiu Zhai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yan Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Bhatt H, Ghosh B, Biswas S. Cell-Penetrating Peptide and α-Tocopherol-Conjugated Poly(amidoamine) Dendrimers for Improved Delivery and Anticancer Activity of Loaded Paclitaxel. ACS APPLIED BIO MATERIALS 2020; 3:3157-3169. [DOI: 10.1021/acsabm.0c00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| |
Collapse
|
23
|
Muddineti OS, Kiran Rompicharla SV, Kumari P, Bhatt H, Ghosh B, Biswas S. Lipid and poly (ethylene glycol)-conjugated bi-functionalized chlorine e6 micelles for NIR-light induced photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 29:101633. [PMID: 31870896 DOI: 10.1016/j.pdpdt.2019.101633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND To develop a photosensitizer, chlorin e6 (Ce6)-based amphiphilic polymer, DP-Ce6, where DOPE and PEG are conjugated to Ce6, which would self-assemble to form polymeric micelles (DP-Ce6-M) in aqueous environment. METHODS DP-Ce6-M were characterized for particle size, zeta potential, and singlet oxygen (1O2) generation. Cellular internalization, phototoxicity were investigated against monolayer and 3D spheroids of human lung adenocarcinoma cells (A549). RESULTS AND CONCLUSIONS DP-Ce6-M formed stable micelles with particles size of 58.2 ± 1.6 nm. Solubility of Ce6 was improved. Photoactivity of DP-Ce6-M was sustained in regard to 1O2 generation compared to free Ce6. The DP-Ce6-M showed enhanced internalization and growth inhibition in monolayer and spheroidal cells. Overall, DP-Ce6-M demonstrated the potential for further exploration as PDT agent for cancer treatment.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India.
| |
Collapse
|
24
|
Cheng Y, Zhang Y, Deng W, Hu J. Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B Biointerfaces 2019; 186:110744. [PMID: 31874345 DOI: 10.1016/j.colsurfb.2019.110744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Asymmetric mesoporous silica nanoparticles with anisotropic geometry and dual-compartments are highly desired for loading and release of dual-drugs in separated storage spaces. In this study, an asymmetric lollipop-like mesoporous silica nanoparticle Fe3O4@SiO2&EPMO (EPMO = ethane bridged periodic mesoporous organosilica) was successfully developed via an anisotropic epitaxial growth strategy. The asymmetric nanoparticles show a uniform lollipop shape with a head of spherical Fe3O4@SiO2 core-shell that is 200 nm in diameter and a tail of EPMO nanorods with a length of ∼90 nm, and a specific surface area of ∼650.3 m2 g-1. Most importantly, the asymmetric nanoparticles possess the unique dual independent (hydrophilic/hydrophobic) spaces with good loading capacities and are significantly more efficient for cancer cell killing than pure drug based on in vitro studies. Additionally, the dual-drug-loaded nanoparticles exhibited excellent antibacterial activity.
Collapse
Affiliation(s)
- Yajun Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yudi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
25
|
Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 2019; 223:119473. [DOI: 10.1016/j.biomaterials.2019.119473] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
|
26
|
Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S. Transferrin/α-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine (Lond) 2019; 14:3159-3176. [PMID: 31855118 PMCID: PMC6939222 DOI: 10.2217/nnm-2019-0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aim: Transferrin anchored, poly(ethylene glycol) (PEG) and α-tocopheryl succinate (α-TOS) conjugated generation 4 dendrimer has been prepared in order to develop a tumor targeted delivery system of a hydrophobic chemotherapeutic agent, paclitaxel (PTX). Materials & methods: The dendrimers were characterized physicochemically for size, ζ and encapsulation ability. The cellular uptake, cytotoxicity potential and apoptosis of prepared nanoconstruct were evaluated in human cervical epithelial cells monolayer and 3D spheroids. Results & conclusion: G4-TOS-PEG-Tf demonstrated increased cellular uptake, cytotoxicity and apoptotic potential of PTX compared with free PTX and G4-TOS-PEG-PTX. G4-TOS-PEG-Tf-PTX inhibited growth of human cervical epithelial cells spheroids significantly. The newly developed dendrimers hold promise as an efficient delivery system for PTX or other hydrophobic chemotherapeutic agents for targeted delivery to tumors.
Collapse
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India,Author for correspondence: Tel.: +91 40 66303630;
| |
Collapse
|
27
|
Xu S, Jin Z, Zhang Z, Huang W, Shen Y, Wang Z, Guo S. Precise ratiometric co-loading, co-delivery and intracellular co-release of paclitaxel and curcumin by aid of their conjugation to the same gold nanorods to exert synergistic effects on MCF-7/ADR cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
29
|
pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int J Biol Macromol 2019; 128:468-479. [DOI: 10.1016/j.ijbiomac.2019.01.140] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
|
30
|
Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2019; 38:107382. [PMID: 30978386 DOI: 10.1016/j.biotechadv.2019.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal.
| | - João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
31
|
Development of PSMA-targeted and core-crosslinked glycol chitosan micelles for docetaxel delivery in prostate cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:436-445. [DOI: 10.1016/j.msec.2018.11.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 10/09/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023]
|
32
|
Bhatt H, Kiran Rompicharla SV, Ghosh B, Biswas S. α-Tocopherol Succinate-Anchored PEGylated Poly(amidoamine) Dendrimer for the Delivery of Paclitaxel: Assessment of in Vitro and in Vivo Therapeutic Efficacy. Mol Pharm 2019; 16:1541-1554. [DOI: 10.1021/acs.molpharmaceut.8b01232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Himanshu Bhatt
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana 500078, India
| |
Collapse
|
33
|
Vitamin-E/lipid based PEGylated polymeric micellar doxorubicin to sensitize doxorubicin-resistant cells towards treatment. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 2019; 7:709-729. [DOI: 10.1039/c8tb02491j] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article highlights the properties of stimuli-responsive bio-based polymeric systems and their main intelligent applications.
Collapse
Affiliation(s)
- Shuting Gao
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Guosheng Tang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Dawei Hua
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Ranhua Xiong
- Lab General Biochemistry & Physical Pharmacy, Department of Pharmaceutics, Ghent University
- Belgium
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
| | - Qilu Zhang
- School of Material Science and Engineering, Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU)
- Nanjing 210037
- P. R. China
- Laboratory of Biopolymer based Functional Materials, Nanjing Forestry University
- Nanjing
| |
Collapse
|
35
|
Yun T, Liu Y, Yi S, Jia Q, Liu Y, Zhou J. Artificially controlled degradable nanoparticles for contrast switch MRI and programmed cancer therapy. Int J Nanomedicine 2018; 13:6647-6659. [PMID: 30425480 PMCID: PMC6205544 DOI: 10.2147/ijn.s182206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Utilizing the permeability enhancement and irreversible biomolecule denaturation caused by hyperthermia, photothermal-chemo synergistic therapy has shown great potential in clinical cancer treatment. Purpose The objective of this study was to provide a novel controlled drug release method to improve the efficiency of photothermal-chemo synergistic therapy. Patients and methods HCT116 tumor-bearing mice were selected as modal for the study of cancer theranostics efficiency. The T2 to T1 magnetic resonance imaging contrast switch was studied in vivo. Analyses of the tumor growth of mice were carried out to evaluate the tumor therapy efficiency. Results We developed novel artificially controlled degradable Co3O4 nanoparticles and explored their potential in drug delivery/release. In the presence of ascorbic acid (AA), the designed nanomaterials can be degraded via a redox process and hence release the loaded drugs. Importantly, the AA, in the lack of l-gulonolactone oxidase, cannot be synthesized in the body of typical mammal including human, which suggested that the degradation process can be controlled artificially. Moreover, the obtained nanoparticles have outstanding photothermal conversion efficiency and their degradation can also result in an magnetic resonance imaging contrast enhancement switch from T2 to T1, which benefits the cancer theranostics. Conclusion Our results illustrated that the artificially controlled degradable nanoparticles can serve as an alternative candidate for controllable drug release as well as a platform for highly efficient photothermal-chemo synergistic cancer theranostics.
Collapse
Affiliation(s)
- Tianyang Yun
- Department of Thoracic Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China,
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China,
| | - Shaoqiong Yi
- Department of Thoracic Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China,
| | - Qi Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China,
| | - Yang Liu
- Department of Thoracic Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China,
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China,
| |
Collapse
|
36
|
Abstract
Nanoassembly (NA) based on a D-α-tocopherol succinate (αTS) conjugated lysozyme (Lys) (Lys-αTS) was fabricated for tumor-selective delivery of curcumin (CUR) for breast cancer therapy. Lys and αTS were used as a biocompatible enzyme and a hydrophobic residue, respectively, for the preparation of nanocarriers in this study. Compared with CUR-loaded cross-linked Lys (c-Lys/CUR) NA, Lys-αTS/CUR NA exhibited a smaller hydrodynamic size (213 nm mean diameter), a narrower size distribution, and a more spherical shape. Sustained drug release was observed from the Lys-αTS/CUR NA for five days at a normal physiological pH (pH 7.4). The developed Lys-αTS/CUR NA showed enhanced cellular accumulation, antiproliferative effects, and apoptotic efficacies in MDA-MB-231 human breast adenocarcinoma cells. According to the results of optical imaging test in the MDA-MB-231 tumor-bearing mouse models, the Lys-αTS/CUR NA-injected group exhibited a more tumor-selective accumulation pattern, rather than being distributed in the normal tissues and organs. The observed tumor targetability of Lys-αTS/CUR was further studied, which revealed improved in vivo anticancer activities (better inhibition of tumor growth and induction of apoptosis in the tumor tissue) after an intravenous administration in the MDA-MB-231 tumor-bearing mouse models. All these results indicate that the newly developed enzyme-based nanocarrier, the Lys-αTS NA, can be a promising candidate for the therapy of breast cancers.
Collapse
Affiliation(s)
- Song Yi Lee
- a College of Pharmacy , Kangwon National University , Chuncheon , Republic of Korea
| | - Hyun-Jong Cho
- a College of Pharmacy , Kangwon National University , Chuncheon , Republic of Korea
| |
Collapse
|
37
|
Kumari P, Rompicharla SVK, Muddineti OS, Ghosh B, Biswas S. Transferrin-anchored poly(lactide) based micelles to improve anticancer activity of curcumin in hepatic and cervical cancer cell monolayers and 3D spheroids. Int J Biol Macromol 2018; 116:1196-1213. [DOI: 10.1016/j.ijbiomac.2018.05.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
|
38
|
Mozhi A, Ahmad I, Kaleem QM, Tuguntaev RG, Eltahan AS, Wang C, Yang R, Li C, Liang XJ. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. Int J Pharm 2018; 547:582-592. [DOI: 10.1016/j.ijpharm.2018.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/31/2023]
|
39
|
Muddineti OS, Kumari P, Ghosh B, Biswas S. Transferrin-Modified Vitamin-E/Lipid Based Polymeric Micelles for Improved Tumor Targeting and Anticancer Effect of Curcumin. Pharm Res 2018. [PMID: 29541866 DOI: 10.1007/s11095-018-2382-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Transferrin receptor (TfR) is up-regulated in various malignant tumors not only to meet the iron requirement, but also to increase the cell survival via participation in various cellular signaling pathways. Here we explored transferrin as ligand for Poly(ethylene Glycol) (PEG)-ylated vitamin-E/lipid (PE) core micelles (VPM). METHODS Transferrin modified polymer was synthesized and drug loaded micelles were evaluated in 2D Hela and HepG2 cancer cells for cellular uptake and cytotoxicity and in 3D Hela spheroids for growth inhibition, uptake and penetration studies. RESULTS Targeted (Tf-VPM) and non-targeted (VPM) micelles showed mean hydrodynamic diameter of 114.2 ± 0.64 nm and 117.4 ± 0.72 nm and zeta potential was -22.8 ± 0.62 and -14.8 ± 1.74 mV, respectively. Cellular uptake study indicated that the Tf-CVPM were taken up by cancer cells (Hela and HepG2) with higher efficiency. Enhanced cytotoxicity was demonstrated for Tf-VPM compared to CVPM. Marked spheroid growth inhibition following treatment with Tf-CVPM was observed compared to the treatment with non-targeted CVPM. CONCLUSIONS The developed transferrin-modified micelles have improved ability to solubilize the loaded drugs and could actively target solid tumors by its interaction with over-expressed transferrin receptors. Therefore, the nano-micelles could be further explored for its potential utilization in cancer therapy.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
40
|
Muddineti OS, Vanaparthi A, Rompicharla SVK, Kumari P, Ghosh B, Biswas S. Cholesterol and vitamin E-conjugated PEGylated polymeric micelles for efficient delivery and enhanced anticancer activity of curcumin: evaluation in 2D monolayers and 3D spheroids. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:773-786. [PMID: 29426248 DOI: 10.1080/21691401.2018.1435551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A newly synthesized PEGylated cholesterol/α-tocopheryl succinate (α-TOS) linked polymer (CV) was self-assembled and loaded with curcumin to form a micellar system (C-CVM). The tri-functionalized amphiphilic polymer was constituted of hydrophobic cholesterol and α-TOS connected to hydrophilic PEG via a lysine linker. The synthesized polymer and the micelles were characterized by 1H NMR, DLS, zeta potentiometer, TEM, CMC determination and hemolysis studies. CVM displayed low CMC value of 15 µM with extent of hemolysis as less than 4%. The stable C-CVM with optimum % drug loading (14.2 ± 0.24) displayed Z average of 175.8 ± 0.68 nm with PDI (0.248 ± 0.075) and released curcumin in sustained manner in the in vitro drug release study. C-CVM demonstrated dose-dependent cellular uptake and cytotoxicity in murine melanoma, B16F10 and human breast cancer, MDA-MB-231 cell lines. CV exhibited marked reversal of drug resistance as indicated by significantly higher retention of P-glycoprotein substrate, rhodamine-123 in the resistant B16F10 cell line compared to standard P-glycoprotein inhibitor, verapamil. C-CVM demonstrated significantly higher spheroidal growth inhibition compared to C-PPM. The results provide strong evidence for CVM as promising drug delivery system and confirm the potential of C-CVM as chemotherapy in cancer.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Hyderabad , India
| | - Asmitha Vanaparthi
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Hyderabad , India
| | | | - Preeti Kumari
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Hyderabad , India
| | - Balaram Ghosh
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Hyderabad , India
| | - Swati Biswas
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani, Hyderabad Campus , Hyderabad , India
| |
Collapse
|
41
|
Huo Q, Zhu J, Niu Y, Shi H, Gong Y, Li Y, Song H, Liu Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine 2017; 12:8631-8647. [PMID: 29270012 PMCID: PMC5720040 DOI: 10.2147/ijn.s144452] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multidrug resistance (MDR) remains a major challenge for providing effective chemotherapy for many cancer patients. To address this issue, we report an intelligent polymer-based drug co-delivery system which could enhance and accelerate cellular uptake and reverse MDR. The nanodrug delivery systems were constructed by encapsulating disulfiram (DSF), a P-glyco-protein (P-gp) inhibitor, into the hydrophobic core of poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) block copolymer micelles, as well as 2,3-dimethylmaleic anhydride (DMA) and paclitaxel (PTX) were grafted on the side chain of l-lysine simultaneously. The surface charge of the drug-loaded micelles represents as negative in plasma (pH 7.4), which is helpful to prolong the circulation time, and in a weak acid environment of tumor tissue (pH 6.5-6.8) it can be reversed to positive, which is in favor of their entering into the cancer cells. In addition, the carrier could release DSF and PTX successively inside cells. The results of in vitro studies show that, compared to the control group, the DSF and PTX co-loaded micelles with charge reversal exhibits more effective cellular uptake and significantly increased cytotoxicity of PTX to MCF-7/ADR cells which may be due to the inhibitory effect of DSF on the efflux function of P-gp. Accordingly, such a smart pH-sensitive nanosystem, in our opinion, possesses significant potential to achieve combinational drug delivery and overcome drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu
| | - Jianhua Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu
- School of Pharmacy, Nanjing Medical University
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Huihui Shi
- School of Pharmacy, Nanjing Medical University
| | | | - Yang Li
- School of Pharmacy, Nanjing Medical University
| | - Huihui Song
- Yangtze River Pharmaceutical Group, Taizhou, People’s Republic of China
| | - Yang Liu
- School of Pharmacy, Nanjing Medical University
| |
Collapse
|