1
|
Alkhnaifes E, Svensson Grape E, Inge AK, Steinke F, Engesser TA, Stock N. CAU-52: An Iron Metal-Organic Framework Containing Furandicarboxylate Linker Molecules. Inorg Chem 2025; 64:7450-7459. [PMID: 40193252 PMCID: PMC12015821 DOI: 10.1021/acs.inorgchem.5c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
The V-shaped linker molecule 2,5-furandicarboxylic acid (H2FDC), which can be derived from lignocellulosic biomass, was used in a systematic screening with various iron salts and led to the discovery of a new iron-based metal-organic framework (Fe-MOF) with the composition [Fe3(μ3-O)(FDC)3(OH)(H2O)2]·5H2O·H2FDC, designated as CAU-52 (CAU = Christian-Albrechts-Universität zu Kiel). The crystal structure of CAU-52 was determined using 3D electron diffraction (3D ED) and further refined by Rietveld refinement against powder X-ray diffraction (PXRD) data. CAU-52 contains the well-known trinuclear [Fe3(μ3-O)]7+ cluster as the inorganic building unit (IBU) that is six-connected by FDC2- ions to form the pcu net. The connectivity leads to two types of cubic cages, similar to the ones observed in soc-MOFs. Comprehensive characterization of the title compound, including N2 and water vapor sorption measurements, confirmed its chemical composition. CAU-52 exhibits microporosity toward nitrogen with a type-I isotherm (77 K), yielding a specific surface area of as,BET = 1077 m2/g. The H2O sorption measurement at 298 K leads to an isotherm that exhibits three steps. The water sorption capacity was determined to be 390 mg/g, and it decreases slightly in subsequent sorption cycles. The MOF is stable up to 250 °C in air and chemically resistant in various solvents.
Collapse
Affiliation(s)
- Essam Alkhnaifes
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Kiel 24098, Germany
| | - Erik Svensson Grape
- Department
of Chemistry, Stockholm University, Stockholm 10691, Sweden
- Department
of Chemistry-Angström Laboratory; Synthetic Molecular Chemistry, Uppsala University, Uppsala 75120, Sweden
| | - A. Ken Inge
- Department
of Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Felix Steinke
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Kiel 24098, Germany
| | - Tobias A. Engesser
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Kiel 24098, Germany
| | - Norbert Stock
- Institut
für Anorganische Chemie, Christian-Albrechts-Universität
zu Kiel, Kiel 24098, Germany
| |
Collapse
|
2
|
Ma D, Li N, Zhu D, Li F. Heterocyclic effect boosted peroxidase-like activity of MIL(Fe) metal-organic framework for colorimetric assay and dye removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136148. [PMID: 39405683 DOI: 10.1016/j.jhazmat.2024.136148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for enzyme mimics due to their abundant pore structures and adjustable active sites. The catalytic activity particularly depends on the electronic character of the organic ligand. In this study, we report an iron-based MOF nanozyme FeTDC, created by replacing the 1,4-dicarboxybenzene ligand with five-membered 2,5-thiophenedicarboxylic acid (H2TDC). In comparison with the phenyl analogue, the sulfur-based heterocyclic ligand demonstrates high electron delocalization, and a low pKa value, which are beneficial for enhancing the metal/ligand interactions. Accordingly, FeTDC can facilitate the oxidation of the benzidine substrate in the presence of H2O2, thereby exhibiting remarkable peroxidase-like activity. The generation of hydroxyl radical (•OH) at the Fe active sites contributes to the catalytic process. Furthermore, the smartphone-assisted colorimetric assay of pyrophosphate was developed with high sensitivity, based on its inhibitory effect. When FeTDC was utilized for the removal of benzidine dye under high-salt condition, a 90 % of removal rate was achieved due to the synergistic effect of enzyme catalysis and physical adsorption. This work presents a novel perspective of heterocyclic effect on the design of MOF nanozymes, thereby expanding their applicability in the control of pollutants.
Collapse
Affiliation(s)
- Dejie Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
3
|
Shahzadi S, Akhtar M, Arshad M, Ijaz MH, Janjua MRSA. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv 2024; 14:27575-27607. [PMID: 39228752 PMCID: PMC11369977 DOI: 10.1039/d4ra05183a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Carbon composites derived from Metal-Organic Frameworks (MOFs) have shown great promise as multipurpose materials for a range of electrochemical and environmental applications. Since carbon-based nanomaterials exhibit intriguing features, they have been widely exploited as catalysts or catalysts supports in the chemical industry or for energy or environmental applications. To improve the catalytic performance of carbon-based materials, high surface areas, variable porosity, and functionalization are thought to be essential. This study offers a thorough summary of the most recent developments in MOF-derived carbon composite synthesis techniques, emphasizing innovative approaches that improve the structural and functional characteristics of the materials. Their uses in electrochemical technologies, such as energy conversion and storage, and their function in environmental electrocatalysis for water splitting and pollutant degradation are also included in the debate. This review seeks to clarify the revolutionary effect of carbon composites formed from MOFs on sustainable technology solutions by analyzing current research trends and innovations, opening the door for further advancements in this rapidly evolving sector.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Mariam Akhtar
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Arshad
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Muhammad Hammad Ijaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | |
Collapse
|
4
|
Xu H, Ye G, Wei C, Xia Y, Wu Z, Zhou Y, Zhou J. Enhanced water stability and catalytic activity of Fe-based metal-organic frameworks with co-ligands for 2,4-dichlorophenol degradation. CHEMOSPHERE 2024; 361:142518. [PMID: 38830463 DOI: 10.1016/j.chemosphere.2024.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Fe-based metal-organic frameworks (MOFs) have good photocatalytic performance, environmental friendliness, low cost, and abundance. However, their applications are limited by low water stability, particularly in the presence of light irradiation and oxidizing agents. In this study, we present a MIL-53(Fe)-based MOF using 1,4-naphthalene dicarboxylic (1,4-NDC) and 1,4-benzenedicarboxylic (H2BDC) acid co-ligands, denoted MIL-53(Fe)-Nx, where Nx represents the ratio of 1,4-NDC. This MOF exhibits high water stability and good photocatalytic activity because of the hydrophobicity of naphthalene. The removal and mineralization rates for 100 mg/L 2,4-dichlorophenol reached 100% and 22%, respectively, within 60 min. After three cycles of use, the Fe leached into the solution from the catalysts was significantly lower than the maximum permissible limit indicated in the European Union standard. Of note, 1,4-NDC can be used to make a rigid MOF, thereby improving the crystallinity, porosity, and hydrophobicity of the resultant materials. It also significantly reduced the bandgap energy and improved the charge separation efficiency of the catalysts. This study provides a route to enhance the water stability of Fe-based MOFs via a mixed-ligand strategy to expand their applications in pollutant control.
Collapse
Affiliation(s)
- Hao Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Guirong Ye
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Cui Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiming Wu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Zhou
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Sun J, Li S, Wang H, Zhu L, Chen Y, Zhu J, Ma H, Xiao X, Liu T. Nitro-functionalization on MIL-53(Fe) for PCMX degradation: Elevating Fenton-like catalytic propelled by abundant reaction sites and iron cycle. CHEMOSPHERE 2024; 362:142707. [PMID: 38942245 DOI: 10.1016/j.chemosphere.2024.142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
To address the issue of excessive residues of 4-chloro-3,5-dimethylphenol (PCMX) in the water environment. In a one-step solvothermal process, iron-based metal-organic frameworks (Fe-MOFs) material MIL-53(Fe) undergoes a synthetic modification strategy. 2-Nitroterephthalic acid as an organic ligand reacted with Fe3+ in a solvothermal process lasting 18 h to yield the nitro-functionalized MIL-53(Fe)-NO2(18h). The objective was to augment the abundance of Fe central unsaturated coordination sites (Fe CUCs) and expedite the Fe(III)/Fe(II) redox cycle, thereby enhancing the heterogeneous Fenton-like treatment capability of pollutants. MIL-53(Fe)-NO2(18h) has excellent hydrogen peroxide (H2O2) catalytic activity and PCMX degradation across a broad pH spectrum (4.0∼8.0). Almost complete removal of PCMX was achieved within 30 min, while pseudo-first-order kinetic rate constants (kobs) increased 4.37 times over MIL-53(Fe). The confirmation of increased Fe CUCs abundance in MIL-53(Fe)-NO2(18h) was achieved through Lewis acidity, oxygen vacancies (OVs) signals, and Fe-O coordination characterization results. Density functional theory (DFT) calculations revealed that Fe CUCs in MIL-53(Fe)-NO2(18h) exhibits heightened affinity for H2O2 adsorption, showcasing stronger charge transfer and enhanced H2O2 dissociation ability. The Fe(III)/Fe(II) redox cycle, a driving force of Fenton-like reactions, was notably improved in the nitro-modified materials. These enhancements significantly expedited the Fenton-like process, resulting in the generation of increased amounts of reactive oxygen species (ROSs), with hydroxyl radicals (OH·) being pivotal components in degradation. The MIL-53(Fe)-NO2(18h)/H2O2 system has demonstrated versatility in treating a variety of emerging contaminants, achieving removal efficiencies exceeding 99.7% for other antibiotics and endocrine disruptors within 60 min. Furthermore, MIL-53(Fe)-NO2(18h) demonstrated outstanding reusability and adaptability in actual water environments. This study introduces a straightforward and environmentally friendly strategy for remediating environmental pollution using Fe-MOF-catalysed heterogeneous Fenton-like technology.
Collapse
Affiliation(s)
- Jian Sun
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Shaofeng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China.
| | - Huan Wang
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Lijun Zhu
- Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xiong Xiao
- Shenzhen Xiaping Environmental Park, Shenzhen, 518047, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
6
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Zhang X, Zhu Z, Guo Z, Huang Z, Zheng X, Wang X, Zhu L, Zhang G, Liu B, Xu D. Magnetic FNS/MILs nanofibers for highly efficient removal of norfloxacin via adsorption and Fenton-like reaction. CHEMOSPHERE 2024; 359:142258. [PMID: 38719119 DOI: 10.1016/j.chemosphere.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ze Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Zhenfeng Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Ziting Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Xinhua Zheng
- Technology Center of Jinan Customs District, Jinan, 250014, PR China
| | - Xinqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China.
| | - Luyi Zhu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Guanghui Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Benxue Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| | - Dong Xu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
8
|
Kaur K, Chandel M, Sagar P, Sahu BK, Ladhi R, Rajamanickam P, Aich P, Khatri M, Kanagarajan S, Singhal NK, Singh M, Shanmugam VK. Bells and Whistles on Fertilizers: Molecular Hands to Hang Nanoporous Foliar Fertilizer Reservoirs. ACS OMEGA 2024; 9:25870-25878. [PMID: 38911721 PMCID: PMC11191114 DOI: 10.1021/acsomega.3c09895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.
Collapse
Affiliation(s)
- Kamaljit Kaur
- University
Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Mahima Chandel
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Poonam Sagar
- Food
and Nutritional Biotechnology, National
Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - Bandana Kumari Sahu
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Ritu Ladhi
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | | | - Pooja Aich
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Madhu Khatri
- University
Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Selvaraju Kanagarajan
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, 234 22 Lomma, Sweden
| | - Nitin Kumar Singhal
- Food
and Nutritional Biotechnology, National
Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - Monika Singh
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Vijaya Kumar Shanmugam
- Institute
of Nano Science and Technology, Sector- 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
9
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Lv Q, Guan QL, Li JL, Li JX, Jin J, Bai FY, Xing YH. Smart crystalline framework materials with a triazole carboxylic acid ligand: fluorescence sensing and catalytic reduction of PNP. Dalton Trans 2023; 52:17201-17212. [PMID: 37943065 DOI: 10.1039/d3dt02406g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Triazole polycarboxylic acid ligands are widely employed in the construction of MOFs due to their strong coordination ability and flexible coordination modes. In this work, three novel complexes (Pb(MCTCA)(H2O) (1), Co(HMCTCA)2(H2O)2 (2) and Cu(HMCTCA)2(H2O)2 (3)) based on the H2MCTCA ligand (5-methyl-1-(4-carboxyl)-1H-1,2,3-triazole-4-carboxylic acid) were successfully synthesized under hydrothermal conditions, respectively. X-ray single crystal structure analysis shows that complex 1 is a 3D network structure, where the central metal Pb(II) is six coordinated to form deformed triangular prism geometry. The complexes 2 and 3 are both 2D layer supramolecular structures connected through intermolecular hydrogen, where the central metals (Co/Cu) are six coordinated to form octahedral configuration geometry. Based on functional properties, it is found that complex 1 exhibits excellent detection ability for small-molecule drugs (azithromycin, colchicine and balsalazide disodium) and actinide cations (Th4+ and UO22+) within a lower concentration range without interference from other components. In particular, the detection limits of three small-molecule drugs are all lower than 0.30 μM. In addition, complexes 2 and 3 exhibited excellent catalytic reduction performance toward p-nitrophenol (PNP), with a reduction efficiency exceeding 98%. These experimental results evidence that complexes 1-3 have potential application prospects in fluorescence sensing and catalytic reduction.
Collapse
Affiliation(s)
- Qiu Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Qing Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jin Long Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jin Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jing Jin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| |
Collapse
|
11
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
12
|
Zhong D, Zhang J, Huang J, Ma W, Li K, Li J, Zhang S, Li Z. Accelerated electron transfer process via MOF-derived FeCo/C for enhanced degradation of antibiotic contaminants towards heterogeneous electro-Fenton system. CHEMOSPHERE 2023:138994. [PMID: 37211168 DOI: 10.1016/j.chemosphere.2023.138994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The Fe(III) to Fe(II) process limits the rate of the electro-Fenton system. In this study, MIL-101(Fe) derived porous carbon skeleton-coated FeCo bimetallic catalyst Fe4/Co@PC-700 was prepared as a heterogeneous electro-Fenton (EF) catalytic process. The experimental results showed its good performance in catalytic removal of antibiotic contaminants, the rate constant of tetracycline (TC) degradation catalyzed by Fe4/Co@PC-700 was 8.93 times higher than that of Fe@PC-700 under the pH conditions of raw water (pH = 5.86), exhibited good removal of TC, oxytetracycline (OTC), hygromycin (CTC), chloramphenicol (CAP) and ciprofloxacin (CIP). It was shown that the introduction of Co promoted more Fe0 production, allowing the material to exhibit faster Fe(III)/Fe(II) cycling rates. 1O2 and high-priced metal oxygen species were identified as the main active species of the system, in addition to the analysis of possible degradation pathways and toxicity of intermediates of TC. Finally, the stability and adaptability of Fe4/Co@PC-700 and EF systems to different water matrices were evaluated, showing that Fe4/Co@PC-700 was easy to recover and could be applied to different water matrices. This study provides a reference for the design and system application of heterogeneous EF catalysts.
Collapse
Affiliation(s)
- Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China.
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhaopeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
13
|
Di Luca G, Chen G, Jin W, Gugliuzza A. Aliquots of MIL-140 and Graphene in Smart PNIPAM Mixed Hydrogels: A Nanoenvironment for a More Eco-Friendly Treatment of NaCl and Humic Acid Mixtures by Membrane Distillation. MEMBRANES 2023; 13:437. [PMID: 37103864 PMCID: PMC10142398 DOI: 10.3390/membranes13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The problem of water scarcity is already serious and risks becoming dramatic in terms of human health as well as environmental safety. Recovery of freshwater by means of eco-friendly technologies is an urgent matter. Membrane distillation (MD) is an accredited green operation for water purification, but a viable and sustainable solution to the problem needs to be concerned with every step of the process, including managed amounts of materials, membrane fabrication procedures, and cleaning practices. Once it is established that MD technology is sustainable, a good strategy would also be concerned with the choice of managing low amounts of functional materials for membrane manufacturing. These materials are to be rearranged in interfaces so as to generate nanoenvironments wherein local events, conceived to be crucial for the success and sustainability of the separation, can take place without endangering the ecosystem. In this work, discrete and random supramolecular complexes based on smart poly(N-isopropyl acrylamide) (PNIPAM) mixed hydrogels with aliquots of ZrO(O2C-C10H6-CO2) (MIL-140) and graphene have been produced on a polyvinylidene fluoride (PVDF) sublayer and have been proven to enhance the performance of PVDF membranes for MD operations. Two-dimensional materials have been adhered to the membrane surface through combined wet solvent (WS) and layer-by-layer (LbL) spray deposition without requiring further subnanometer-scale size adjustment. The creation of a dual responsive nanoenvironment has enabled the cooperative events needed for water purification. According to the MD's rules, a permanent hydrophobic state of the hydrogels together with a great ability of 2D materials to assist water vapor diffusion through the membranes has been targeted. The chance to switch the density of charge at the membrane-aqueous solution interface has further allowed for the choice of greener and more efficient self-cleaning procedures with a full recovery of the permeation properties of the engineered membranes. The experimental evidence of this work confirms the suitability of the proposed approach to obtain distinct effects on a future production of reusable water from hypersaline streams under somewhat soft working conditions and in full respect to environmental sustainability.
Collapse
Affiliation(s)
- Giuseppe Di Luca
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Annarosa Gugliuzza
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| |
Collapse
|
14
|
Wang Z, Jing C, Zhai W, Li Y, Liu W, Zhang F, Li S, Wang H, Yu D. MIL-101(Fe)/Polysulfone Hollow Microspheres from Pickering Emulsion Template for Effective Photocatalytic Degradation of Methylene Blue. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Liu Y, Ji X, Wang Y, Zhang Y, Zhang Y, Li W, Yuan J, Ma D, Sun H, Duan J. A Stable Fe-Zn Modified Sludge-Derived Biochar for Diuron Removal: Kinetics, Isotherms, Mechanism, and Practical Research. Molecules 2023; 28:molecules28062868. [PMID: 36985840 PMCID: PMC10058066 DOI: 10.3390/molecules28062868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar (SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption mechanisms as well as practical applications of SDMBC600 were also investigated and examined. The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption performance (8.88-12.9 mg/g) under wide water quality conditions, in the pH of 2-10 and with the presence of humic acid and six typical metallic ions of 0-20 mg/L. The adsorption mechanisms of SDMBC600 for diuron were found to include surface complexation, π-π binding, hydrogen bonding, as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600 could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore, SDMBC600 could have a promising application for diuron removal in water treatment.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yanxiang Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiang Yuan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dong Ma
- Rural Environmental Engineering Center of Qingdao, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
16
|
Ezhov R, Ravari AK, Palenik M, Loomis A, Meira DM, Savikhin S, Pushkar Y. Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present. CHEMSUSCHEM 2023; 16:e202202124. [PMID: 36479638 DOI: 10.1002/cssc.202202124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco-friendly solar fuels. However, systems with light-driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe2 O3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe-based metal-organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe-MIL-126 and Fe MOF-dcbpy structures were formed with 4,4'-biphenyl dicarboxylate (bpdc), 2,2'-bipyridine-5,5'-dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal-based catalysts via coordination to 2,2'-bipyridine fragments. Fe-based MOFs were doped with Ru-based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H2 O)2 ]2+ WOC. Materials were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) spectroscopy, resonance Raman, X-ray absorption spectroscopy, fs optical pump-probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, FeIII and RuIII oxidation states are present, indicating rate-limiting electron transfer in MOF. Fe3 O nodes emerge as photosensitizers able to drive prolonged O2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru-WOC modification for faster WOC catalysis, or Ru-WOC substitution to 3d metal-based systems. The findings give further insight for development of light-driven water splitting systems based on Earth-abundant metals.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Alireza K Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Mark Palenik
- US Naval Research Laboratory, Washington, 20375, USA
| | - Alexander Loomis
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | | | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| |
Collapse
|
17
|
Cheng G, Yuan C, Ruan W, Ma B, Zhang X, Yuan X, Li Z, Wang D, Teng F. Visible light enhanced persulfate activation for degradation of tetracycline via boosting adsorption of persulfate by ligand-deficient MIL-101(Fe) icosahedron. CHEMOSPHERE 2023; 317:137857. [PMID: 36642131 DOI: 10.1016/j.chemosphere.2023.137857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
In this work, Fe-based metal-organic frameworks (Fe-MOFs) are prepared by a simple solvothermal method, in which acetic acid/N, N-dimethylformamide (HAc/DMF) mixture solvents are employed to regulate the particle morphology, exposed facets and ligand defects. At HAc/DMF = 0/50, 5/45 and 8/42 (volume ratio), the irregular particles (MIL-53(Fe)), elongated icosahedrons (5H-MIL-101(Fe)) and icosahedrons (8H-MIL-101(Fe)) are obtained, respectively. Under visible light irradiation (λ > 420 nm) and the addition of sodium persulfate (PS), 5H-MIL-101(Fe) shows the highest degradation activity for tetracycline (TC). Specifically, 80% of TC has been removed by 5H-MIL-101(Fe) within 25 min, and the degradation kinetics rate is 3.03 times higher than that over MIL-53(Fe). The improvement of catalytic activity is mainly attributed to the active facets exposed and ligand defects of 5H-MIL-101(Fe). Density functional theory (DFT) calculation further confirms that the active facets exposed and ligand defects of 5H-MIL-101(Fe) favor the adsorption and activation of PS, benefiting the generation of •SO4-. Besides, a probable degradation pathway of TC is proposed based on trapping experiments and liquid chromatography-mass spectrometry (LC-MS) test. Furthermore, the toxicities of intermediates are predicted by the quantitative structure-activity relationship (QSAR) mathematical model. This work demonstrates that visible light enhanced PS activation (Vis-PSA) can more effectively degrade organic pollutants, and this work also provides a simple strategy to precisely regulate ligand defects and actively exposed facets of Fe-MOFs to enhance the adsorption and activation of PS.
Collapse
Affiliation(s)
- Gangya Cheng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Chen Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wansheng Ruan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ben Ma
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyu Zhang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinjing Yuan
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Zhihui Li
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Dan Wang
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Fei Teng
- Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
18
|
Zhang L, Huang H, Li D, Yuan G, Li Y, Wan S, Xiao H, Chen F, Zou R. A 2D pillared-bilayer iron-based metal–organic framework: syntheses, crystal structure, UV-light photocatalytic and heterogeneous Fenton-like catalytic activities. TRANSIT METAL CHEM 2023. [DOI: 10.1007/s11243-023-00522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
19
|
Pazhand H, Sabbagh Alvani AA, Sameie H, Salimi R, Poelman D. The Exact Morphology of Metal Organic Framework MIL‐53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hooman Pazhand
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
- Standard Research Institute Alborz 3174734563 Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Reza Salimi
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Dirk Poelman
- Department of Solid State Sciences Lumilab Ghent University Krijgslaan 281-S1 9000 Ghent Belgium
| |
Collapse
|
20
|
MIL-53(Fe)@perylene Diimide All-Organic Heterojunctions for the Enhanced Photocatalytic Removal of Pollutants and Selective Oxidation of Benzyl Alcohol. Catalysts 2023. [DOI: 10.3390/catal13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Organic semiconductors are promising materials for the photocatalytic treatment of pollutants and organic synthesis. Herein, MIL-53(Fe)@perylene diimide (PDI) organic heterojunctions were constructed by ultrasonic assembly using PDI as the co-catalyst, and PDI organic supramolecular material was uniformly distributed on the surfaces of MIL-53(Fe). The most effective M53@PDI-20 organic heterojunctions achieved 72.7% photodegradation of rhodamine B (10 mg/L) within 50 min and a 99.9% reduction in Cr(VI) (10 mg/L) for 150 min, and the corresponding apparent degradation rate constants were higher than a single component. Meanwhile, the conversion rate of benzyl alcohol over M53@PDI-20 achieved 91.5% for 5 h with a selectivity of above 90% under visible light exposure, which was more than double that of PDI. The well-matched band structures and the strong π–π bonding interactions between MIL-53(Fe) and PDI can increase the electron delocalization effect to facilitate the transfer and separation of photogenerated carriers. Lots of oxidative reactive species (h+, •O2− and •OH) also played a great contribution to the strong oxidation capacity over the heterojunctions system. This work suggests that MIL-53(Fe)@PDI organic heterojunctions may be a promising material for pollutant removal and organic synthesis.
Collapse
|
21
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
22
|
Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles. Int J Biol Macromol 2023; 225:1462-1475. [PMID: 36435457 DOI: 10.1016/j.ijbiomac.2022.11.203] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Modified magnetite chitosan with silver nanoparticles was synthesized and tested for removing cationic and anionic dyes in aqueous solutions. Initial dye concentration, pH, and contact time were examined. Results showed that pH (4.0) was optimal for removing anionic dyes (methyl orange) and pH 8.0 for removing cationic dyes (methylene blue). According to these results, zeta potentials were found to be 8.43 and - 39.17 mV at pH 4.0 and 8.0, respectively. So, it is attracted to positively charged cationic dyes in an alkaline medium and negatively charged anionic dyes in an acidic medium because of their opposite charges. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), and zeta potential measurements were used to characterize the synthesized nanosorbents. A pseudo-second-order kinetic model is fitted with the Langmuir adsorption model, with an adsorption capacity of 417 and 476 mg/g for methyl orange and methylene blue, respectively. For both dyes, modified magnetite chitosan with silver nanoparticles showed high regeneration capability and recovery for up to four cycles without adsorption efficiency loss. Furthermore, modified magnetite chitosan with silver nanoparticles, as prepared in the present study, was demonstrated to be an effective adsorbent for organic pollutants in wastewater.
Collapse
|
23
|
Alrozi R, Zubir NA, Bakar NFA, Ladewig BP, Motuzas J, Bakar NHHA, Wang DK, da Costa JCD. Functional role of B-site substitution on the reactivity of CaMFeO3 (M = Cu, Mo, Co) perovskite catalysts in heterogeneous Fenton-like degradation of organic pollutant. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Jia-ying He, Wang DY, Wang MM, Guo YF, Wang SQ. Solubilities, Densities, and Refractive Indices of the Quaternary System (NaCl + NaBO2 + KCl + KBO2 + H2O) at 288.15 K. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622700127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Ren L, Li W, Li Q, Zhang D, Fang W, Yan D, Li Y, Wang Q, Jin X, Cao A. Metolachlor metal-organic framework nanoparticles for reducing leaching, ecotoxicity and improving bioactivity. PEST MANAGEMENT SCIENCE 2022; 78:5366-5378. [PMID: 36057859 DOI: 10.1002/ps.7159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The adverse effects of pesticides has led to a series of ecological, environmental and public health issues. Amide herbicides are an important agrochemical, yet many are prone to leach and pollute the environment, which limits their further application. In this study, metolachlor (METO) was selected as a model pesticide and a controlled released nanoparticle (NP) system was constructed employing a zeolitic imidazolate framework-8 hybrid inorganic-organic porous material (METO@ZIF-8). RESULTS The synthesis parameters of METO@ZIF-8 were optimized, and the loading content of METO@ZIF-8 was maximized by a central composite design of response surface test. The NPs were regular dodecahedron with uniform size (mostly 54.3 nm diameter). METO@ZIF-8 had high specific surface area and good dispersal in water. Moreover, it endowed the active ingredient with a pH-responsive release property. The nanocarrier effectively improved the adsorption capacity of METO in soil and reduce the leaching by 10.3-21.7%. Pot experiments suggested that the control effect of METO@ZIF-8 was 16.6 and 48.4% higher than that of METO emulsifiable concentrate (EC) and METO technical concentration (TC) at the recommended dose. Based on the excellent controlled release profiles, METO@ZIF-8 did not affect corn plant growth and significantly reduced the risk of phytotoxicity induced by METO. METO@ZIF-8 effectively reduced acute toxicity in zebrafish compared with METO EC. CONCLUSION This study explored the fabrication of a nanocarrier for improving the efficacy and promoting the environmental safety of leachable amide herbicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjing Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjie Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, China
| |
Collapse
|
26
|
Jing J, Liu Y, Jing L, Zhou P, Xie M, He M, Yuan J, Song Y, Xu Y. A novel Bi3.64Mo0.36O6.55/MIL-88A(Fe) nanorod composite material for enhancing photocatalytic activity in photo-Fenton system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Graphene-Supported Fe–N Catalysts for Activation of Persulfate for Trichlorophenol Degradation by Surface Radicals. Catal Letters 2022. [DOI: 10.1007/s10562-022-04198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Zhao P, Cao L, Wang C, Zheng L, Li Y, Cao C, Huang Q. Metabolic pathways reveal the effect of fungicide loaded metal-organic frameworks on the growth of wheat seedlings. CHEMOSPHERE 2022; 307:135702. [PMID: 35842052 DOI: 10.1016/j.chemosphere.2022.135702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOF) are an emerging class of hybrid inorganic-organic porous materials used in various fields, especially in molecule delivery system. As iron is an essential micronutrient for plant growth, iron-based MOF (Fe-MOF) is developed for agricultural application as fungicide carriers. However, fungicides may have various effect on the plant growth, which may be different from Fe-MOF. When they are combined with the carriers, the effects on target plants will change. In this work, tebuconazole-loaded Fe-MOF was prepared and used to treat wheat seedlings. The physiological, biochemical and metabolic levels of wheat roots and shoots were shown by a comparative study. Related metabolic pathways were analyzed by non-targeted metabolomic method. Many metabolites in wheat roots and shoots showed an upward trend after Fe-MOF treatment, but tebuconazole had a negative impact on these indicators. Related metabolic pathways in Fe-MOF and tebuconazole treatment were different, and the related pathway of tebuconazole-loaded Fe-MOF was closer to that of Fe-MOF. The metabolic pathways study revealed that the negative impact from tebuconazole was mitigated when wheat seedlings were treated with tebuconazole-loaded Fe-MOF. This research firstly explores the mechanism of MOF as carriers to help plant reduce the negative effects from fungicide by regulating metabolic pathways.
Collapse
Affiliation(s)
- Pengyue Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Chaojie Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Li Zheng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yuanyuan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Chong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
29
|
Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate activator for highly efficient ciprofloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Zhai LF, Chen YY, Hu Y, Pan YX, Sun M, Yu J, Wang Y, Kong W. MOF-derived MnO@C with high activity for electric field-assisted catalytic oxidation of aqueous pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129670. [PMID: 35908403 DOI: 10.1016/j.jhazmat.2022.129670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The activation of oxygen (O2) under room condition is important for the utilization of air to perform oxidation. Here, we report a porous carbon-encapsulated MnO (MnO@C) derived from Mn metal-organic framework (MOF)grown in-situ on a graphite felt (GF) support. The MnO@C exhibits superior catalytic activity in an electric field-assisted catalytic oxidation system for the degradation of organic pollutants under room condition. The catalytic oxidation reaction applies a surface reaction pathway in which the surface-bound chemisorbed oxygen species are electro-oxidized and then involved in the oxidation of co-adsorbed organic pollutants. The abundant oxygen vacancies and oxygenated functional groups in MnO@C provide active sites for the chemisorption of O2, and its conductive mesoporous structure allows facile electrons and mass transfer. As a result, the MnO@C/GF catalyst displays quite high turnover frequency (TOF) value as 0.038 mg-TOC mg-MnO-1 min-1, which is 6.66 times higher than that of the MnO/GF catalyst prepared by impregnation method as a comparison. With the aid of + 1.0 V of positive electric field, the catalytic oxidation system exhibits extensive effectiveness in mineralizing a variety of dyes, pharmaceuticals, personal care products, and phenolic compounds under room condition with significantly enhanced biodegradability.
Collapse
Affiliation(s)
- Lin-Feng Zhai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China.
| | - Yue-Yue Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Xiao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jun Yu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Wei Kong
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| |
Collapse
|
31
|
Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zn/Co-ZIFs@MIL-101(Fe) metal–organic frameworks are effective photo-Fenton catalysts for RhB removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Lee H, Lee H, Ahn S, Kim J. MIL-100(Fe)-Hybridized Nanofibers for Adsorption and Visible Light Photocatalytic Degradation of Water Pollutants: Experimental and DFT Approach. ACS OMEGA 2022; 7:21145-21155. [PMID: 35755355 PMCID: PMC9219076 DOI: 10.1021/acsomega.2c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
As rapid industrial growth spawns severe water contamination and a far-reaching impact on environmental safety, the development of a purification system is in high demand. Herein, a visible light-induced photocatalytic adsorbent membrane was developed by growing a porous metal-organic framework (MOF), MIL-100(Fe) crystals, onto electrospun polyacrylonitrile (PAN) nanofibers, and its purification capability by adsorption and the photocatalytic effect was investigated. As water-soluble organic foulants, a cationic dye, rhodamine B (RhB), and an anionic dye, methyl orange (MO), were employed, and the adsorption/desorption characteristics were analyzed. Since MIL-100(Fe) possesses positive charges in aqueous solution, MO was more rapidly adsorbed onto the MIL-100(Fe) grown PAN membrane (MIL-100(Fe)@PAN) than RhB. Under visible light, both photocatalytic degradation and adsorption occurred concurrently, facilitating the purification process. The reusability of MIL-100(Fe)@PAN as an adsorbent was explored by cyclic adsorption-desorption experiments. Density functional theory (DFT) calculations corroborated higher binding energy of charged MO over RhB and demonstrated the possible steric hindrance of RhB to adhere in MOF pores. The emphasis of the study lies in the combined investigation of the experimental approach and DFT calculations for the fundamental understanding of adsorption/desorption phenomena occurring in the purification process. This study provides theoretical support for the interaction between MOF-hybrid complexes and contaminants when MOF-hybridized composites adsorb or photodegrade water-soluble pollutants of different charges and sizes.
Collapse
Affiliation(s)
- Halim Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic
of Korea
| | - Hyungwoo Lee
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic of Korea
- Division
of Multiscale Mechanical Design, School of Mechanical and Aerospace
Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Ahn
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic
of Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Hybrid liposome/metal-organic framework as a promising dual-responsive nanocarriers for anticancer drug delivery. Colloids Surf B Biointerfaces 2022; 217:112599. [PMID: 35714509 DOI: 10.1016/j.colsurfb.2022.112599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 04/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
Abstract
In this work, liposome-coated iron (III) benzene-1,3,5-tricarboxylate (Fe-BTC) metal-organic framework is examined as a promising pH/Ultrasound dual-responsive nanocarriers for doxorubicin (DOX) delivery. The successful coating of the MOF particles (Lip-Fe-BTC) with the phospholipid bilayer (PBL) was established by direct fusion into the synthesized liposomes. The liposome coating was verified using several techniques, including dynamic light scattering (DLS) and transmission electron microscopy (TEM). The DLS measurements showed an increase in the average particle diameter of liposomes from 150 nm to 163.1 nm for Lip-Fe-BTC particles. The Fe-BTC particles had the highest average particle diameter (287.3 nm). These results demonstrated that the PBL reduced the aggregation of the particles and improved their dispersity in the release medium. The TGA results demonstrated the MOF's excellent thermal stability. Furthermore, the nanocarrier's loading efficiency and capacity were determined to be ~90% and ~13.5 wt%, respectively. The in-vitro DOX release experiments demonstrated that the DOX-loaded Fe-BTC and liposome-coated Fe-BTC particles showed good pH and US dual-responsive capability, making them promising nanocarriers for drug delivery. The application of US enhanced DOX release from both Fe-BTC and liposome-coated Fe-BTC. In the case of Fe-BTC-DOX particles, the application of US enhanced the DOX release to around 38% and 67%, at pH levels of 7.4 and 5.3, respectively. Similarly, DOX release from the Lip-Fe-BTC-DOX particles reached ~35% and ~53%, at pH levels of 7.4 and 5.3, respectively. The MTT assay showed the biocompatibility and low cytotoxicity of these nanocarriers below 100 µg/ml.
Collapse
|
36
|
Zhang H, Hu X, Li T, Zhang Y, Xu H, Sun Y, Gu X, Gu C, Luo J, Gao B. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128271. [PMID: 35093745 DOI: 10.1016/j.jhazmat.2022.128271] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
With large specific surface area, abundant adsorption sites, flexible pore structure, and good water stability, Materials of Institute Lavoisier frameworks (MILs) have attracted increasing attention as effective environmental adsorbents. This review systematically analyzes and recapitulates recent progress in the synthesis and application of MIL-based adsorbents for the removal of aqueous heavy metal ions. Commonly used solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical syntheses of MILs are first summarized and compared. Instead of focusing on adsorption process parameters, adsorption performances and governing mechanisms of virgin MILs, functional MILs, MIL-based composites, and carbonized MILs to representative metal(loid) ions (chromium, arsenic, lead, cadmium, and mercury) in water under various conditions are then systematically reviewed and discussed. In the end, this work also outlines prospects and future directions to promote the applications of MILs in treating heavy metal contaminated water.
Collapse
Affiliation(s)
- Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210023, PR China.
| | - Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China.
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
37
|
Liu N, Wu J, Fei F, Lei J, Shi W, Quan G, Zeng S, Zhang X, Tang L. Ibuprofen degradation by a synergism of facet-controlled MIL-88B(Fe) and persulfate under simulated visible light. J Colloid Interface Sci 2022; 612:1-12. [PMID: 34974253 DOI: 10.1016/j.jcis.2021.12.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
The photocatalysis/persulfate (PS) hybrid system has proven to be a promising method for degrading organic pollutants from aqueous solutions. In this study, three MIL-88B(Fe) iron-based metal-organic framework (MOF) phases with different facet content were prepared and used both as photocatalysts and catalysts for PS activation to remove ibuprofen (IBP). The results showed that there was a close correlation between the exposed facets and the catalytic activity. MIL-88B(Fe)-1 (M88B1) with exposed {100} facets and proportionally more {101} facets showed the best catalytic activity. The optimum PS dosage used in this study was 60 mg/L. The presence of Cl-, SO42-, and NO3- all inhibited the degradation of IBP. X-ray photoelectron spectroscopy (XPS) showed that M88B1 possessed more Fe2+ than the other two MIL-88B(Fe) MOF phases, making it easier to generate active radicals through PS activation. The UV-vis diffuse reflectance spectra (DRS), photoluminescence (PL), and electrochemical analysis indicated that M88B1 possessed the highest light absorption, most active sites, and fastest charge transfer ability. Radical scavenging and electron spin resonance (ESR) experiments demonstrated that SO4-•, •OH, O2-•, and 1O2 species participated in the IBP degradation process. Furthermore, density functional theory (DFT) calculations were performed to identify the crystallographic facets, band structure, and total density of states of MIL-88B(Fe) to further confirm the mechanism of MIL-88B(Fe) as a photocatalyst and a PS activator. This work provides new insights into the synergism between photocatalysis and persulfate activation by facet-controlled MOFs for environmental remediation.
Collapse
Affiliation(s)
- Ning Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinxing Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Fuhao Fei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jianqiu Lei
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Wenyan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Shuai Zeng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
38
|
Liu Y, Wu S, Nguyen TAH, Chan TS, Lu YR, Huang L. Biochar mediated uranium immobilization in magnetite rich Cu tailings subject to organic matter amendment and native plant colonization. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127860. [PMID: 34823947 DOI: 10.1016/j.jhazmat.2021.127860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Organic matter (OM) amendments and plant colonization can accelerate mineral weathering and soil formation in metal mine tailings for ecological rehabilitation. However, the weathering effects may dissolve uranium (U)-bearing minerals (e.g., ianthinite) and increase U dissolution in porewater and seepages. The present study aimed to characterize the U solubility and distribution among different fractions and investigate if biochar (BC) could decrease soluble U levels and facilitate U immobilization in the OM-amended and plant-colonized tailings. A native plant species, Red Flinders grass (Iseilema vaginiflorum) was cultivated in the tailings for four weeks, which were amended with sugarcane residue (SR) with or without BC addition. The results showed that OM amendment and plant colonization increased porewater U concentrations by almost 10 folds from ~ 0.2 mg L-1 to > 2.0 mg L-1. The BC addition decreased porewater U concentrations by 40%. Further micro-spectroscopic analysis revealed that U was immobilized through adsorption onto BC porous surfaces, via possibly complexing with oxygen-rich organic groups. Besides, the BC amendment facilitated U sequestration by secondary Fe minerals in the tailings. These findings provide important information about U biogeochemistry in Cu-tailings mediated by BC, OM and rhizosphere interactions for mitigating potential pollution risks of tailings rehabilitation.
Collapse
Affiliation(s)
- Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30078, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30078, Taiwan
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
39
|
Ren Y, Zhang J, Ji C, Wang S, Lv L, Zhang W. Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152201. [PMID: 34890672 DOI: 10.1016/j.scitotenv.2021.152201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new catalyst was fabricated by pyrolysis under nitrogen atmosphere with MIL-53(Fe) as the precursor, and was applied to catalyze Fenton-like process. Effects of calcination temperature and pH on decontamination performance, and stability of materials were investigated. Under optimal conditions (calcination temperature of 500 °C and pH of 5.0), the new Fenton-like system remained low iron leaching, and achieved high pseudo-first-order rate constant of 0.0251 min-1 for bisphenol S (BPS) removal, which is much higher than those in MIL-53(Fe), and nano-Fe3O4 catalyzed Fenton-like systems. The superiority of the new catalyst for Fenton-like catalysis was attributed to high specific surface area, as well as formed Fe(II), coordinatively unsaturated iron center and the Fe-O/Fe-C compounds based on the analyses of characterizations. Furthermore, main active species for BPS degradation was identified as hydroxyl radicals, and total hydroxyl radical generation was determined by trapping experiments. The degradation pathways of BPS were also proposed by intermediates monitoring. Moreover, this catalyst showed good potential for practical application, according to the evaluation of reuse, different pollutants degradation, and BPS removal in real wastewater. We believe this study developed a new catalyst with high catalytic activity, high stability and wide application scope, and also sheds light on further development of metal-organic frameworks for Fenton-like catalysis.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
40
|
Purification of soybean oil from diazinon insecticide by iron-based metal organic framework: Effect of geometrical shape and simulation study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Yu H, Li Y, Zhang Z, Ren J, Zhang L, Xu Z, Kang Y, Xue P. Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. Acta Biomater 2022; 138:545-560. [PMID: 34775125 DOI: 10.1016/j.actbio.2021.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Disturbance in redox homeostasis always leads to oxidative damages to cellular components, which inhibits cancer cell proliferation and causes tumor regression. Therefore, synergistic effects arising from cellular redox imbalance together with other treatment modalities are worth further investigation. Herein, a metal-organic framework nanosystem (NMOF) based on coordination between Fe (III) and 4,4,4,4-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic acid) (TCPP) was synthesized through a one-pot method. After surface capping of silk fibroin (SF) to form NMOF@SF nanoparticles (NPs), this nanoplatform can serve as an eligible nanocarrier to deliver tirapazamine (TPZ), a hypoxia-activated precursor. As-developed NS@TPZ (NST) NPs remained inactive in the normal tissue, whereas became highly active upon endocytosis by tumor cells via glutathione (GSH)-mediated reduction of Fe (III) into Fe (II), further enabling Fe (II)-mediated chemodynamic therapy (CDT). Upon optical laser irradiation, TCPP-mediated photodynamic therapy (PDT) coordinated with CDT to aggravate intracellular oxidative stress. Thus, such reactive oxygen species accumulation and GSH deprivation contributed to a deleterious redox dyshomeostasis. On the other hand, local deoxygenation caused by PDT can increase the cytotoxicity of released TPZ, which significantly improved the integral therapeutic effectiveness relying on the combined redox balance disruption and bioreductive chemotherapy. More importantly, severe immunogenic cell death can be triggered by the combinatorial treatment modalities and the presence of SF, which facilitated an almost complete tumor eradication in vivo. Taken together, this paradigm provides an insightful strategy for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy, which can remarkably enhance antitumor efficacy with negligible adverse effects. STATEMENT OF SIGNIFICANCE: Recently, silk fibroin (SF) has been demonstrated to be effective in activating antitumor immune system through polarization tumor-associated macrophages into M1 subtype. However, engineering SF into multifunctional nanocomposites is seldom reported for combination tumor therapy. In another aspect, disruption of redox homeostasis becomes increasingly attractive for tumor suppression with high clinical-relevance. Herein, we established a newfashioned NMOF nanosystem, named as NST, for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. This platform takes advantages of Fe2+/Fe3+ coupled Fenton-like reaction and GSH depletion, as well as TCPP-mediated photosensitization for admirable redox unbalancing, which further initiates hypoxia-relevant toxin of TPZ for chemotherapy. Finally, combinatorial treatments and the presence of SF could trigger ICD for rendering a complete tumor eradication in vivo.
Collapse
|
42
|
Abdelmigeed MO, Sadek AH, Ahmed TS. Novel easily separable core–shell Fe 3O 4/PVP/ZIF-8 nanostructure adsorbent: optimization of phosphorus removal from Fosfomycin pharmaceutical wastewater. RSC Adv 2022; 12:12823-12842. [PMID: 35496345 PMCID: PMC9044422 DOI: 10.1039/d2ra00936f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
The synthesis of an easily separable novel core–shell Fe3O4/PVP/ZIF-8 nanostructure adsorbent and its usage for Fosfomycin pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Mai O. Abdelmigeed
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
| | - Ahmed H. Sadek
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza, 12578, Egypt
- Sanitary and Environmental Engineering Research Institute, Housing and Building National Research Center (HBRC), Dokki, 11511, Giza, Egypt
| | - Tamer S. Ahmed
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza, 12613, Egypt
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza, 12578, Egypt
| |
Collapse
|
43
|
Yang B. Sensing and photocatalytic properties of a new 3D Co( ii) coordination polymer based on 1,1′-di( p-carboxybenzyl)-2,2′-biimidazole. NEW J CHEM 2022. [DOI: 10.1039/d2nj03281c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One novel 3D interpenetrated Co(ii) CP acts as multi-functional chemosensors in detection of Fe3+, Cr2O72−, CrO42− and nitrofurantoin and is an effective and stable photocatalyst and displays excellent photo-catalytic properties.
Collapse
Affiliation(s)
- Bo Yang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| |
Collapse
|
44
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Kaur M, Mehta SK, Devi P, Kansal SK. Bi2WO6/NH2-MIL-88B(Fe) heterostructure: An efficient sunlight driven photocatalyst for the degradation of antibiotic tetracycline in aqueous medium. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Bazi Alahri M, Arshadizadeh R, Raeisi M, Khatami M, Sadat Sajadi M, Kamal Abdelbasset W, Akhmadeev R, Iravani S. Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
49
|
Liu C, Wei H, Gao Y, Wang N, Yuan X, Chi Z, Zhao G, Song S, Song J, Jin X. Application of CoMn/CoFe layered double hydroxide based on metal-organic frameworks template to activate peroxymonosulfate for 2,4-dichlorophenol degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3871-3890. [PMID: 34928849 DOI: 10.2166/wst.2021.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have unique properties and stable structures, which have been widely used as templates/precursors to prepare well developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare a layered double hydroxide (LDH) nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which had higher specific surface area and well developed pore structure compared with LDH catalysts prepared by traditional methods, and thus provide more active sites to activate peroxymonosulfate (PMS). Due to the unique framework structure of MOFs, the MOF-derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2,4-dichlorophenol degradation of 99.3% and 99.2% within 20 minutes, respectively. In addition the two LDH catalysts displayed excellent degradation performance for bisphenol A, ciprofloxacin and 2,4-dichlorophenoxyacetic acid (2,4-D). X-ray photoelectron spectroscopy indicated that the valence state transformation of metal elements participated in PMS activation. Electron paramagnetic resonance manifested that sulfate radical (SO4•-) and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOF-derived LDH catalysts can basically eliminate the phytotoxicity of a 2,4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOF derivants.
Collapse
Affiliation(s)
- Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Haitong Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Yanhui Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Ning Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Zhilong Chi
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Guangli Zhao
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Shuguang Song
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xinghui Jin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| |
Collapse
|
50
|
Magnetic Co-Co Prussian blue analogue catalyst for peroxymonosulfate activation to degrade organic dye. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|