1
|
Ibne Mahbub MS, Park M, Park SS, Won MJ, Lee BR, Kim HD, Lee BT. dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights. Int J Biol Macromol 2025; 305:141040. [PMID: 39978514 DOI: 10.1016/j.ijbiomac.2025.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Mi Jin Won
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | | | - Hai-Doo Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
2
|
Huang J, Li H, Mei Y, Yi P, Ren Y, Wang Y, Han L, Tang Q, Liu D, Chen W, An Y, Hu C. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomedicine 2025; 20:1285-1302. [PMID: 39911262 PMCID: PMC11794387 DOI: 10.2147/ijn.s480288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/12/2024] [Indexed: 02/07/2025] Open
Abstract
Purpose Treatment for bone and joint tuberculosis (BJTB) is challenging due to its refractory and recurrent nature. This study aimed to develop a bioimplantable scaffold with osteoinductive and antituberculosis characteristics to treat BJTB. Methods This scaffold is built on oxidized hyaluronic acid and carboxymethyl chitosan hydrogel mixed with hydroxyapatite as a bone tissue engineered material. In order to make the scaffold have the biological activity of promoting tissue repair, the engineered exosomes (Exoeng) were added innovatively. In addition, drug-loaded liposomes equipped with an aldehyde group on the surface are cross-linked with the amine group of the hydrogel skeleton to participate in the Schiff base reaction. Results The designed scaffold has characteristics of self-healing and injectability exhibit excellent anti-tuberculosis and promoting bone repair activities. Exoeng strongly stimulates cellular angiogenesis and osteogenic differentiation. The liposomes coated in hydrogel can release three kinds of anti-tuberculosis drugs smoothly and slowly, achieving a long term anti-tuberculosis. Conclusion The composite bio-scaffold shows good tissue repair and long-term anti-tuberculosis abilities, which expected to provide a viable treatment plan for bone-related BJTB.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Han Li
- Department of Pharmacy, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuting Mei
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Pengcheng Yi
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunyao Ren
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yunjuan Wang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Limei Han
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wei Chen
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanli An
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhong da Hospital, Southeast University, Nanjing, JiangsuPeople’s Republic of China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Liu C, Sha D, Zhao L, Zhou C, Sun L, Liu C, Yuan Y. Design and Improvement of Bone Adhesive in response to Clinical Needs. Adv Healthc Mater 2024; 13:e2401687. [PMID: 39375984 DOI: 10.1002/adhm.202401687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Indexed: 10/09/2024]
Abstract
Fracture represents one of the most common diagnoses in contemporary medical practice, with the majority of cases traditionally addressed through metallic device fixation. However, this approach is marred by several drawbacks, including prolonged operative durations, considerable expenses, suboptimal applicability to comminuted fractures, increased infection risks, and the inevitable requirement for secondary surgery. The inherent advantages of bone adhesives in these fields have garnered the attention of orthopedic surgeons, who have commenced utilizing biocompatible and biodegradable bone adhesives to bond and stabilize bone fragments. Regrettably, the current bone adhesives generally exhibit insufficient adhesive strength in vivo environments, and it is desirable for them to possess effective osteogenesis to facilitate fracture healing. Consequently, aligning bone adhesives with practical clinical demands remains a significant hurdle, which has catalyzed a surge in research endeavors. Within this review, the conceptual framework, characteristics, and design ideas of bone adhesives based on clinical needs are delineated. Recent advancements in this domain, specifically focusing on the enhancement of two pivotal characteristics-adhesive strength and osteogenic potential are also reviewed. Finally, a prospective analysis of the future advancements in bone adhesives, offering new insights into solutions for diverse clinical problems is presented.
Collapse
Affiliation(s)
- Chenyu Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lingfei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chuanwei Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
4
|
Shao YF, Wang H, Zhu Y, Peng Y, Bai F, Zhang J, Zhang KQ. Hydroxyapatite/Silk Fibroin Composite Scaffold with a Porous Structure and Mechanical Strength Similar to Cancellous Bone by Electric Field-Induced Gel Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60977-60991. [PMID: 39453828 DOI: 10.1021/acsami.4c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Repair and regeneration of bone tissue defects is a multidimensional process that has been highly challenging to date. The artificial bone scaffold materials, which play a core role, still face the conflict that a biofriendly porous structure will reduce the mechanical performance and accelerate degradation. Herein, a multistage porous structured hydroxyapatite (HA)/silk fibroin (SF) composite scaffold (e-HA/SF) was successfully constructed by cleverly utilizing electric field-induced gel technology. The results indicated that the prepared e-HA/SF scaffolds possess biomimetic hierarchical porous structures with a suitable porosity similar to that of cancellous bone. The HA nanocrystals were uniformly encapsulated in the three-dimensional space of the composite scaffold, thus endowing the e-HA/SF composite scaffolds with an enhanced mechanical performance. Notably, the maximum compression stress and Young's modulus of e-HA/SF-2 scaffolds can reach 24.66 ± 0.88 and 28.91 ± 3.19 MPa, respectively, which are equivalent to those of cancellous bone. Such mechanical performance enhancement was previously unattainable through conventional freeze-drying strategies. Moreover, the introduction of bioactive nano-HA can trigger the optimal cell response in both static and dynamic cell culture experiments in vitro. The e-HA/SF composite scaffold developed in this study can better balance the conflict between the porous structure and mechanical and degradation properties of porous scaffolds.
Collapse
Affiliation(s)
- Yun-Fei Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yiran Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yu Peng
- College of Advanced Material Engineering, Jiaxing Nanhu University, Jiaxing 314001, P. R. China
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
6
|
Yuan Y, Zou M, Wu S, Liu C, Hao L. Recent advances in nanomaterials for the treatment of femoral head necrosis. Hum Cell 2024; 37:1290-1305. [PMID: 38995503 DOI: 10.1007/s13577-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.
Collapse
Affiliation(s)
- Yalin Yuan
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shuqin Wu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Congcong Liu
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Xu W, Huang W, Cai X, Dang Z, Hao L, Wang L. Dexamethasone Long-Term Controlled Release from Injectable Dual-Network Hydrogels with Porous Microspheres Immunomodulation Promotes Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40581-40601. [PMID: 39074361 PMCID: PMC11311136 DOI: 10.1021/acsami.4c06661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.
Collapse
Affiliation(s)
- Weikang Xu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Guangdong
Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology
Research Centre, No.
10 Shiliugang Road, Jianghai Avenue Central, Haizhu
District, Guangzhou 510316, China
| | - Weihua Huang
- Affiliated
Qingyuan Hospital, Guangzhou Medical University,
Qingyuan People’s Hospital, No. 35, Yinquan North Road, Qingcheng District, Qingyuan 511518, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- Department
of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou
Medical University, the Second Clinical
Medicine School of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu
District, Guangzhou 510260, China
| | - Xiayu Cai
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
| | - Zhaohui Dang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou 510316, China
- National
Engineering Research Centre for Healthcare Devices, Guangdong Provincial
Key Laboratory of Medical Electronic Instruments and Materials, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou 510500, China
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Lijing Hao
- National
Engineering Research Centre for Human Tissue Restoration and Function
Reconstruction, South China University of
Technology, No. 381 Wushan Road, Guangzhou 510275, China
| | - Liyan Wang
- Department
of Stomatology, Foshan Women’s and Children’s Hospital, No. 11 Renmin Xi Road, Chancheng
District, Foshan 528000, China
| |
Collapse
|
8
|
Negi D, Bhavya K, Pal D, Singh Y. Acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles for immunomodulation regulated bone regeneration. Biomater Sci 2024; 12:3672-3685. [PMID: 38864476 DOI: 10.1039/d4bm00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Biomaterials are used as scaffolds in bone regeneration to facilitate the restoration of bone tissues. The local immune microenvironment affects bone repair but the role of immune response in biomaterial-facilitated osteogenesis has been largely overlooked and it presents a major knowledge gap in the field. Nanomaterials that can modulate M1 to M2 macrophage polarization and, thus, promote bone repair are known. This study investigates a novel approach to accelerate bone healing by using acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles to promote osteogenesis and modulate macrophage polarization to provide a prohealing microenvironment for bone regeneration. Different concentrations of cobalt were doped in biphasic calcium phosphate nanoparticles, which were further coated with acemannan polymer and characterized. The nanoparticles showed >90% cell viability and enhanced cell proliferation along with osteogenic differentiation as demonstrated by the enhanced alkaline phosphatase activity and osteogenic calcium deposition. The morphology of MC3T3-E1 cells remained unchanged even after treatment with nanoparticles. Acemannan coated nanoparticles were also able to decrease the expression of M1 markers, iNOS, and CD68 and enhance the expression of M2 markers, CD206, CD163, and Arg-1 as indicated by RT-qPCR, flow cytometry, and ICC studies. The findings show that acemannan coated nanoparticles can create a supportive immune milieu by inducing and promoting the release of osteogenic markers, and by causing a reduction in inflammatory markers, thus helping in efficient bone regeneration. As per our knowledge, this is the first study showing the combined effect of acemannan and cobalt for bone regeneration using immunomodulation. The work presents a novel approach for enhancing osteogenesis and macrophage polarization, thus, offering a potent strategy for effective bone regeneration.
Collapse
Affiliation(s)
- Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India
| |
Collapse
|
9
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
10
|
Yu Y, You Z, Li X, Lou F, Xiong D, Ye L, Wang Z. Injectable Nanocomposite Hydrogels with Strong Antibacterial, Osteoinductive, and ROS-Scavenging Capabilities for Periodontitis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497587 DOI: 10.1021/acsami.3c16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Injectable antibacterial and osteoinductive hydrogels have received considerable attention for promoting bone regeneration owing to their versatile functionalities. However, a current hydrogel with antibacterial, osteoinductive, and antioxidant properties by a facile method for periodontitis treatment is still missing. To overcome this issue, we designed an injectable hydrogel system (GPM) composed of gelatin, Ti3C2Tx MXene nanosheets, and poly-l-lysine using a simple enzymatic cross-linking technique. Physicochemical characterization demonstrated that the GPM hydrogel matrix exhibited excellent stability, moderate tissue adhesion ability, and good mechanical behavior. The GPM hydrogels significantly inhibited the growth of Porphyromonas gingivalis, scavenged reactive oxygen species, attenuated inflammatory responses, and enhanced bone tissue regeneration. Intriguingly, the arrangement of the junctional epithelium, alveolar bone volume, and alveolar bone height in the GPM-treated periodontal disease group recovered to that of the healthy group. Therefore, our injectable hydrogel system with versatile functions may serve as an excellent tissue scaffold for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Cheng W, Yang H, Xiao L, Yang G, Lu Q, Kaplan DL. Nanosized Silk-Magnesium Complexes for Promotion of Angiogenic and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9880-9889. [PMID: 38359078 DOI: 10.1021/acsami.3c18195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Injectable hydrogels with osteogenic and angiogenetic properties are of interest in bone tissue engineering. Since the bioactivity of ions is concentration-dependent, nanosized silk-magnesium (Mg) complexes were previously developed and assembled into hydrogels with angiogenic capabilities but failed to control both osteogenic and angiogenetic activities effectively. Here, nanosized silk particles with different sizes were obtained by using ultrasonic treatment to control silk-Mg coordination and particle formation, resulting in silk-Mg hydrogels with different types of bioactivity. Fourier transform infrared and X-ray diffraction results revealed that different coordination intensities were present in the different complexes as a basis for the differences in activities. Slow Mg ion release was controlled by these nanosized silk-Mg complexes through degradation. With the same amount of Mg ions, the different silk-Mg complexes exhibited different angiogenic and osteogenic capacities. Complexes with both angiogenic and osteogenic capacities were developed by optimizing the sizes of the silk particles, resulting in faster and improved quality of bone formed in vivo than complexes with the same composition of silk and Mg but only angiogenic or osteogenic capacities. The biological selectivity of silk-Mg complexes should facilitate applications in tissue regeneration.
Collapse
Affiliation(s)
- Weinan Cheng
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, People's Republic of China
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
He X, Wang R, Zhou F, Liu H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int J Biol Macromol 2024; 256:128031. [PMID: 37972833 DOI: 10.1016/j.ijbiomac.2023.128031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silks fibroin can be chemically modified through amino acid side chains to obtain methacrylated silk (Sil-MA). Sil-MA could be processed into a variety of scaffold forms and combine synergistically with other biomaterials to form composites vehicle. The advent of Sil-MA material has enabled impressive progress in the development of various scaffolds based on Sil-MA type to imitate the structural and functional characteristics of natural tissues. This review highlights the reasonable design and bio-fabrication strategies of diverse Sil-MA-based tissue constructs for regenerative medicine. First, we elucidate modification methodology and characteristics of Sil-MA. Next, we describe characteristics of Sil-MA hydrogels, and focus on the design approaches and formation of different types of Sil-MA-based hydrogels. Thereafter, we present an overview of the recent advances in the application of Sil-MA based scaffolds for regenerative medicine, including detailed strategies for the engineering methods and materials used. Finally, we summarize the current research progress and future directions of Sil-MA in regenerative medicine. This review not only delineates the representative design strategies and their application in regenerative medicine, but also provides new direction in the fabrication of biomaterial constructs for the clinical translation in order to stimulate the future development of implants.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - RuiDeng Wang
- Peking University Third Hospital, Department of Orthopaedics, PR China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, PR China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Patel M, Singh SP, Dubey DK. Insights into nanomechanical behavior of B. mori silk fibroin-hydroxyapatite bio-nanocomposite using MD simulations: Role of varying hydroxyapatite content. J Mech Behav Biomed Mater 2023; 147:106125. [PMID: 37797553 DOI: 10.1016/j.jmbbm.2023.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Nanocomposite material composed of Bombyx mori Silk Fibroin and hydroxyapatite (B. mori SF-HA) is a potential biomaterial for bone tissue engineering. Here, Bombyx mori Silk Fibroin (B. mori SF) is a flexible and tough organic, polymer phase, and hydroxyapatite (HA) is hard and stiff mineral phase. Knowledge about mechanical deformation behavior together with governing mechanisms, and the role of the two phases (SF and HA phase) and interfacial interactions between them, in B. mori SF-HA biomaterial, at fundamental level is an important factor to consider while developing the tissue grafts. Such nanometer scale behavior is often preferably investigated using molecular dynamics method. Present study aims at understanding the mechanical deformation behavior and associated physical mechanisms in B. mori SF-HA bio-nanocomposite, at nanoscale. For this purpose, computational atomistic models of B. mori SF-HA bio-nanocomposite are developed with varying HA content. Mechanical behavior analysis of these composite models under tensile loading were performed using Molecular Dynamics (MD) simulations. Elastic modulus and tensile strength values in the range of 7-20 GPa and 200-700 MPa, respectively, are obtained for B. mori SF-HA composite, in case of different HA contents, wherein, increased mechanical properties are observed with increase in HA content. Analyses of the deformation trajectories show that the deformation flow behavior in B. mori SF-HA bio-nanocomposites is mainly defined by the soft SF phase. However, energetics analyses show that, the HA phase and SF-HA interfacial interactions also play a considerable role in mechanical performance of B. mori SF-HA bio-nanocomposite. Additionally, interfacial shear strength values in B. mori SF-HA bio-nanocomposite, for different HA contents, have also been obtained. The observations made and insights gained in present work has contribution and impact in gaining an insight into the mechanistic interactions occurring at nanoscale between SF and HA phases in B. mori SF-HA bio-composite.
Collapse
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Satinder Paul Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Devendra K Dubey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
14
|
Xu G, Xiao L, Guo P, Wang Y, Ke S, Lyu G, Ding X, Lu Q, Kaplan DL. Silk Nanofiber Scaffolds with Multiple Angiogenic Cues to Accelerate Wound Regeneration. ACS Biomater Sci Eng 2023; 9:5813-5823. [PMID: 37710361 DOI: 10.1021/acsbiomaterials.3c01023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Niches with multiple physical and chemical cues can influence the fate of cells and tissues in vivo. Simulating the in vivo niche in the design of bioactive materials is a challenge, particularly to tune multiple cues simultaneously in the same system. Here, an assembly strategy was developed to regulate multiple cues in the same scaffold based on the use of two silk nanofiber components that respond differently during the fabrication processes. An aqueous solution containing the two components, amorphous silk nanofibers (ASNFs) and β-sheet-rich silk nanofibers (BSNFs), was sequentially treated with an electrical field and freeze-drying processes where the BSNFs oriented to the electrical field, while the ASNFs formed stable porous structures during the lyophilization process to impact the mechanical properties. Bioactive cargo, such as deferoxamine (DFO), was loaded on the BSNFs to enrich cell responses with the scaffolds. The in vitro results revealed that the loaded DFO and the anisotropic structures with improved mechanical properties resulted in better vascularization than those of the scaffolds without the anisotropic features. The multiple cues in the scaffolds provided angiogenic niches to accelerate wound healing.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Kanda College of Nanjing Medical University, Lianyungang 222061, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Peng Guo
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Yuanyuan Wang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lyu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Xiangsheng Ding
- Department of Burns, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
15
|
Ding Z, Cheng W, Liu L, Xu G, Lu Q, Kaplan DL. Nanosized Silk-Magnesium Complexes for Tissue Regeneration. Adv Healthc Mater 2023; 12:e2300887. [PMID: 37317936 DOI: 10.1002/adhm.202300887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Metal ions provide multifunctional signals for cell and tissue functions, including regeneration. Inspired by metal-organic frameworks (MOFs), nanosized silk protein aggregates with a high negative charge density are used to form stable silk-magnesium ion complexes. Magnesium ions (Mg ions) are added directly to silk nanoparticle solutions, inducing gelation through the formation of silk-Mg coordination complexes. The Mg ions are released slowly from the nanoparticles through diffusion, with sustained release via tuning the degradation or dissolution of the nanosized silk aggregates. Studies in vitro reveal a dose-dependent influence of Mg ions on angiogenic and anti-inflammatory functions. Silk-Mg ion complexes in the form of hydrogels also stimulate tissue regeneration with a reduced formation of scar tissue in vivo, suggesting potential utility in tissue regeneration.
Collapse
Affiliation(s)
- Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
- Department of Orthopedics, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, P. R. China
| | - Lutong Liu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Gang Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Lianyungang, 222061, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
16
|
Patel M, Dubey DK, Singh SP. Molecular mechanics and failure mechanisms in B. mori Silk Fibroin-hydroxyapatite composite interfaces: Effect of crystal thickness and surface characteristics. J Mech Behav Biomed Mater 2023; 143:105910. [PMID: 37257312 DOI: 10.1016/j.jmbbm.2023.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bombyx mori Silk Fibroin-hydroxyapatite (B. mori SF-HA) bio-nanocomposite is a prospective biomaterial for tissue engineered graft for bone repair. Here, B. mori SF is primarily a soft and tough organic phase, and HA is a hard and stiff mineral phase. In biomaterial design, an understanding about the nanoscale mechanics of SF-HA interface, such as interfacial interaction and interface debonding mechanisms between the two phases is essential for obtaining required functionality. To investigate such nanoscale behavior, molecular dynamics method is a preferred approach. Present study focuses on understanding of the interface debonding mechanisms at SF-HA interface in B. mori SF-HA bio-nanocomposite at nanometer length scale. For this purpose, nanoscale atomistic models of SF-HA interface are also developed based on the HA crystal size and HA surface type (Ca2+ dominated and OH- dominated) in contact with SF. Mechanical behavior analysis of these SF-HA interface models under pull-out type test were performed using Molecular Dynamics (MD) simulations. Surface pull-off strength values in the range of 0.4-0.8 GPa were obtained for SF-HA interface models, for different HA crystal thicknesses, wherein, the pull-off strength values are found to increase with increase in HA thicknesses. Analyses show that deformation mechanisms in SF-HA interface deformation, is a combination of shear deformation in SF phase followed by disintegration of SF phase from HA block. Furthermore, higher rupture force values were obtained for SF-HA interface with Ca2+ dominated HA surface in contact with SF phase, indicating that SF protein has a higher affinity for Ca2+ dominated surface of HA phase. Current work contributes in developing an understanding of mechanistic interactions between organic and inorganic phases in B. mori SF-HA composite nanostructure.
Collapse
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Devendra K Dubey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Satinder Paul Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
17
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
18
|
Hu J, Shao J, Huang G, Zhang J, Pan S. In Vitro and In Vivo Applications of Magnesium-Enriched Biomaterials for Vascularized Osteogenesis in Bone Tissue Engineering: A Review of Literature. J Funct Biomater 2023; 14:326. [PMID: 37367290 DOI: 10.3390/jfb14060326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Bone is a highly vascularized tissue, and the ability of magnesium (Mg) to promote osteogenesis and angiogenesis has been widely studied. The aim of bone tissue engineering is to repair bone tissue defects and restore its normal function. Various Mg-enriched materials that can promote angiogenesis and osteogenesis have been made. Here, we introduce several types of orthopedic clinical uses of Mg; recent advances in the study of metal materials releasing Mg ions (pure Mg, Mg alloy, coated Mg, Mg-rich composite, ceramic, and hydrogel) are reviewed. Most studies suggest that Mg can enhance vascularized osteogenesis in bone defect areas. Additionally, we summarized some research on the mechanisms related to vascularized osteogenesis. In addition, the experimental strategies for the research of Mg-enriched materials in the future are put forward, in which clarifying the specific mechanism of promoting angiogenesis is the crux.
Collapse
Affiliation(s)
- Jie Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahui Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gan Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jieyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuting Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
19
|
Mantsou A, Papachristou E, Keramidas P, Lamprou P, Pavlidis A, Papi RM, Dimitriou K, Aggeli A, Choli-Papadopoulou T. A Novel Drastic Peptide Genetically Adapted to Biomimetic Scaffolds "Delivers" Osteogenic Signals to Human Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1236. [PMID: 37049329 PMCID: PMC10096854 DOI: 10.3390/nano13071236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
This work describes the design, preparation, and deep investigation of "intelligent nanobiomaterials" that fulfill the safety rules and aim to serve as "signal deliverers" for osteogenesis, harboring a specific peptide that promotes and enhances osteogenesis at the end of their hydrogel fibers. The de novo synthesized protein fibers, besides their mechanical properties owed to their protein constituents from elastin, silk fibroin and mussel-foot adhesive protein-1 as well as to cell-attachment peptides from extracellular matrix glycoproteins, incorporate the Bone Morphogenetic Protein-2 (BMP2) peptide (AISMLYLDEN) that, according to our studies, serves as "signal deliverer" for osteogenesis. The osteogenetic capacity of the biomaterial has been evidenced by investigating the osteogenic marker genes ALP, RUNX2, Osteocalcin, COL1A1, BMPR1A, and BMPR2, which were increased drastically in cells cultured on scaffold-BMP2 for 21 days, even in the absence of osteogenesis medium. In addition, the induction of phosphorylation of intracellular Smad-1/5 and Erk-1/2 proteins clearly supported the osteogenetic capacity of the biomaterial.
Collapse
Affiliation(s)
- Aglaia Mantsou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Eleni Papachristou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Panagiotis Keramidas
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Paraskevas Lamprou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Alexandros Pavlidis
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Rigini M. Papi
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| | - Katerina Dimitriou
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (K.D.); (A.A.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (K.D.); (A.A.)
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.M.); (E.P.); (P.K.); (P.L.); (A.P.); (R.M.P.)
| |
Collapse
|
20
|
Yang X, Huang J, Chen C, Zhou L, Ren H, Sun D. Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10506-10519. [PMID: 36800308 DOI: 10.1021/acsami.2c22771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Jinjian Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Lu Zhou
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| |
Collapse
|
21
|
Hou J, Ding Z, Zheng X, Shen Y, Lu Q, Kaplan DL. Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair. Adv Healthc Mater 2023:e2203050. [PMID: 36841910 DOI: 10.1002/adhm.202203050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.
Collapse
Affiliation(s)
- Jianwen Hou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China.,Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, 222023, P. R. China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
22
|
Wu H, Lin K, Zhao C, Wang X. Silk fibroin scaffolds: A promising candidate for bone regeneration. Front Bioeng Biotechnol 2022; 10:1054379. [PMID: 36507269 PMCID: PMC9732393 DOI: 10.3389/fbioe.2022.1054379] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
It remains a big challenge in clinical practice to repair large-sized bone defects and many factors limit the application of autografts and allografts, The application of exogenous scaffolds is an alternate strategy for bone regeneration, among which the silk fibroin (SF) scaffold is a promising candidate. Due to the advantages of excellent biocompatibility, satisfying mechanical property, controllable biodegradability and structural adjustability, SF scaffolds exhibit great potential in bone regeneration with the help of well-designed structures, bioactive components and functional surface modification. This review will summarize the cell and tissue interaction with SF scaffolds, techniques to fabricate SF-based scaffolds and modifications of SF scaffolds to enhance osteogenesis, which will provide a deep and comprehensive insight into SF scaffolds and inspire the design and fabrication of novel SF scaffolds for superior osteogenic performance. However, there still needs more comprehensive efforts to promote better clinical translation of SF scaffolds, including more experiments in big animal models and clinical trials. Furthermore, deeper investigations are also in demand to reveal the degradation and clearing mechanisms of SF scaffolds and evaluate the influence of degradation products.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Cancan Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China,Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China,*Correspondence: Cancan Zhao, ; Xudong Wang,
| |
Collapse
|
23
|
Al Maruf DSA, Ghosh YA, Xin H, Cheng K, Mukherjee P, Crook JM, Wallace GG, Klein TJ, Clark JR. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel) 2022; 14:polym14194186. [PMID: 36236133 PMCID: PMC9571534 DOI: 10.3390/polym14194186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Free flap surgery is currently the only successful method used by surgeons to reconstruct critical-sized defects of the jaw, and is commonly used in patients who have had bony lesions excised due to oral cancer, trauma, infection or necrosis. However, donor site morbidity remains a significant flaw of this strategy. Various biomaterials have been under investigation in search of a suitable alternative for segmental mandibular defect reconstruction. Hydrogels are group of biomaterials that have shown their potential in various tissue engineering applications, including bone regeneration, both through in vitro and in vivo pre-clinical animal trials. This review discusses different types of hydrogels, their fabrication techniques, 3D printing, their potential for bone regeneration, outcomes, and the limitations of various hydrogels in preclinical models for bone tissue engineering. This review also proposes a modified technique utilizing the potential of hydrogels combined with scaffolds and cells for efficient reconstruction of mandibular segmental defects.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Correspondence:
| | - Yohaann Ali Ghosh
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Payal Mukherjee
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Jeremy Micah Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute, The University of Wollongong, Wollongong 2522, Australia
| | - Gordon George Wallace
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
| | - Travis Jacob Klein
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| |
Collapse
|
24
|
Neubauer VJ, Hüter F, Wittmann J, Trossmann VT, Kleinschrodt C, Alber-Laukant B, Rieg F, Scheibel T. Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels. Biomolecules 2022; 12:biom12101413. [PMID: 36291622 PMCID: PMC9599405 DOI: 10.3390/biom12101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hierarchical structures are abundant in almost all tissues of the human body. Therefore, it is highly important for tissue engineering approaches to mimic such structures if a gain of function of the new tissue is intended. Here, the hierarchical structures of the so-called enthesis, a gradient tissue located between tendon and bone, were in focus. Bridging the mechanical properties from soft to hard secures a perfect force transmission from the muscle to the skeleton upon locomotion. This study aimed at a novel method of bioprinting to generate gradient biomaterial constructs with a focus on the evaluation of the gradient printing process. First, a numerical approach was used to simulate gradient formation by computational flow as a prerequisite for experimental bioprinting of gradients. Then, hydrogels were printed in a single cartridge printing set-up to transfer the findings to biomedically relevant materials. First, composites of recombinant spider silk hydrogels with fluorapatite rods were used to generate mineralized gradients. Then, fibroblasts were encapsulated in the recombinant spider silk-fluorapatite hydrogels and gradually printed using unloaded spider silk hydrogels as the second component. Thereby, adjustable gradient features were achieved, and multimaterial constructs were generated. The process is suitable for the generation of gradient materials, e.g., for tissue engineering applications such as at the tendon/bone interface.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Florian Hüter
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Johannes Wittmann
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Vanessa T. Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Claudia Kleinschrodt
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Bettina Alber-Laukant
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Rieg
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Engine Research Center (BERC), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Zentrum für Energietechnik (ZET), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Correspondence:
| |
Collapse
|
25
|
López Barreiro D, Martín-Moldes Z, Blanco Fernández A, Fitzpatrick V, Kaplan DL, Buehler MJ. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites. NANOSCALE 2022; 14:10929-10939. [PMID: 35852800 PMCID: PMC9351605 DOI: 10.1039/d2nr01989b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/10/2022] [Indexed: 06/02/2023]
Abstract
Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
| | - Zaira Martín-Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Adrián Blanco Fernández
- Instituto de Cerámica de Galicia (ICG), Universidade de Santiago de Compostela, Avda. do Mestre Mateo, 25, 15706, Santiago de Compostela, A Coruña, Spain
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS NANO 2022; 16:10209-10218. [PMID: 35587205 DOI: 10.1021/acsnano.2c01616] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Sheet rich silk nanofiber hydrogels are suitable scaffolds in tissue regeneration and carriers for various drugs. However, unsatisfactory mechanical performance limits its applications. Here, insight into the silk nanofibers stimulates the remodeling of previous solvent systems to actively regulate the assembly of silk nanofibers. Formic acid, a solvent of regenerated silk fibroin, is used to shield the charge repulsion of silk nanofibers to facilitate the nanofiber assembly under concentrated solutions. Formic acid was replaced with water to solidify the assembly, which induced the formation of a tough hydrogel. The hydrogels generated with this process possessed a modulus of 5.88 ± 0.82 MPa, ultimate stress of 1.55 ± 0.06 MPa, and toughness of 0.85 ± 0.03 MJ m-3, superior to those of previous silk hydrogels prepared through complex cross-linking processes. Benefiting from the dense gel network and high β-sheet content, these silk nanofiber hydrogels had good stability and antiswelling ability. The modulus could be modulated via changing the silk nanofiber concentration to provide differentiation signals to stem cells. Improved mechanical and bioactive properties with these hydrogels suggest utility in biomedical and engineering fields. More importantly, our present study reveals that the in-depth understanding of silk nanofibers could infuse power into traditional fabrication systems to achieve more high performance biomaterials, which is seldom considered in silk material studies.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Ma J, Wu S, Liu J, Liu C, Ni S, Dai T, Wu X, Zhang Z, Qu J, Zhao H, Zhou D, Zhao X. Synergistic effects of nanoattapulgite and hydroxyapatite on vascularization and bone formation in a rabbit tibia bone defect model. Biomater Sci 2022; 10:4635-4655. [PMID: 35796642 DOI: 10.1039/d2bm00547f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) is a promising scaffold material for the treatment of bone defects. However, the lack of angiogenic properties and undesirable mechanical properties (such as fragility) limits the application of HA. Nanoattapulgite (ATP) is a nature-derived clay mineral and has been proven to be a promising bioactive material for bone regeneration due to its ability to induce osteogenesis. In this study, polyvinyl alcohol/collagen/ATP/HA (PVA/COL/ATP/HA) scaffolds were printed. Mouse bone marrow mesenchymal stem/stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) were used in vitro to assess the biocompatibility and the osteogenesis and vascularization induction potentials of the scaffolds. Subsequently, in vivo micro-CT and histological staining were carried out to evaluate new bone formation in a rabbit tibial defect model. The in vitro results showed that the incorporation of ATP increased the printing fidelity and mechanical properties, with values of compressive strengths up to 200% over raw PC-H scaffolds. Simultaneously, the expression levels of osteogenic-related genes and vascularization-related genes were significantly increased after the incorporation of ATP. The in vivo results showed that the PVA/COL/ATP/HA scaffolds exhibited synergistic effects on promoting vascularization and bone formation. The combination of ATP and HA provides a promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China. .,Dalian Medical University, Dalian, 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiaoyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Zhenyu Zhang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Jixin Qu
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.,School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
28
|
Lam NT, McCluskey JB, Glover DJ. Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS APPLIED BIO MATERIALS 2022; 5:4668-4686. [PMID: 35766918 DOI: 10.1021/acsabm.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural ability of many proteins to polymerize into highly structured filaments has been harnessed as scaffolds to align functional molecules in a diverse range of biomaterials. Protein-engineering methodologies also enable the structural and physical properties of filaments to be tailored for specific biomaterial applications through genetic engineering or filaments built from the ground up using advances in the computational prediction of protein folding and assembly. Using these approaches, protein filament-based biomaterials have been engineered to accelerate enzymatic catalysis, provide routes for the biomineralization of inorganic materials, facilitate energy production and transfer, and provide support for mammalian cells for tissue engineering. In this review, we describe how the unique structural and functional diversity in natural and computationally designed protein filaments can be harnessed in biomaterials. In addition, we detail applications of these protein assemblies as material scaffolds with a particular emphasis on applications that exploit unique properties of specific filaments. Through the diversity of protein filaments, the biomaterial engineer's toolbox contains many modular protein filaments that will likely be incorporated as the main structural component of future biomaterials.
Collapse
Affiliation(s)
- Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
29
|
Lei L, Bai Y, Qin X, Liu J, Huang W, Lv Q. Current Understanding of Hydrogel for Drug Release and Tissue Engineering. Gels 2022; 8:301. [PMID: 35621599 PMCID: PMC9141029 DOI: 10.3390/gels8050301] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Due to their good absorption, satisfactory biocompatibility, and high safety, hydrogels have been widely used in the field of biomedicine, including for drug delivery and tissue regeneration. In this review, we introduce the characteristics and crosslinking methods of natural and synthetic hydrogels. Then, we highlight the design and principle of intelligent hydrogels (i.e., responsive hydrogels) used for drug release. Moreover, we introduce the application of the application of hydrogels in drug release and tissue engineering, and the limitations and research directions of hydrogel in drug release and tissue engineering are also considered. We hope that this review can provide a reference for follow-up studies in related fields.
Collapse
Affiliation(s)
- Lanjie Lei
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang 332000, China
| | - Yujing Bai
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
30
|
Zhang J, Li S, Yang Z, Liu C, Chen X, Zhang Y, Zhang F, Shi H, Chen X, Tao L, Shan H, Zhang M. Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. BIOMATERIALS ADVANCES 2022; 135:212743. [PMID: 35929216 DOI: 10.1016/j.bioadv.2022.212743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S), an important endogenous signaling molecule, plays an important neuroprotective role in the central nervous system. However, there is no ideal delivery material or method involving the sustained and controlled release of H2S for clinical application in brain diseases. Silk fibroin (SF)-based hydrogels have become a potentially promising strategy for local, controlled, sustained drug release in the treatment of various disorders. Here, we show a silk fibroin (SF)-based hydrogel with sustained H2S delivery (H2S@SF hydrogel) is effective in treating brain injury through stereotactic orthotopic injection in a severe intracerebral hemorrhage (ICH) mouse model. In this study, we observed H2S@SF hydrogel sustained H2S release in vitro and in vivo. The physicochemical properties of H2S@SF hydrogel were studied using FE-SEM, Raman spectroscopy and Rheological analysis. Treatment with H2S@SF hydrogel attenuated brain edema, reduced hemorrhage volume and improved the recovery of neurological deficits after severe ICH following stereotactic orthotopic injection. Double immunofluorescent staining also revealed that H2S@SF hydrogel may reduce cell pyroptosis in the striatum, cortex and hippocampus. However, when using endogenous H2S production inhibitor AOAA, H2S@SF hydrogel could not suppress ICH-induced cell pyroptosis. Hence, the therapeutic effect of the H2S@SF hydrogel may be partly the result of the slow-release of H2S and/or the effect of the SF hydrogel on the production of endogenous H2S. Altogether, the results exhibit promising attributes of injectable silk fibroin hydrogel and the utility of H2S-loaded injectable SF hydrogel as an alternative biomaterial toward brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Sunao Li
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Zhenbei Yang
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou 215001, China
| | - Chao Liu
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Xueshi Chen
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feng Zhang
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou 215001, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiping Chen
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Luyang Tao
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China.
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China.
| | - Mingyang Zhang
- Institute of Forensic Sciences, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
31
|
Hodgkinson T, Amado IN, O'Brien FJ, Kennedy OD. The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioeng 2022. [DOI: 10.1063/5.0068277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tom Hodgkinson
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Isabel N. Amado
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials Bio-Engineering Research Centre (AMBER), Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Zhang M, Liu J, Zhu T, Le H, Wang X, Guo J, Liu G, Ding J. Functional Macromolecular Adhesives for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1-19. [PMID: 34939784 DOI: 10.1021/acsami.1c17434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin 132000, People's Republic of China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, 1023 Southern Shatai Road, Guangzhou 510515, People's Republic of China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
33
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
34
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
35
|
Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021; 276:120995. [PMID: 34256231 PMCID: PMC8408341 DOI: 10.1016/j.biomaterials.2021.120995] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our goal was to generate functionalized 3D-printed scaffolds for bone regeneration using silk-hydroxyapatite bone cements and osteoinductive, proangiogenic and neurotrophic growth factors or morphogens for accelerated bone formation. 3D printing was utilized to generate macroporous scaffolds with controlled geometries and architectures that promote osseointegration. We build on the knowledge that the osteoinductive factor Bone Morphogenetic Protein-2 (BMP2) can also positively impact vascularization, Vascular Endothelial Growth Factor (VEGF) can impact osteoblastic differentiation, and that Neural Growth Factor (NGF)-mediated signaling can influence bone regeneration. We assessed functions on the 3D printed construct via the osteogenic differentiation of human mesenchymal stem cells; migration and proliferation of human umbilical vein endothelial cells; and proliferation of human induced neural stem cells. The scaffolds provided mechanical properties suitable for bone and the materials were cytocompatible, osteoconductive and maintained the activity of the morphogens and cytokines. Synergistic outcomes between BMP-2, VEGF and NGF in terms of osteoblastic differentiation in vitro were identified, based on the upregulation of genes associated with osteoblastic differentiation (Runt-related transcription factor-2, Osteopontin, Bone Sialoprotein). Additional studies will be required to assess these scaffold designs in vivo. These results are expected to have a strong impact in bone regeneration in dental, oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Anna Deck
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Anne Valat
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dana Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
36
|
Yu Q, Meng Z, Liu Y, Li Z, Sun X, Zhao Z. Photocuring Hyaluronic Acid/Silk Fibroin Hydrogel Containing Curcumin Loaded CHITOSAN Nanoparticles for the Treatment of MG-63 Cells and ME3T3-E1 Cells. Polymers (Basel) 2021; 13:polym13142302. [PMID: 34301063 PMCID: PMC8309346 DOI: 10.3390/polym13142302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
After an osteosarcoma excision, recurrence and bone defects are significant challenges for clinicians. In this study, the curcumin (Cur) loaded chitosan (CS) nanoparticles (CCNP) encapsulated silk fibroin (SF)/hyaluronic acid esterified by methacrylate (HAMA) (CCNPs-SF/HAMA) hydrogel for the osteosarcoma therapy and bone regeneration was developed by photocuring and ethanol treatment. The micro or nanofibers networks were observed in the CCNPs-SF/HAMA hydrogel. The FTIR results demonstrated that alcohol vapor treatment caused an increase in β-sheets of SF, resulting in the high compression stress and Young’s modulus of CCNPs-SF/HAMA hydrogel. According to the water uptake analysis, SF caused a slight decrease in water uptake of CCNPs-SF/HAMA hydrogel while CCNPs could enhance the water uptake of it. The swelling kinetic results showed that both the CCNPs and the SF increased the swelling ratio of CCNPs-SF/HAMA hydrogel. The accumulative release profile of CCNPs-SF/HAMA hydrogel showed that the release of Cur from CCNPs-SF/HAMA hydrogel was accelerated when pH value was decreased from 7.4 to 5.5. Besides, compared with CCNPs, the CCNPs-SF/HAMA hydrogel had a more sustainable drug release, which was beneficial for the long-term treatment of osteosarcoma. In vitro assay results indicated that CCNPs-SF/HAMA hydrogel with equivalent Cur concentration of 150 μg/mL possessed both the effect of anti-cancer and promoting the proliferation of osteoblasts. These results suggest that CCNPs-SF/HAMA hydrogel with superior physical properties and the bifunctional osteosarcoma therapy and bone repair may be an excellent candidate for local cancer therapy and bone regeneration.
Collapse
Affiliation(s)
- Qingwen Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Q.Y.); (Z.M.); (Z.L.); (X.S.)
| | - Zhiyuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Q.Y.); (Z.M.); (Z.L.); (X.S.)
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Zehao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Q.Y.); (Z.M.); (Z.L.); (X.S.)
| | - Xing Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Q.Y.); (Z.M.); (Z.L.); (X.S.)
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Q.Y.); (Z.M.); (Z.L.); (X.S.)
- Correspondence: ; Tel.: +86-27-87651853
| |
Collapse
|
37
|
He M, Hou Y, Zhu C, He M, Jiang Y, Feng G, Liu L, Li Y, Chen C, Zhang L. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjug Chem 2021; 32:1915-1925. [PMID: 34247477 DOI: 10.1021/acs.bioconjchem.1c00322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A three-dimensional (3D) printed biodegradable hydrogel scaffold with a strong self-expanding ability to conform to the contour of irregular bone defects and be closely adjacent to host tissues is reported herein. The scaffold has a triple cross-linked network structure consisting of photo-cross-linked polyacrylamide (PAAM) and polyurethane (PU) as the primary IPN network and chemical cross-linked gelatin (Gel) as the secondary network, which confers the scaffold with good mechanical properties. The addition of PU in the polymerization process of acrylamide (AAM) can improve the ultraviolet (UV) photocuring efficiency of the hydrogel and incorporate abundant hydrogen bonds between the PAAM copolymer chain and the PU chain. The results show that the hydrogel scaffold contains regular structures with smooth morphology, excellent dimensional stability, and uniform aperture. The degradation rate of the hydrogel scaffold is controllable through adjusting cross-linking agents and can be up to about 60% after degradation for 28 days. More importantly, the rapid self-inflating characteristic of the scaffold in water, that is, the volume of hydrogel scaffold can increase to about 8 times that of their own in an hour and can generate a slight compressive stress on the surrounding host tissue, thus stimulating the reconstruction and growth of new bone tissues. The in vitro experiment indicates that the scaffold is nontoxic and biocompatible. The in vivo experiment shows that the PU/PAAM/Gel chemically cross-linked scaffold displays the desirable osteogenic capability. This UV-curable 3D printed self-adaptive and degradable hydrogel scaffold holds great potential for nonload-bearing bone repair.
Collapse
Affiliation(s)
- Meiling He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Miaomiao He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yulin Jiang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Chen Chen
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
38
|
Belda Marín C, Egles C, Humblot V, Lalatonne Y, Motte L, Landoulsi J, Guénin E. Gold, Silver, and Iron Oxide Nanoparticle Incorporation into Silk Hydrogels for Biomedical Applications: Elaboration, Structure, and Properties. ACS Biomater Sci Eng 2021; 7:2358-2371. [PMID: 34043329 DOI: 10.1021/acsbiomaterials.1c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk fibroin (SF) is a versatile material with biodegradable and biocompatible properties, which make it fit for broad biomedical applications. In this context, the incorporation of nanosized objects into SF allows the development of a variety of bionanocomposites with tailored properties and functions. Herein, we report a thorough investigation on the design, characterization, and biological evaluation of SF hydrogels incorporating gold, silver, or iron oxide nanoparticles. The latter are synthesized in aqueous media using a biocompatible ligand allowing their utilization in various biomedical applications. This ligand seems to play a pivotal role in nanoparticle dispersion within the hydrogel. Results show that the incorporation of nanoparticles does not greatly influence the mechanism of SF gelation and has a minor impact on the mechanical properties of the so-obtained bionanocomposites. By contrast, significant changes are observed in the swelling behavior of these materials, depending on the nanoparticle used. Interestingly, the main characteristics of these bionanocomposites, related to their potential use for biomedical purposes, show the successful input of nanoparticles, including antibacterial properties for gold and silver nanoparticles and magnetic properties for iron oxide ones.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Université de echnologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France.,Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Christophe Egles
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| | - Vincent Humblot
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Yoann Lalatonne
- INSERM U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, F-93017 Bobigny, France.,Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Laurence Motte
- INSERM U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, F-93017 Bobigny, France
| | - Jessem Landoulsi
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Erwann Guénin
- Université de echnologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| |
Collapse
|
39
|
Yin Z, Liu H, Lin M, Xie W, Yang X, Cai Y. Controllable performance of a dopamine-modified silk fibroin-based bio-adhesive by doping metal ions. Biomed Mater 2021; 16. [PMID: 33979788 DOI: 10.1088/1748-605x/ac0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Bio-adhesives are essential for wound healing because of their convenience and safety. Although widely used as biomaterials, silk fibroin's (SF's) further application as bio-adhesive is hindered due to its weak stickiness with tissue and slow gelation speed. Here, a dopamine-modified SF-based bio-adhesive is fabricated by using genipin as the chemical cross-linking agent. Furthermore, metal ions have been used to adjust the adhesion property of the bio-adhesive. The experimental results shows that the dopamine-modified SF-based composite holds a better stickiness except slow gelation speed. The doping of Cu2+and Fe3+can accelerate the gelation of the bio-adhesive. Compared with Cu2+, Fe3+has a stronger effect on the gelation speed of the bio-adhesive, which is positive correlative to the concentration of Fe3+. The adhesive has injectability and degradability. In addition, the SF-based adhesive has good biocompatibility and good improvement for cell migrationin vitro. The SF-based bio-adhesive holds potential application in the field of rapid fixation of wounds.
Collapse
Affiliation(s)
- Zichu Yin
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Han Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Minjie Lin
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wenjiao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaogang Yang
- Academy of Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
40
|
Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 2021; 9:1238-1258. [PMID: 33406183 DOI: 10.1039/d0tb02099k] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the hydrogels prepared from silk fibroin have received immense research attention due to the advantages of safe nature, biocompatibility, controllable degradation and capability to combine with other materials. They have broad application prospects in biomedicine and other fields. However, the traditional silk protein hydrogels have a simple network structure and single functionality, thus, leading to poor adaptability towards complex application environments. As a result, the application fields and development have been significantly restricted. However, the development of functional silk protein hydrogels has provided the opportunities to overcome the limitations of the silk protein hydrogels. In recent years, the functional design of the silk protein hydrogels and their potential applications have attracted the attention of scholars worldwide. Nevertheless, a comprehensive review on functional silk protein hydrogels is missing so far. In order to gain an in-depth understanding of the development status of the functional silk protein hydrogels, this article reviews the current status of the preparation, properties and application of the functional silk protein hydrogels. The article first briefly introduces the current cross-linking methods (including physical and chemical cross-linking), principles, advantages and limitations of the silk protein hydrogels. Subsequently, the types of functional silk protein hydrogels (e.g., high strength, injectable, self-healing, adhesive, conductive, environmental stimuli-responsive, 3D printable, etc.) and design principles for functional implementation have been introduced. Next, based on the advantages of the various functional aspects of the silk protein hydrogels, the applications of these hydrogels in the biomedical field (tissue engineering, sustained drug release, wound repair, adhesives, etc.) and bioelectronics are reviewed. Finally, the development prospects and challenges associated with silk protein functional hydrogels have been analyzed. It is hoped that this study will contribute towards the future innovation of the silk protein hydrogels by promoting the rational design of new mechanisms and successful realization of the target applications.
Collapse
Affiliation(s)
- Haiyan Zheng
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| | - Baoqi Zuo
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| |
Collapse
|
41
|
Liu C, Yang G, Zhou M, Zhang X, Wu X, Wu P, Gu X, Jiang X. Magnesium Ammonium Phosphate Composite Cell-Laden Hydrogel Promotes Osteogenesis and Angiogenesis In Vitro. ACS OMEGA 2021; 6:9449-9459. [PMID: 33869925 PMCID: PMC8047646 DOI: 10.1021/acsomega.0c06083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
Injectable hydrogels provide an effective strategy for minimally invasive treatment on irregular bony defects in the maxillofacial region. To improve the osteoinduction of gelatin methacrylate (GelMA), we fabricated a three-dimensional (3D) culture system based on the incorporation of magnesium ammonium phosphate hexahydrate (struvite) into GelMA. The optimal concentration of struvite was investigated using the struvite extracts, and 500 μg mL-1 was found to be the most suitable concentration for the osteogenesis of dental pulp stem cells (DPSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). We prepared the GelMA composite (MgP) with 500 μg mL-1 struvite. Struvite did not affect the cross-linking of GelMA and released Mg2+ during degradation. The cell delivery system using MgP improved the laden-cell viability, upregulated the expression of osteogenic and angiogenic-differentiation-related genes, and promoted cell migration. Overall, the modifications made to the GelMA in this study improved osteoinduction and demonstrated great potential for application in vascularized bone tissue regeneration.
Collapse
Affiliation(s)
- Chang Liu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Mingliang Zhou
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiangkai Zhang
- Department
of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Engineering
Research Center of Advanced Dental Technology and Materials, Shanghai
Key Laboratory of Stomatology & Shanghai Research Institute of
Stomatology, National Clinical Research Center for Oral Diseases,
Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiaolin Wu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Peishi Wu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Department
of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Engineering
Research Center of Advanced Dental Technology and Materials, Shanghai
Key Laboratory of Stomatology & Shanghai Research Institute of
Stomatology, National Clinical Research Center for Oral Diseases,
Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiaoyu Gu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
42
|
Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Kaneko A, Marukawa E, Harada H. Hydroxyapatite Nanoparticles as Injectable Bone Substitute Material in a Vertical Bone Augmentation Model. In Vivo 2021; 34:1053-1061. [PMID: 32354892 DOI: 10.21873/invivo.11875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/10/2022]
Abstract
AIM The aim of this in vivo study was to evaluate the utility of bone graft gel containing hydroxyapatite nanoparticles in promoting bone regeneration in a mouse model of vertical bone augmentation. MATERIALS AND METHODS Gel implants with high and low viscosity were compared for their bone regenerating ability. Bone formation at 12 weeks and material reactions were observed radiographically and histologically. RESULTS Radiological analysis showed that most bone augmentation area in the graft material occurred in the fourth week after surgery regardless of the viscosity of the gel, and then gradually decreased. The volume of bone augmentation area was greater in the high-viscosity implant group than in the low-viscosity implant group at all time points, the difference was statistically significant at 8 and 12 weeks. Histological evaluation indicated that the new bone area was significantly smaller in the high-viscosity implant group. CONCLUSION Gelatinous graft materials containing hydroxyapatite nanoparticles were confirmed to be useful in vertical bone augmentation.
Collapse
Affiliation(s)
- Aoi Kaneko
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Marukawa
- Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Ding Z, Zhang Y, Guo P, Duan T, Cheng W, Guo Y, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable Desferrioxamine-Laden Silk Nanofiber Hydrogels for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2021; 7:1147-1158. [PMID: 33522800 DOI: 10.1021/acsbiomaterials.0c01502] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysangiogenesis and chronic inflammation are two critical reasons for diabetic foot ulcers. Desferrioxamine (DFO) was used clinically in the treatment of diabetic foot ulcers by repeated injections because of its capacity to induce vascularization. Biocompatible carriers that release DFO slowly and facilitate healing simultaneously are preferable options to accelerate the healing of diabetic wounds. Here, DFO-laden silk nanofiber hydrogels that provided a sustained release of DFO for more than 40 days were used to treat diabetic wounds. The DFO-laden hydrogels stimulated the healing of diabetic wounds. In vitro cell studies revealed that the DFO-laden hydrogels modulated the migration and gene expression of endothelial cells, and they also tuned the inflammation behavior of macrophages. These results were confirmed in an in vivo diabetic wound model. The DFO-laden hydrogels alleviated dysangiogenesis and chronic inflammation in the diabetic wounds, resulting in a more rapid wound healing and increased collagen deposition. Both in vitro and in vivo studies suggested potential clinical applications of these DFO-laden hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yunhua Zhang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Peng Guo
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Tianbi Duan
- Center of Technology, Shuanghai Inoherb Cosmetics Co. Ltd., Shanghai 200444, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Yang Guo
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
45
|
Chen R, Chen HB, Xue PP, Yang WG, Luo LZ, Tong MQ, Zhong B, Xu HL, Zhao YZ, Yuan JD. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. J Mater Chem B 2021; 9:1107-1122. [PMID: 33427267 DOI: 10.1039/d0tb02553d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone repair and regeneration processes are markedly impaired in diabetes mellitus (DM). Intervening approaches similar to those developed for normal healing conditions have been adopted to combat DM-associated bone regeneration. However, limited outcomes were achieved for these approaches. Hence, together with osteoconductive hydroxyapatite (HA) nanocrystals, osteoinductive magnesium oxide (MgO) nanocrystals were uniformly mounted into the network matrix of an organic hydrogel composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hybrid and rough hydrogel scaffold. It was hypothesized that the HA/MgO nanocrystal hybrid hydrogel (HA/MgO-H) scaffold can significantly promote bone repair in DM rats via the controlled release of Mg2+. The HA/MgO-H scaffold exhibited a sponge-like morphology with porous 3D networks inside it and displayed higher mechanical strength than a PGA-Cys scaffold. Meanwhile, the HA/MgO-H scaffold gradually formed a tough hydrogel with G' of more than 1000 Pa after hydration, and its high hydration swelling ratio was still retained. Moreover, after the chemical degradation of the dispersed MgO nanocrystals, slow release of Mg2+ from the hydrogel matrix was achieved for up to 8 weeks because of the chelation between Mg2+ and the carboxyl groups of PGA-Cys. In vitro cell studies showed that the HA/MgO-H scaffold could not only effectively promote the migration and proliferation of BMSCs but could also induce osteogenic differentiation. Moreover, in the 8th week after implanting the HA/MgO-H scaffold into femur bone defect zones of DM rats, more effective bone repair was presented by micro-CT imaging. The bone mineral density (397.22 ± 16.36 mg cm-3), trabecular thickness (0.48 ± 0.07 mm), and bone tissue volume/total tissue volume (79.37 ± 7.96%) in the HA/MgO-H group were significantly higher than those in the other groups. Moreover, higher expression of COL-I and OCN after treatment with HA/MgO-H was also displayed. The bone repair mechanism of the HA/MgO-H scaffold was highly associated with reduced infiltration of pro-inflammatory macrophages (CD80+) and higher angiogenesis (CD31+). Collectively, the HA/MgO-H scaffold without the usage of bioactive factors may be a promising biomaterial to accelerate bone defect healing under diabetes mellitus.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao F, Jiao C, Yu B, Cong H, Shen Y. Preparation and biomedical application of injectable hydrogels. MATERIALS CHEMISTRY FRONTIERS 2021; 5:4912-4936. [DOI: 10.1039/d1qm00489a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The preparation of multifunctional injectable hydrogels, as well as the classification of injectable hydrogels according to different functions, most summarize the applications of injectable hydrogels in different biomedical fields.
Collapse
Affiliation(s)
- Fengyuan Gao
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Caicai Jiao
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| |
Collapse
|
47
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
48
|
Eivazzadeh-Keihan R, Khalili F, Aliabadi HAM, Maleki A, Madanchi H, Ziabari EZ, Bani MS. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int J Biol Macromol 2020; 162:1959-1971. [DOI: 10.1016/j.ijbiomac.2020.08.090] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
49
|
Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 2020; 259:120299. [PMID: 32827797 DOI: 10.1016/j.biomaterials.2020.120299] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/12/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
|
50
|
Pan Y, Zhao Y, Kuang R, Liu H, Sun D, Mao T, Jiang K, Yang X, Watanabe N, Mayo KH, Lin Q, Li J. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111158. [DOI: 10.1016/j.msec.2020.111158] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
|