1
|
Zhai R, Zheng M, Yan Y, Ren Y, Li Z, Zhou H, Shi W, Kong X, Shao M. Chemical upcycling of Ni from electroplating wastewater into a well-defined catalyst for electrooxidation of glycerol to formate. Dalton Trans 2025; 54:3847-3856. [PMID: 39881586 DOI: 10.1039/d4dt03577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Highly effective and efficient remediation of hazardous Ni waste from electroless electroplating wastewater remains a significant challenge. However, rather than regarding it as hazardous waste, Ni-electroplating wastewater can instead be considered a huge resource of Ni. Herein, we report a convenient hydrothermal strategy for upcycling Ni from nickel-electroplating wastewater into a carbon-doped Ni-P alloy (denoted as C/Ni-Px) electrocatalyst for the oxidation of glycerol to formate. This strategy can reduce the total Ni2+ concentration from thousands of milligrams per liter to lower than the advisory level of discharge standards for electroplating effluent in China (≤0.5 mg L-1), demonstrating an excellent nickel uptake capacity and potential for practical application in both simulated and actual Ni-electroplating wastewater. Furthermore, the resultant C/Ni-Px exhibited good electrooxidation of glycerol to formate with a selectivity of 96.4%, surpassing a vast majority of previously reported electrocatalysts. Therefore, our findings not only provide an efficient strategy for removing Ni from electroless electroplating wastewater but also advance the upcycling of Ni waste into a functional material for the electrocatalytic synthesis of value-added products.
Collapse
Affiliation(s)
- Ranran Zhai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Meiqi Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yifan Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Quzhou Institute for Innovation in Resource Chemical Engineering, Zhejiang, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Liu Y, Hao X, Tang C, Li Z, Wu S, Qiao S, Zhou H. Oxygen Evolution Enhancement of Oxalate-Based Nickel-Iron MOF through Bipyridine Coordinated Strategy. Inorg Chem 2024; 63:23374-23387. [PMID: 39565956 DOI: 10.1021/acs.inorgchem.4c04133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The catalytic performance of oxalate-based Ni-Fe metal-organic frameworks (MOFs) in the oxygen evolution reaction (OER) was investigated via a coordination strategy. The bidentate chelating ligand 2,2'-bpy (2,2'-bipyridine), was utilized to improve the catalytic kinetics under ambient conditions. The results revealed that a MOF-to-MOF transformation including the formation of [M(2,2'-bpy)n]2/3+ (M = Ni/Fe, n = 1-3) could boost alkaline OER, giving an impressive ultralow overpotential of 220 mV at a current density of 10 mA/cm2 in a 1 M KOH solution, surpassing the performance of control group activity of oxalate-based Ni-Fe MOF. However, excessive addition of the ligand had a negative effect, leading to decreased activity. Further investigation revealed the double role of 2,2'-bpy: Both promote and suppress catalytic reactions. The catalytic mechanism was then discussed, highlighting the potential of secondary ligands to effectively fine-tune the catalytic behavior of these materials.
Collapse
Affiliation(s)
- Yashu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Xuan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zehang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shilin Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Qiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongbo Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Lu X, Yan K, Yu Z, Wang J, Liu R, Zhang R, Qiao Y, Xiong J. Transition metal phosphides: synthesis nanoarchitectonics, catalytic properties, and biomass conversion applications. CHEMSUSCHEM 2024; 17:e202301687. [PMID: 38221143 DOI: 10.1002/cssc.202301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Developing inexpensive and efficient catalysts for biomass hydrogenation or hydrodeoxygenation (HDO) is essential for efficient energy conversion. Transition metal phosphides (TMPs), with the merits of abundant active sites, unique physicochemical properties, tunable component structures, and excellent catalytic activities, are recognized as promising biomass hydrogenation or HDO catalytic materials. Nevertheless, the biomass hydrogenation or HDO catalytic applications of TMPs are still limited by various complexities and inherent performance bottlenecks, and thus their future development and utilization remain to be systematically sorted out and further explored. This review summarizes the current popular strategies for the preparation of TMPs. Subsequently, based on the structural and electronic properties of TMPs, the catalytic activity origins of TMPs in biomass hydrogenation or HDO is elucidated. Additionally, the application of TMPs in efficient biomass hydrogenation or HDO catalysis, as well as highly targeted multiscale strategies to enhance the catalytic performance of TMPs, are comprehensively described. Finally, large-scale amplification synthesis, rational construction of TMP-based catalysts and in-depth study of the catalytic mechanism are also mentioned as challenges and future directions in this research field. Expectedly, this review can provide professional and targeted guidance for the rational design and practical application of TMPs biomass hydrogenation or HDO catalysts.
Collapse
Affiliation(s)
- Xuebin Lu
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Kai Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Runyu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| |
Collapse
|
4
|
Herrera FC, Caraballo RM, Vensaus P, Soler Illia GJAA, Hamer M. Fe-Ni porphyrin/mesoporous titania thin film electrodes: a bioinspired nanoarchitecture for photoelectrocatalysis. RSC Adv 2024; 14:15832-15839. [PMID: 38756854 PMCID: PMC11095088 DOI: 10.1039/d3ra08047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Porphyrin and porphyrinoid derivatives have been extensively studied in the assembly of catalysts and sensors, seeking biomimetic and bioinspired activity. In particular, Fe and Ni porphyrins can be used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by immobilization of these molecular catalysts on semiconductor materials. In this study, we designed a hybrid material containing a crystalline mesoporous TiO2 thin film in which the catalytic centres are Ni-porphyrin (NiP), Fe-porphyrin (FeP), and a NiP/FeP bimetallic system to assess whether the coexistence of both metalloporphyrins improves the OER activity. The obtained photoelectrodes were physicochemically and morphologically characterized through high-resolution FE-SEM images, UV-vis and Raman spectroscopies, cyclic voltammetry, and impedance measurements. The results show a differential behavior of the mono- and bimetallic porphyrin systems, where the Fe(iii) centre in FeP may increase the acidity and lower the reduction potential of the Ni2+/3+ couple when co-deposited with NiP leading to an improved photoelectrochemical water-oxidation performance. We have validated the cooperative effect of both metal complexes within this novel system, where the μ-peroxo-bridged interaction between Fe and Ni is integrated into a supramolecular heterometallic structure of porphyrins.
Collapse
Affiliation(s)
- Facundo C Herrera
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
- Laboratorio Argentino Haces de Neutrones-CNEA Av. Gral. Paz 1499 Villa Maipú Argentina
| | - Rolando M Caraballo
- INEDES, UNLu-CONICET Av. Constitución y Ruta Nac. No. 5 (CP6700) Luján Argentina
| | - Priscila Vensaus
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín (INS-UNSAM)-CONICET 1650 San Martín Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET Juan María Gutiérrez 1150 (CP1613) Los Polvorines Argentina
| |
Collapse
|
5
|
Tang P, Di Vizio B, Yang J, Patil B, Cattelan M, Agnoli S. Fe,Ni-Based Metal-Organic Frameworks Embedded in Nanoporous Nitrogen-Doped Graphene as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:751. [PMID: 38727345 PMCID: PMC11085937 DOI: 10.3390/nano14090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
The quest for economically sustainable electrocatalysts to replace critical materials in anodes for the oxygen evolution reaction (OER) is a key goal in electrochemical conversion technologies, and, in this context, metal-organic frameworks (MOFs) offer great promise as alternative electroactive materials. In this study, a series of nanostructured electrocatalysts was successfully synthesized by growing tailored Ni-Fe-based MOFs on nitrogen-doped graphene, creating composite systems named MIL-NG-n. Their growth was tuned using a molecular modulator, revealing a non-trivial trend of the properties as a function of the modulator quantity. The most active material displayed an excellent OER performance characterized by a potential of 1.47 V (vs. RHE) to reach 10 mA cm-2, a low Tafel slope (42 mV dec-1), and a stability exceeding 18 h in 0.1 M KOH. This outstanding performance was attributed to the synergistic effect between the unique MOF architecture and N-doped graphene, enhancing the amount of active sites and the electron transfer. Compared to a simple mixture of MOFs and N-doped graphene or the deposition of Fe and Ni atoms on the N-doped graphene, these hybrid materials demonstrated a clearly superior OER performance.
Collapse
Affiliation(s)
- Panjuan Tang
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
| | - Bhushan Patil
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
| | - Mattia Cattelan
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Research Unit, University of Padova, 35131 Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (P.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Research Unit, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Zhou H, Wei Z, Nyaaba AA, Kang Z, Liu Y, Chen C, Zhu J, Ji X, Zhu G. Ligand leaching enabling improved electrocatalytic oxygen evolution performance. Dalton Trans 2023. [PMID: 37448344 DOI: 10.1039/d3dt02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Design and fabrication of cost-effective (pre-)catalysts are important for water splitting and metal-air batteries. In this direction, various metal-organic frameworks (MOFs) have been investigated as pre-catalysts for oxygen evolution. However, the activation process and the complex reconstruction behaviour of these MOFs are not well understood. Herein, square-like MOF nanosheets in which carbon nanotubes were embedded were prepared by introducing an amine ligand to coordinate with Ni ions and then reacting with [Fe(CN)6]3-. The formed MOF nanosheets containing nickel and iron species were then activated by NaBH4, inducing the leaching of ligands and the formation of tiny active species in situ loaded on carbon nanotubes. The prepared catalyst shows superior oxygen evolution performance with an ultralow overpotential of 231 mV for 10 mA cm-2, a fast reaction kinetics with a small Tafel slope of 52.3 mV dec-1, and outstanding catalysis stability. The excellent electrocatalytic performance for oxygen evolution can be attributed to the structural advantage of in situ derived small sized active species and one-dimensional conductive networks. This work provides a new thought for the enhancement of the electrocatalytic performance of MOF materials.
Collapse
Affiliation(s)
- Hongbo Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Zi Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Albert Akeno Nyaaba
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Ziliang Kang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Yashu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Caiyao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Jun Zhu
- Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiafang Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
8
|
Yue C, Liu N, Li Y, Liu Y, Sun F, Bao W, Tuo Y, Pan Y, Jiang P, Zhou Y, Lu Y. From atomic bonding to heterointerfaces: Co 2P/WC constructed by lacunary polyoxometalates induced strategy as efficient hydrogen evolution electrocatalysts at all pH values. J Colloid Interface Sci 2023; 645:276-286. [PMID: 37150001 DOI: 10.1016/j.jcis.2023.04.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Herein, a novel in-situ "atomic binding to heterointerface" strategy is proposed to obtain Co2P/WC@NC/CNTs catalyst with abundant heterointerface between cobalt phosphide and tungsten carbide (Co2P/WC) by the polyoxometalates (POMs)-based metal-organic frameworks (MOFs) precursor. The natural quasi interfaces in K10[Co4(H2O)2(PW9O34)2] molecule crucially guide the abundant Co2P/WC heterointerfaces down to atomic level. Meanwhile, MOFs cages can effectively encapsulate nanosized POMs at molecular level to control the size and dispersion of Co2P/WC nanoparticle, while carbon nanotubes (CNTs) enhance conductivity at nanoscale level. The interfacial electronic modulation between Co2P and WC lowering the energy barrier of the rate determining step, thus Co2P/WC@NC/CNTs showed reasonable hydrogen evolution reaction (HER) activity and stability in all-pH media including sea water. This work provides a "bottom-up" synthetic strategy for confined heterostructures, thus offering the prospect for more efficient interfacial charge modulation.
Collapse
Affiliation(s)
- Changle Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Na Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaping Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengyue Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wenjing Bao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yongxiao Tuo
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ping Jiang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
9
|
Wang J, Yang K, Hu H, Chen W, Lu Y, Zhou X. Improvement of electron mobility of mesoporous PCN-600 single crystal microwires aligned via the steric hindrance effect. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Sharma D, Choudhary P, Kumar S, Krishnan V. Transition Metal Phosphide Nanoarchitectonics for Versatile Organic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207053. [PMID: 36650943 DOI: 10.1002/smll.202207053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Transition metal phosphides (TMP) posses unique physiochemical, geometrical, and electronic properties, which can be exploited for different catalytic applications, such as photocatalysis, electrocatalysis, organic catalysis, etc. Among others, the use of TMP for organic catalysis is less explored and still facing many complex challenges, which necessitate the development of sustainable catalytic reaction protocols demonstrating high selectivity and yield of the desired molecules of high significance. In this regard, the controlled synthesis of TMP-based catalysts and thorough investigations of underlying reaction mechanisms can provide deeper insights toward practical achievement of desired applications. This review aims at providing a comprehensive analysis on the recent advancements in the synthetic strategies for the tailored and tunable engineering of structural, geometrical, and electronic properties of TMP. In addition, their unprecedented catalytic potential toward different organic transformation reactions is succinctly summarized and critically analyzed. Finally, a rational perspective on future opportunities and challenges in the emerging field of organic catalysis is provided. On the account of the recent achievements accomplished in organic synthesis using TMP, it is highly anticipated that the use of TMP combined with advanced innovative technologies and methodologies can pave the way toward large scale realization of organic catalysis.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
11
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
12
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
13
|
Liu Y, Fan S, Chen Y, Chen J, Meng J, Yang M, Li C, Qing H, Xiao Z. Catalytic membrane nano reactor with two-dimensional channels assembly of graphene oxide nanosheets with ZIF-67 derived Co3S4 catalyst immobilized on. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Nam D, Lee G, Kim J. Hollow CoFe-based hybrid composites derived from unique S-modulated coordinated transition bimetal complexes for efficient oxygen evolution from water splitting under alkaline conditions. Dalton Trans 2022; 51:14250-14259. [PMID: 36065899 DOI: 10.1039/d2dt02415b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen evolution reaction (OER) is an important reaction in water splitting. However, the high cost and slow-rate catalysts hinder commercial applications. Although an important process for manufacturing of hollow structures, it is difficult to construct complicated hollow structures with an excellent and regulable shape for multi-component materials. In this study, we demonstrate that sulfur-Co,Fe bimetallic nitrogen carbon hollow composite hybrids (x-S-CoFe@NC) can be synthesized by regulating the amount of sulfur and using the hydrothermal method. For OER, 32-S-CoFe@NC exhibits excellent electrocatalytic activity with a low overpotential of 232 mV, which is higher than those of 0-S-CoFe@NC (270 mV), 23-S-CoFe@NC (247 mV), and RuO2 (243 mV) catalysts at 10 mA cm-2. In addition, with air as the cathode, a rechargeable Zn-air battery with outstanding long-life cycling stability for 80 hours based on 32-CoFe@NC + Pt/C is proposed. The advanced technique described here supplies a new route for preparing hollow transition bimetal carbon hybrids with an adjustable composite arrangement for electrocatalysis and water splitting.
Collapse
Affiliation(s)
- Dukhyun Nam
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea.
| | - Geunhyeong Lee
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea.
| | - Jooheon Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea. .,Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.,Department of Intelligent Energy and Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
16
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
17
|
Shen HM, Guo AB, Zhang Y, Liu QP, Qin JW, She YB. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Bodhankar PM, Sarawade PB, Kumar P, Vinu A, Kulkarni AP, Lokhande CD, Dhawale DS. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107572. [PMID: 35285140 DOI: 10.1002/smll.202107572] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.
Collapse
Affiliation(s)
- Pradnya M Bodhankar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Pradip B Sarawade
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
- Department of Physics, University of Mumbai, Vidyanagari, Santacruz, Mumbai, 400098, India
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Aniruddha P Kulkarni
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
| | - Chandrakant D Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| | - Dattatray S Dhawale
- Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, 416 006, India
| |
Collapse
|
19
|
Liu Y, Zhou D, Deng T, He G, Chen A, Sun X, Yang Y, Miao P. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. CHEMSUSCHEM 2021; 14:5359-5383. [PMID: 34704377 DOI: 10.1002/cssc.202101898] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The development of a low-cost and high-efficiency oxygen evolution reaction (OER) catalyst is essential to meet the future industrial demand for hydrogen production by electrochemical water splitting. Given the limited reserves of noble metals and many competitive applications in environmental protection, new energy, and chemical industries, many studies have focused on exploring new and efficient non-noble metal catalytic systems, improving the understanding of the OER mechanism of non-noble metal surfaces, and designing electrocatalysts with higher activity than traditional noble metals. This Review summarizes the research progress of anode OER catalysts for hydrogen production by electrochemical water splitting in recent years, for noble metal and non-noble metal catalysts, where non-noble metal catalysts are highlighted. The categories are as follows: (1) Transition metal-based compounds, including transition metal-based oxides, transition metal-based layered hydroxides, and transition metal-based sulfides, phosphides, selenides, borides, carbides, and nitrides. Transition metal-based oxides can also be divided into perovskite, spinel, amorphous, rock-salt-type, and lithium oxides according to their different structures. (2) Carbonaceous materials and their composite materials with transition metals. (3) Transition metal-based metal-organic frameworks and their derivatives. Finally, the challenges and future development of the OER process of water splitting are discussed.
Collapse
Affiliation(s)
- Yanying Liu
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Tianyin Deng
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Guangli He
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Shijiazhuang, Hebei University of Science and Technology, P.O. Box, 050018, Hebei Province, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Yuhua Yang
- Logistics Department, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Ping Miao
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| |
Collapse
|
20
|
Rehman Shah HU, Ahmad K, Naseem HA, Parveen S, Ashfaq M, Rauf A, Aziz T. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem Toxicol 2021; 154:112312. [PMID: 34102214 DOI: 10.1016/j.fct.2021.112312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
Malachite green (MG) is extensively applied in aquaculture worldwide as a therapeutic agent. MG and its primary metabolite leucomalachite green (LMG) are commonly detected in aquaculture products. MG can cause serious health concerns (in vivo carcinogenic/genotoxic). The extensive water solubility of MG leads to water pollution and hence it is mandatory to remove MG from water. The current study explores adsorptive removal of MG from water using highly water stable Zeolitic Imidazolate framework/graphene oxide composites (ZIF-67@GO). Adsorption performance of newly synthesized composites is justified for MG removal with excellent results of pseudo second order (R2 = 0.99955) which is well-fitted in this case. ZIF-67@GO data of adsorption isotherm for MG is observed using Freundlich Model (R2 = 0.99999) and with adsorption capacity value observed (134.79 mg/g) with removal efficiency of 99.18%, indicates π-staking and electrostatic association between ZIF-67@GO and MG molecules. Synthesized material has retained reusability while removal efficiency reduced only by 6% after many cycles. Furthermore, factors effecting absorption like contact time, pH, adsorbent dose and quantity and temperature are also determined.
Collapse
Affiliation(s)
- Habib Ur Rehman Shah
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan; Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, United States.
| | - Khalil Ahmad
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Hafiza Ammara Naseem
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Sajidah Parveen
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan.
| | - Abdul Rauf
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| | - Tariq Aziz
- Institute of Chemistry, Baghdad Ul Jadeed Campus, The Islamia University of Bahawapur, 63100, Punjab, Pakistan
| |
Collapse
|
21
|
Choi WH, Kim K, Lee H, Choi JW, Park DG, Kim GH, Choi KM, Kang JK. Metal-Organic Fragments with Adhesive Excipient and Their Utilization to Stabilize Multimetallic Electrocatalysts for High Activity and Robust Durability in Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100044. [PMID: 34105280 PMCID: PMC8188218 DOI: 10.1002/advs.202100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Multimetallic electrocatalysts have shown great potential to improve electrocatalytic performance, but their deteriorations in activity and durability are yet to be overcome. Here, metal-organic fragments with adhesive excipient to realize high activity with good durability in oxygen evolution reaction (OER) are developed. First, a leaf-like zeolitic-imidazolate framework (ZIF-L) is synthesized. Then, ionized species in hydrogen plasma attack preferentially the organic linkers of ZIF-L to derive cobalt-imidazole fragments (CIFs) as adhesive excipient, while they are designed to retain the coordinated cobalt nodes. Moreover, the vacant coordination sites at cobalt nodes and the unbound nitrogen at organic linkers induce high porosity and conductivity. The CIFs serve to stably impregnate trimetallic FeNiMo electrocatalysts (CIF:FeNiMo), and CIF:FeNiMo containing Fe contents of 22% and hexavalent Mo contents show to enable high activity with low overpotentials (203 mV at 10 mA cm-2 and 238 mV at 100 mA cm-2 ) in OER. The near O K-edge extended X-ray absorption fine structure proves further that high activity for OER originates from the partially filled eg orbitals. Additionally, CIF:FeNiMo exhibit good durability, as demonstrated by high activity retention during at least 45 days in OER.
Collapse
Affiliation(s)
- Won Ho Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Keon‐Han Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Heebin Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jae Won Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Dong Gyu Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Gi Hwan Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological EngineeringSookmyung Women's UniversityCheongpa‐ro 47‐gil 100, Yongsan‐guSeoul04310Republic of Korea
| | - Jeung Ku Kang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
22
|
Abstract
Metal–organic frameworks (MOFs) are crystalline materials with permanent porosity, composed of metal nodes and organic linkers whose well-ordered arrangement enables them to act as ideal templates to produce materials with a uniform distribution of heteroatom and metal elements. The hybrid nature of MOFs, well-defined pore structure, large surface area and tunable chemical composition of their precursors, led to the preparation of various MOF-derived porous carbons with controlled structures and compositions bearing some of the unique structural properties of the parent networks. In this regard, an important class of MOFs constructed with porphyrin ligands were described, playing significant roles in the metal distribution within the porous carbon material. The most striking early achievements using porphyrin-based MOF porous carbons are here summarized, including preparation methods and their transformation into materials for electrochemical reactions.
Collapse
|
23
|
Wei X, Liu N, Chen W, Qiao S, Chen Y. Three-phase composites of NiFe 2O 4/Ni@C nanoparticles derived from metal-organic frameworks as electrocatalysts for the oxygen evolution reaction. NANOTECHNOLOGY 2021; 32:175701. [PMID: 33440356 DOI: 10.1088/1361-6528/abdb60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Composite electrocatalysts of carbon and metals or metal compounds with homogeneous active sites can be obtained through the carbonization of metal organic framework (MOF) materials under inert atmosphere. In this work, a three-phase composite electrocatalysts NiFe2O4/Ni@C were prepared via pyrolysis from self-assembled MOF nanosheets aggregates. The excellent electrocatalytic activity of the obtained electrocatalysts with various Ni:Fe ratios is demonstrated. Especially, the NiFe2O4/Ni@C sample with the mole ratio of Ni:Fe = 1:1 can use the overpotential (η) of 330 and 423 mV to drive 10 and 50 mA cm-2 respectively. After 80 000 s/22 h, the current density could retained 90% of the initial current density. The excellent activity and stability of the electrocatalysts are attributed to nickel and iron ions with uniform dispersion at atomic level in the NiFe2O4 phase and the synergistic effect of nickel and NiFe2O4 nanoparticles with amorphous carbon atoms or nanoparticles around.
Collapse
Affiliation(s)
- Xuedong Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Nan Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Weifeng Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Shuangyan Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
24
|
Wang K, Hui KN, San Hui K, Peng S, Xu Y. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chem Sci 2021; 12:5737-5766. [PMID: 34168802 PMCID: PMC8179663 DOI: 10.1039/d1sc00095k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Graphene or chemically modified graphene, because of its high specific surface area and abundant functional groups, provides an ideal template for the controllable growth of metal-organic framework (MOF) particles. The nanocomposite assembled from graphene and MOFs can effectively overcome the limitations of low stability and poor conductivity of MOFs, greatly widening their application in the field of electrochemistry. Furthermore, it can also be utilized as a versatile precursor due to the tunable structure and composition for various derivatives with sophisticated structures, showing their unique advantages and great potential in many applications, especially energy storage and conversion. Therefore, the related studies have been becoming a hot research topic and have achieved great progress. This review summarizes comprehensively the latest methods of synthesizing MOFs/graphene and their derivatives, and their application in energy storage and conversion with a detailed analysis of the structure-property relationship. Additionally, the current challenges and opportunities in this field will be discussed with an outlook also provided.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade Taipa Macau SAR China
| | - Kwan San Hui
- Engineering, Faculty of Science, University of East Anglia Norwich NR4 7TJ UK
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University Zhuhai Guangdong 519000 China
| | - Yuxi Xu
- School of Engineering, Westlake University Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
25
|
Qiu F, Shi J, Guo M, Chen S, Xia J, Lu ZH. Rapid Synthesis of Large-Size Fe 2O 3 Nanoparticle Decorated NiO Nanosheets via Electrochemical Exfoliation for Enhanced Oxygen Evolution Electrocatalysis. Inorg Chem 2021; 60:959-966. [PMID: 33356196 DOI: 10.1021/acs.inorgchem.0c03073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel nonprecious Fe2O3 nanoparticle decorated NiO nanosheet (Fe2O3 NPs@NiO NSs) composite has been obtained by a rapid one-pot electrochemical exfoliation method and can be used as an efficient oxygen evolution reaction (OER) catalyst. In the nanocomposite, the Fe2O3 NPs are uniformly anchored on the ultrathin graphene-like NiO nanosheets. At the same time, we also studied the influence of the Fe/Ni molar ratio on the morphology and catalytic activity. The Fe2O3 NPs@NiO NSs nanocomposite possessed a high BET surface area (194.1 m2 g-1), which is very conducive to the charge/mass transfer of electrolyte ions and O2. Owing to the unique two-dimensional (2D) heterostructures and rational Fe content, the as-prepared Fe2O3 NPs@NiO NSs show high catalytic performance, a low overpotential at 10 mA cm-2 (221 mV), a small Tafel slope (53.4 mV dec-1), and 2000 cycle and 20 h long-term durability. The introduction of Fe2O3 NPs is beneficial to accelerating charge transport, increasing the electrochemically active surface area (ECSA), and thus improving the release of oxygen bubbles from the electrode surface.
Collapse
Affiliation(s)
- Fen Qiu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Jinghui Shi
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Manman Guo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, People's Republic of China
| | - Jianhui Xia
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| |
Collapse
|
26
|
Wani AA, Bhat MM, Sofi FA, Bhat SA, Ingole PP, Rashid N, Bhat MA. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2O 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis of a nano-spinel cobalt decorated sulphur doped reduced graphene oxide (Co@S–rGO) composite exhibiting excellent electrocatalytic performance and electrochemical stability toward oxygen evolution reaction in an alkaline medium.
Collapse
Affiliation(s)
- Adil Amin Wani
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
27
|
Noor T, Yaqoob L, Iqbal N. Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Noble‐Metal, Transition‐Metal, and Carbon‐Based Materials. ChemElectroChem 2020. [DOI: 10.1002/celc.202001441] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tayyaba Noor
- School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Lubna Yaqoob
- School of Natural Sciences (SNS) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
28
|
Liang Q, Chen J, Wang F, Li Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Shi J, Hou C, Li L, Xu W, Fu Y, Huang Y, Xiong Z, Cheng W. Cobalt‐Molybdenum Bimetal Phosphides Encapsulated in Carbon as Efficient and Durable Electrocatalyst for Hydrogen Evolution. ChemistrySelect 2020. [DOI: 10.1002/slct.202003509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiazi Shi
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Cunxia Hou
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Le Li
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Wencai Xu
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Yabo Fu
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Yanzhi Huang
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Ziyi Xiong
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Weijia Cheng
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| |
Collapse
|
30
|
Pan N, Zhang H, Yang B, Qiu H, Li L, Song L, Zhang M. Conductive MOFs as bifunctional oxygen electrocatalysts for all-solid-state Zn-air batteries. Chem Commun (Camb) 2020; 56:13615-13618. [PMID: 33057495 DOI: 10.1039/d0cc05569g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of π-conjugated conductive metal-organic frameworks (MOFs) were developed as efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Particularly when used as the bifunctional catalysts of an air-cathode, the conductive MOFs can help the all-solid-state Zn-air batteries to achieve a high performance.
Collapse
Affiliation(s)
- Na Pan
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Hanwen Zhang
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Bo Yang
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Hui Qiu
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Longyan Li
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Li Song
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| | - Mingdao Zhang
- Department of Chemistry, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, P. R. China.
| |
Collapse
|
31
|
Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z. Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. CHEMOSPHERE 2020; 259:127389. [PMID: 32590175 DOI: 10.1016/j.chemosphere.2020.127389] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are promising for photocatalysis owing to their excellent structure and performance. Unfortunately, poor stability in both aqueous solutions and high temperatures and lack of adsorption centers during reactions limit their practical applications. Herein, a bimetallic MOF anchored corncob calcined derived activated carbon (CCAC) was successfully prepared by a one-step solvothermal method. Benefiting from unique structures and synergetic effect, the porous carbon provided a high specific surface area for stable MOF support and served as an organic pollutant buffer-reservoir, which was advantageous for efficient photocatalytic degradation of organic pollutants. The optimized MOF/CCAC-5 samples possessed excellent visible light degradation rate, i.e., 100% for Rh B, more than 96% for six mixed dyes, and 98% for tetracycline. This prominent photocatalytic activity was caused by active species, including photoelectrons (e-), photo-holes (h+) and superoxide free radicals (•O2-). The transient photocurrent response and electrochemical impedance tests showed that MOF/CCAC-5 exhibited a relatively high charge separation and low carrier recombination rate. Cyclic and simulation experiments indicated high reusability, stability and universality of the composite photocatalysts. These exciting results provide new pathways for the fabrication of MOFs anchored porous carbon materials.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhanhua Guo
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
Mei H, Li S, Dong J, Zhang L, Su C. Porphyrinic Metal‐Organic Frameworks Derived Carbon‐Based Nanomaterials for Hydrogen Evolution Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202002908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong‐Min Mei
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shuai Li
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Ju‐Rong Dong
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Li Zhang
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
33
|
Khodabakhshi M, Chen S, Ye T, Wu H, Yang L, Zhang W, Chang H. Hierarchical Highly Wrinkled Trimetallic NiFeCu Phosphide Nanosheets on Nanodendrite Ni 3S 2/Ni Foam as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36268-36276. [PMID: 32667189 DOI: 10.1021/acsami.0c11732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sluggish oxygen evolution reaction (OER) and costly noble-metal oxide catalysts hinder the vast usage of environmentally friendly water splitting for hydrogen production. Elemental doping by partial replacing of parent metal elements with elements of higher electronegativity is considered to be one of the most efficient strategies to promote the electrocatalytic OER performance. In this work, we synthesize an efficient hierarchical highly wrinkled NiFeCu phosphide nanosheet on nanodendrite Ni3S2/NiF substrates through partial replacement of Cu instead of Ni and Fe in NiFeP@Ni3S2/NiF by using a facile electrodeposition method. The NiFeCuP@Ni3S2/NiF electrocatalyst needs only 230, 282, and 351 mV to reach 10, 50, and 100 mA × cm-2, respectively. Notably, this electrocatalyst shows one of the lowest OER overpotentials at 10 mA/cm-2 for metal phosphides and endured the OER at 20 mA × cm-2 for 18 h with negligible voltage elevation. The X-ray photoelectron spectroscopy (XPS), double-layer capacitance (Cdl) plots, and electrochemical impedance spectroscopy show that the partial Cu doping in NiFeP@Ni3S2/NiF not only can change the electron density around Ni and Fe but also can increase the electrochemically active surface area and conductivity of electrocatalysts.
Collapse
Affiliation(s)
- Meysam Khodabakhshi
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shumin Chen
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Ye
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
34
|
Ko JS, Johnson JK, Johnson PI, Xia Z. Decoupling Oxygen and Chlorine Evolution Reactions in Seawater using Iridium‐based Electrocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jesse S. Ko
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - James K. Johnson
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - Phillip I. Johnson
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| | - Zhiyong Xia
- Research and Exploratory Development Department Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
| |
Collapse
|
35
|
Tian J, Jiang F, Yuan D, Zhang L, Chen Q, Hong M. Electric‐Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Linjie Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
36
|
Tian J, Jiang F, Yuan D, Zhang L, Chen Q, Hong M. Electric‐Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2020; 59:13101-13108. [DOI: 10.1002/anie.202004420] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Linjie Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
37
|
Hafezi Kahnamouei M, Shahrokhian S. Mesoporous Nanostructured Composite Derived from Thermal Treatment CoFe Prussian Blue Analogue Cages and Electrodeposited NiCo-S as an Efficient Electrocatalyst for an Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16250-16263. [PMID: 32096627 DOI: 10.1021/acsami.9b21403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing effective and priceless electrocatalysts is an indispensable requirement for advancing the efficiency of water splitting to get clean and sustainable fuels. Herein, we reported a feasible strategy for preparing a trimetallic (NiCoFe) superior electrocatalyst with a novel open-cage/3D frame-like structure for an oxygen evolution reaction (OER). It is prepared by consequent thermal treatments of a CoFe Prussian blue analogue frame/cage-like structure under an argon (CoFeA-TT) atmosphere and then electrochemical deposition of nickel-cobalt sulfide nanosheets as a shell layer on it. The electrochemical measurements demonstrated that the deposition of NiCo-S on CoFeA-TT (NiCo-S@CoFeA-TT) has the best catalytic performance and can drive the benchmark current density of 10 mA cm-2 at a low overpotential of 268 mV with a Tafel slope of 62 mV dec-1 and an excellent long-term catalytic stability in an alkaline medium. Its outstanding electrocatalytic performances are endowed from frame/cage-like structures, highly exposed active sites, accelerated mass and electron transport, and the synergistic effect of multiple hybrid components. The NiCo-S@CoFeA-TT showed a better performance than most advanced nonprecious catalysts and the noble commercial RuO2 catalyst. This study exhibited an effective and efficient procedure to design 3D porous architecture catalysts for the energy-relevant electrocatalysis reaction.
Collapse
Affiliation(s)
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran 11155-9516, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, Tehran 11155-9516, Iran
| |
Collapse
|
38
|
Cui J, Liu J, Wang C, Rong F, He L, Song Y, Zhang Z, Fang S. Efficient electrocatalytic water oxidation by using the hierarchical 1D/2D structural nanohybrid of CoCu-based zeolitic imidazolate framework nanosheets and graphdiyne nanowires. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135577] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Shi J, Qiu F, Yuan W, Guo M, Yuan C, Lu ZH. Novel electrocatalyst of nanoporous FeP cubes prepared by fast electrodeposition coupling with acid-etching for efficient hydrogen evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Wang Y, Zhao S, Zhu Y, Qiu R, Gengenbach T, Liu Y, Zu L, Mao H, Wang H, Tang J, Zhao D, Selomulya C. Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. iScience 2019; 23:100761. [PMID: 31887660 PMCID: PMC6941879 DOI: 10.1016/j.isci.2019.100761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Effective design of bifunctional catalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important but remains challenging. Herein, we report a three-dimensional (3D) hierarchical structure composed of homogeneously distributed Ni-Fe-P nanoparticles embedded in N-doped carbons on nickel foams (denoted as Ni-Fe-P@NC/NF) as an excellent bifunctional catalyst. This catalyst was fabricated by an anion exchange method and a low-temperature phosphidation of nanotubular Prussian blue analogue (PBA). The Ni-Fe-P@NC/NF displayed exceptional catalytic activity toward both HER and OER and delivered an ultralow cell voltage of 1.47 V to obtain 10 mA cm−2 with extremely excellent durability for 100 h when assembled as a practical electrolyser. The extraordinary performance of Ni-Fe-P@NC/NF is attributed to the abundance of unsaturated active sites, the well-defined hierarchical porous structure, and the synergistic effect between multiple components. Our work will inspire more rational designs of highly active non-noble electrocatalysts for industrial energy applications. Nanotubular Prussian blue analogue as a precursor is synthesized by anion exchange The catalyst exhibits excellent catalytic activity for hydrogen and oxygen production The catalyst-based electrolyser has a low cell voltage of 1.47 V to obtain 10 mA cm−2 The electrolyser shows an extremely excellent durability for 100 h at 50 mA cm−2
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Shenlong Zhao
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruosang Qiu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Gengenbach
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC 3168, Australia
| | - Yue Liu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Lianhai Zu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jing Tang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Dongyuan Zhao
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Chemistry, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, P.R. China.
| | - Cordelia Selomulya
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
41
|
Zheng L, Zhan Y, Ye L, Zheng D, Wang Y, Zhang K, Jiang H. Chiral Induction and Remote Chiral Communication in Quinoline Oligoamide Foldamers for Determination of Enantiomeric Excess and Absolute Configuration of Chiral Amines and Their Derivatives. Chemistry 2019. [PMID: 31389064 DOI: 10.1039/c9ta00708c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Two pentameric foldamers, Q5 and Q5C-S, containing a C-F bond were synthesized based on quinoline oligamide foldamers for the measurement of enantiomeric excess and for the determination of absolute configuration of chiral amines, diamines, amino alcohols, and α-amino acid esters. Chiral induction of Q5 was triggered in situ when the chiral analytes reacted with the C-F bond in Q5 by a N-nucleophilic substitution reaction, leading to a linear correlation between the CD amplitude at the region of quinoline chromophores and the ee values of the chiral analytes, which can be used for the ee determination of chiral analytes. Furthermore, the CD intensity of Q5C-S containing a chiral motif at its C-terminus enhances via remote, favorable chiral communication when the chiral induction was triggered in situ by chiral analytes at the N-terminus matches the original helicity of Q5C-S, but decreases via remote, conflicted chiral communication when the chiral induction is triggered in situ by chiral molecules at the N-terminus mismatches the original one. The system can thus be used for determination of the absolute configuration of chiral analytes, given that the chirality of the chiral motif at the C-terminus of Q5C-S is known.
Collapse
Affiliation(s)
- Lu Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yulin Zhan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Ye
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dan Zheng
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
| | - Hua Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, P. R. China
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
42
|
Khalafallah D, Zhi M, Hong Z. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Top Curr Chem (Cham) 2019; 377:29. [PMID: 31605243 DOI: 10.1007/s41061-019-0254-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/25/2019] [Indexed: 11/27/2022]
Abstract
Sustainable and high performance energy devices such as solar cells, fuel cells, metal-air batteries, as well as alternative energy conversion and storage systems have been considered as promising technologies to meet the ever-growing demands for clean energy. Hydrogen evolution reaction (HER) is a crucial process for cost-effective hydrogen production; however, functional electrocatalysts are potentially desirable to expedite reaction kinetics and supply high energy density. Thus, the development of inexpensive and catalytically active electrocatalysts is one of the most significant and challenging issues in the field of electrochemical energy storage and conversion. Realizing that advanced nanomaterials could engender many advantageous chemical and physical properties over a wide scale, tremendous efforts have been devoted to the preparation of earth-abundant transition metals as electrocatalysts for HER in both acidic and alkaline environments because of their low processing costs, reasonable catalytic activities, and chemical stability. Among all transition metal-based catalysts, nickel compounds are the most widely investigated, and have exhibited pioneering performances in various electrochemical reactions. Heterostructured nickel phosphide (NixPy) based compounds were introduced as promising candidates of a new category, which often display chemical and electronic characteristics that are distinct from those of non-precious metals counterparts, hence providing an opportunity to construct new catalysts with an improved activity and stability. As a result, the library of NixPy catalysts has been enriched very rapidly, with the possibility of fine-tuning their surface adsorption properties through synergistic coupling with nearby elements or dopants as the basis of future practical implementation. The current review distils recent advancements in NixPy compounds/hybrids and their application for HER, with a robust emphasis on breakthroughs in composition refinement. Future perspectives for modulating the HER activity of NixPy compounds/hybrids, and the challenges that need to be overcome before their practical use in sustainable hydrogen production are also discussed.
Collapse
Affiliation(s)
- Diab Khalafallah
- State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, PO Box 81521, Aswan, Egypt
| | - Mingjia Zhi
- State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
| | - Zhanglian Hong
- State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
| |
Collapse
|
43
|
Tong J, Li W, Bo L, Li Y, Li T, Zhang Q. Simple preparation of Ni2P/Ni(PO3)2 inlayed in nitrogen-sulfur self-doped ultrathin holey carbon nanosheets with excellent electrocatalytic activities for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Konavarapu SK, Ghosh D, Dey A, Pradhan D, Biradha K. Isostructural Ni
II
Metal–Organic Frameworks (MOFs) for Efficient Electrocatalysis of Oxygen Evolution Reaction and for Gas Sorption Properties. Chemistry 2019; 25:11141-11146. [DOI: 10.1002/chem.201902274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Debanjali Ghosh
- Materials Science CentreIndian Institute of Technology Kharagpur 721302 India
| | - Avishek Dey
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| | - Debabrata Pradhan
- Materials Science CentreIndian Institute of Technology Kharagpur 721302 India
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
45
|
Zhang K, Jin L, Yang Y, Guo K, Hu F. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Wang Q, Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem Rev 2019; 120:1438-1511. [DOI: 10.1021/acs.chemrev.9b00223] [Citation(s) in RCA: 894] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qi Wang
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
47
|
|
48
|
Zhong W, Lin Z, Feng S, Wang D, Shen S, Zhang Q, Gu L, Wang Z, Fang B. Improved oxygen evolution activity of IrO 2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. NANOSCALE 2019; 11:4407-4413. [PMID: 30801572 DOI: 10.1039/c8nr10163a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Noble metal-based catalysts are vital electrocatalysts for the oxygen evolution reaction (OER), which is a half reaction among multiple renewable energy-related reactions. To fully exploit their potential as efficient OER catalysts, we developed a fast one-step strategy to engineer a unique nanostructure for the benchmark catalyst IrO2 utilizing an ultra-fast pulse laser, through which a shell of ultra-small Ir spheres with a diameter of ca. 2 nm is in situ engineered around the IrO2 core. The creation of the Ir sphere shell not only increases the electrochemical surface area, but also improves the electrical conductivity of the electrocatalyst. The as-engineered IrO2@Ir architecture exhibits extremely high electrocatalytic activity towards the OER, revealing an overpotential of 255 mV at 10 mA cm-2 and Tafel slope of 45 mV dec-1. These values are much lower than those observed for the unmodified structure. Furthermore, the catalytic performance is the best among all the noble metal-based OER catalysts. This work may open a new avenue to efficiently improve the catalytic activity of noble metal-based catalysts and significantly advance the development in the energy industry.
Collapse
Affiliation(s)
- Wenwu Zhong
- School of Pharmaceutical and Materials Engineering, School of Advanced Study, Taizhou University, Taizhou, Zhejiang 318000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu K, Chen Z, Cheong WC, Liu S, Zhu W, Cao X, Sun K, Lin Y, Zheng L, Yan W, Pan Y, Wang D, Peng Q, Chen C, Li Y. Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44201-44208. [PMID: 30525396 DOI: 10.1021/acsami.8b14889] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is very important to explore novel synthesis strategies for constructing highly active and inexpensive electrocatalysts for water-splitting. In present work, a novel and efficient coordination-polymerization-pyrolysis (CPP) strategy was developed to prepare cobalt phosphide nanoparticles modified N-doped porous carbon spheres (CoP@NPCSs) hybrids as a powerful catalyst for overall water-splitting (OWS). It can be found that both the carbonization temperatures and the metal contents affect the electrocatalytic performances. As a result, a device assembled with CoP@NPCSs demonstrates low potential (1.643 V @ 10 mA·cm-2) and good stabilization for OWS. Besides, other transition metal phosphides (TMPs)-based materials also can be synthesized by the CPP approach, evidencing the generality of the CPP strategy. Here, we not only constructs a high-efficiency OWS catalyst, but also broadens the synthetic methodology of TMPs from nanoscale.
Collapse
Affiliation(s)
- Konglin Wu
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
- Center of Single-Atom, Clusters and Nanomaterials (CAN), College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Zheng Chen
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Weng-Chon Cheong
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Shoujie Liu
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
- Center of Single-Atom, Clusters and Nanomaterials (CAN), College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xing Cao
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Kaian Sun
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum (East China) , Qingdao , Shandong 266580 , China
| | - Yan Lin
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum (East China) , Qingdao , Shandong 266580 , China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (NSRF) , Chinese Academy of Science , Beijing 100049 , China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory (NSRL) , University of Science and Technology of China , Hefei , Anhui 230029 , China
| | - Yuan Pan
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Dingsheng Wang
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Qing Peng
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Chen Chen
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| | - Yadong Li
- Department of Chemistry , Tsinghua University , Beijing , 100084 , China
| |
Collapse
|
50
|
Gui L, Chen Y, He B, Li G, Xu J, Wang Q, Sun W, Zhao L. Nickel-Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Chemistry 2018; 24:17665-17671. [PMID: 30193405 DOI: 10.1002/chem.201804118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Indexed: 11/11/2022]
Abstract
Oxygen electrocatalysis, including the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), is one of the most important electrochemical processes for sustainable energy conversion and storage technologies. Herein, nickel-based bicarbonates are, for the first time, developed as catalysts for oxygen electrocatalysis, and demonstrate superior electrocatalytic performance in alkaline media. Iron doping can significantly tune the real valence of nickel ions, and consequently tailor the electrocatalytic ability of bicarbonates. Among the nickel-based bicarbonates, Ni0.9 Fe0.1 (HCO3 )2 exhibits the highest bifunctional catalytic activity, with a potential difference of 0.86 V between the OER potential at a current density of 10 mA cm-2 and the ORR potential at a current density of -1 mA cm-2 , which outperforms most of the reported precious-metal-free catalysts. The present work provides new insights into exploring efficient catalysts for oxygen electrocatalysis, and it suggests that, in addition to the extensively studied transition metal hydroxides and oxides, bicarbonates and carbonates also show great potential as precious metal-free catalysts.
Collapse
Affiliation(s)
- Liangqi Gui
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yaping Chen
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Beibei He
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Geng Li
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jianmei Xu
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Qing Wang
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Wenping Sun
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ling Zhao
- Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|