1
|
Koehler T, Schmeink J, Schleberger M, Marlow F. A Hidden Chemical Assembly Mechanism: Reconstruction-by-Reconstruction Cycle Growth in HKUST-1 MOF Layer Synthesis. Chemphyschem 2025; 26:e202400968. [PMID: 39915255 PMCID: PMC12058237 DOI: 10.1002/cphc.202400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Thin metal-organic framework films grown in a layer-by-layer manner have been the subject of growing interest. Herein we investigate one of the most popular frameworks, the type HKUST-1. Firstly, we show a special synthesis procedure resulting in quick but optically perfect growth. This enables the synthesis of films of excellent optical quality within a short timeframe. Secondly and most importantly, we address the known, but not fully understood observation that the expected growth rate of one monolayer per cycle is strongly exceeded, e. g. by a factor of 4. This is an often-ignored inconsistency in the literature. We offer a growth model using a reconstruction process in every cycle leading to a deterministic reconstruction-by-reconstruction (RbR) cycle growth with a 4-times higher growth rate. It represents an up-to-now hidden chemical assembly mechanism.
Collapse
Affiliation(s)
- T. Koehler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - J. Schmeink
- Fakultät für PhysikUniversität Duisburg-EssenLotharstrasse 147057DuisburgGermany
| | - M. Schleberger
- Fakultät für PhysikUniversität Duisburg-EssenLotharstrasse 147057DuisburgGermany
- Center for Nanointegration Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| | - F. Marlow
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Center for Nanointegration Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| |
Collapse
|
2
|
Monjezi BH, Okur S, Limbach R, Chandresh A, Sen K, Hashem T, Schwotzer M, Wondraczek L, Wöll C, Knebel A. Fast Dynamic Synthesis of MIL-68(In) Thin Films in High Optical Quality for Optical Cavity Sensing. ACS NANO 2023; 17:6121-6130. [PMID: 36877629 DOI: 10.1021/acsnano.3c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min. The MIL-68(In) thin film growth was monitored in situ using a quartz crystal microbalance. In-plane X-ray diffraction revealed oriented MIL-68(In) growth with the pore-channels of this interesting MOF aligned parallel to the support. Scanning electron microscopy data demonstrated an extraordinarily low roughness of the MIL-68(In) thin films. Mechanical properties and lateral homogeneity of the layer were probed through nanoindentation. These thin films showed extremely high optical quality. By applying a poly(methyl methacrylate) layer and further depositing an Au-mirror to the top, a MOF optical cavity was fabricated that can be used as a Fabry-Perot interferometer. The MIL-68(In)-based cavity showed a series of sharp resonances in the ultraviolet-visible regime. Changes in the refractive index of MIL-68(In) caused by exposure to volatile compounds led to pronounced position shifts of the resonances. Thus, these cavities are well suited to be used as optical read-out sensors.
Collapse
Affiliation(s)
- Bahram Hosseini Monjezi
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Salih Okur
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - René Limbach
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kaushik Sen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tawheed Hashem
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| |
Collapse
|
3
|
Shao L, Zhang J, Fu Y, Chen J. Metal-Organic Framework Flowers as a Naked-Eye Colorimetric Indicator of Trace Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13526-13534. [PMID: 36877610 DOI: 10.1021/acsami.2c22172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Convenient and sensitive trace water indication is of great significance in various industrial processes. Here, a flower-like metal-organic framework Cu-FMM is assembled from ultrathin nanosheets that change its coordination structure reversibly with the capture and loss of water molecules, enabling sensitive trace water naked-eye colorimetric indication ability. A recognizable black/yellow color change can be observed when the dried Cu-FMM is exposed to the atmosphere or solvent with trace water as low as RH 3% and a water content of 0.25‰ (v/v) and further enables potential trace water imaging applications. The excellent accessibility of the multi-scale pore structure of Cu-FMM contributes to a fast response time of 3.8 s with good reversibility (>100 cycles), outperforming traditional coordination polymer humidity sensors. The present study provides new inspirations for the design of sensitive and applicable naked-eye water indicator materials that are applicable to in situ and continuous monitoring in industrial processes.
Collapse
Affiliation(s)
- Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| |
Collapse
|
4
|
Treger M, Hannebauer A, Schaate A, Budde JL, Behrens P, Schneider AM. Tuning the optical properties of the metal-organic framework UiO-66 via ligand functionalization. Phys Chem Chem Phys 2023; 25:6333-6341. [PMID: 36779311 DOI: 10.1039/d2cp03746g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a promising class of materials for optical applications, especially due to their modular design which allows fine-tuning of the relevant properties. The present theoretical study examines the Zr-based UiO-66-MOF and derivatives of it with respect to their optical properties. Starting from the well-known monofunctional amino- and nitro-functionalized UiO-66 derivatives, we introduce novel UiO-66-type MOFs containing bifunctional push-pull 1,4-benzenedicarboxylate (bdc) linkers. The successful synthesis of such a novel UiO-66 derivative is also reported. It was carried out using a para-nitroaniline (PNA)-based bdc-analogue linker. Applying density functional theory (DFT), suitable models for all UiO-66-MOF analogues were generated by assessing different exchange-correlation functionals. Afterwards, HSE06 hybrid functional calculations were performed to obtain the electronic structures and optical properties. The detailed HSE06 electronic structure calculations were validated with UV-Vis measurements to ensure reliable results. Finally, the refractive index dispersion of the seven UiO-66-type materials is compared, showing the possibility to tailor the optical properties by the use of functionalized linker molecules. Specifically, the refractive index can be varied over a wide range from 1.37 to 1.78.
Collapse
Affiliation(s)
- Marvin Treger
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Adrian Hannebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Jan L Budde
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Peter Behrens
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Andreas M Schneider
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| |
Collapse
|
5
|
Yang Y, Ren G, Wang C, Ding S, Yang W, Wu S, Pan Q, Wang X, Su Z. Defect Healing of Micro/Nanocrystals via the Coordination Competition of Rare Earth in Crystal Engineering. Inorg Chem 2023; 62:7165-7172. [PMID: 36630578 DOI: 10.1021/acs.inorgchem.2c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defect engineering has been generally observed and utilized in crystal materials including metal oxides, metal-organic frameworks, and so on; however, how to relate the defect formation and crystallization process is needed to be revealed clearly, and how to heal the defect is a big challenge. Herein, based on the new coordination complex (HNU-53), the crystal defects were created by increasing the reaction time and crystal size. Following the crystal growth process, the crystal color centers were simultaneously generated, resulting in fluorescence quenching. To heal the defect, the crystal growth was controlled by the introduction of rare earth ions. With the coordination competition of rare earth ions, the crystal defects were reduced and recovery of fluorescence emission was achieved.
Collapse
Affiliation(s)
- Yonghang Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China.,School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Guojian Ren
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China.,School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Shunan Ding
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China
| | - Shuixing Wu
- School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China.,School of Chemical Engineering and Technology, Hainan University, Haikou 570228, P. R. China
| | - Xinlong Wang
- School of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
6
|
Cho Y, Nandy A, Duan C, Kulik HJ. DFT-Based Multireference Diagnostics in the Solid State: Application to Metal-Organic Frameworks. J Chem Theory Comput 2023; 19:190-197. [PMID: 36548116 DOI: 10.1021/acs.jctc.2c01033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When a many-body wave function of a system cannot be captured by a single determinant, high-level multireference (MR) methods are required to properly explain its electronic structure. MR diagnostics to estimate the magnitude of such static correlation have been primarily developed for molecular systems and range from low in computational cost to as costly as the full MR calculation itself. We report the first application of low-cost MR diagnostics based on the fractional occupation number calculated with finite-temperature DFT to solid-state systems. To compare the behavior of the diagnostics on solids and molecules, we select metal-organic frameworks (MOFs) as model materials because their reticular nature provides an intuitive way to identify molecular derivatives. On a series of closed-shell MOFs, we demonstrate that the DFT-based MR diagnostics are equally applicable to solids as to their molecular derivatives. The magnitude and spatial distribution of the MR character of a MOF are found to have a good correlation with those of its molecular derivatives, which can be calculated much more affordably in comparison to those of the full MOF. The additivity of MR character discussed here suggests the set of molecular derivatives to be a good representation of a MOF for both MR detection and ultimately for MR corrections, facilitating accurate and efficient high-throughput screening of MOFs and other porous solids.
Collapse
Affiliation(s)
- Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
7
|
Zhou Y, Yan P, Zhang S, Zhang Y, Chang H, Zheng X, Jiang J, Xu Q. CO 2 coordination-driven top-down synthesis of a 2D non-layered metal-organic framework. FUNDAMENTAL RESEARCH 2022; 2:674-681. [PMID: 38933122 PMCID: PMC11197606 DOI: 10.1016/j.fmre.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022] Open
Abstract
Combining the physical advantages of two-dimensional (2D) inorganic nanosheets and the modular design and programmed structure of metal-organic frameworks (MOFs), 2D MOFs remain at the forefront of functional material research. Despite tremendous efforts, precise control in the synthesis of 2D nonlayered MOFs with predesigned topology for desired applications remains challenging. Success in the bottom-up synthesis of 2D nonlayered MOFs via ligand exchange motivated us to incorporate partial BTC (BTC = 1,3,5-benzenetricarboxylate) ligand dissociation and CO2 capped coordination into the top-down treatment of bulk Cu-BTC MOF, leading to successful conversion of a 3D nonlayered network to a 2D Cu-based topological structure. Notably, a supercritical CO2-containing solvent mixture is employed to provide the desired defect and coordination engineering. Thus, our work introduces a new top-down concept based on modulated synthesis to fabricate high-quality 2D nonlayered MOFs for the first time.
Collapse
Affiliation(s)
- Yannan Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Pengfei Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yunxiao Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Chang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Jingyun Jiang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. NATURE NANOTECHNOLOGY 2022; 17:911-923. [PMID: 35995854 DOI: 10.1038/s41565-022-01168-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In this Review we survey the molecular sieving behaviour of metal-organic framework (MOF) and covalent organic framework (COF) membranes, which is different from that of classical zeolite membranes. The nature of MOFs as inorganic-organic hybrid materials and COFs as purely organic materials is powerful and disruptive for the field of gas separation membranes. The possibility of growing neat MOFs and COFs on membrane supports, while also allowing successful blending into polymer-filler composites, has a huge advantage over classical zeolite molecular sieves. MOFs and COFs allow synthetic access to more than 100,000 different structures and tailor-made molecular gates. Additionally, soft evacuation below 100 °C is often enough to achieve pore activation. Therefore, a huge number of synthetic methods for supported MOF and COF membrane thin films, such as solvothermal synthesis, seed-mediated growth and counterdiffusion, exist. Among them, methods with high scale-up potential, for example, layer-by-layer dip- and spray-coating, chemical and physical vapour deposition, and electrochemical methods. Additionally, physical methods have been developed that involve external stimuli, such as electric fields and light. A particularly important point is their ability to react to stimuli, which has allowed the 'drawbacks' of the non-ideality of the molecular sieving properties to be exploited in a completely novel research direction. Controllable gas transport through membrane films is a next-level property of MOFs and COFs, leading towards adaptive process deviation. MOF and COF particles are highly compatible with polymers, which allows for mixed-matrix membranes. However, these membranes are not simple MOF-polymer blends, as they require improved polymer-filler interactions, such as cross-linking or surface functionalization.
Collapse
Affiliation(s)
- A Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany.
| | - J Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Broadband Dielectric Spectroscopic Detection of Ethanol: A Side-by-Side Comparison of ZnO and HKUST-1 MOFs as Sensing Media. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most common gas sensors are based on chemically induced changes in electrical resistivity and necessarily involve making imperfect electrical contacts to the sensing materials, which introduce errors into the measurements. We leverage thermal- and chemical-induced changes in microwave propagation characteristics (i.e., S-parameters) to compare ZnO and surface-anchored metal–organic-framework (HKUST-1 MOF) thin films as sensing materials for detecting ethanol vapor, a typical volatile organic compound (VOC), at low temperatures. We show that the microwave propagation technique can detect ethanol at relatively low temperatures (<100 °C), and afford new mechanistic insights that are inaccessible with the traditional dc-resistance-based measurements. In addition, the metrological technique avoids the inimical measurand distortions due to parasitic electrical effects inherent in the conductometric volatile organic compound detection.
Collapse
|
10
|
Al‐Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization-Deposition of Metal-Organic Framework Films. Angew Chem Int Ed Engl 2022; 61:e202117240. [PMID: 35146859 PMCID: PMC9303373 DOI: 10.1002/anie.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Reactive extrusion printing (REP) is demonstrated as an approach to simultaneously crystallize and deposit films of the metal-organic framework (MOF) Cu3 btc2 (btc=1,3,5-benzenetricarboxylate), also known as HKUST-1. The technique co-delivers inks of the copper(II) acetate and H3 btc starting materials directly on-surface and on-location for rapid nucleation into films at room temperature. The films were analyzed using PXRD, profilometry, SEM and thermal analysis techniques and confirmed high-quality Cu3 btc2 films are produced in low-dispersity interconnected nanoparticulate form. The porosity was examined using gas adsorption which showed REP gives Cu3 btc2 films with open interconnected pore structures, demonstrating the method bestows features that traditional synthesis does not. REP is a technique that opens the field to time-efficient large-scale fabrication of MOF interfaces and should find use in a wide variety of coating application settings.
Collapse
Affiliation(s)
- Fatimah Al‐Ghazzawi
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
- Al-Nasiriyah Technical InstituteSouthern Technical UniversityThi-QarIraq
| | - Luke Conte
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
| |
Collapse
|
11
|
Al-Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization‐Deposition of Metal‐Organic Frameworks Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatimah Al-Ghazzawi
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| | - Luke Conte
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Christopher Richardson
- University of Wollongong Faculty of Science Medicine and Health School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Pawel Wagner
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| |
Collapse
|
12
|
Kenzhebayeva Y, Bachinin S, Solomonov AI, Gilemkhanova V, Shipilovskikh SA, Kulachenkov N, Fisenko SP, Rybin MV, Milichko VA. Light-Induced Color Switching of Single Metal-Organic Framework Nanocrystals. J Phys Chem Lett 2022; 13:777-783. [PMID: 35041418 DOI: 10.1021/acs.jpclett.1c03630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoinduced modulation of the optical parameters of nanomaterials underlies the operating principles of all-optical nanodevices. Here, we demonstrate the laser-induced 10% modulation of the refractive index and 16-fold modulation of the extinction coefficient of the dynamic metal-organic framework (HKUST-1) nanocrystals within the whole visible range. Using the laser-induced water sorption/desorption process inside HKUST-1, we have achieved size-dependent reversible tuning of brightness and color of its nanocrystals over the different spatial directions and color palette. The numerical analysis also confirmed the detected optical tuning through the evolution of optical spectra and directivity of the scattered light. The results of the work demonstrate the promising nature of the dynamic metal-organic frameworks for nonlinear optics and expand the library of chemically synthesized hybrid materials with light-controlled optical properties.
Collapse
Affiliation(s)
- Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Venera Gilemkhanova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergey P Fisenko
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus (NASB) P. Browka 15, 220072 Minsk, Belarus
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), F-54000 Nancy, France
| |
Collapse
|
13
|
Siddiqui SA, Prado-Roller A, Shiozawa H. Room temperature synthesis of a luminescent crystalline Cu-BTC coordination polymer and metal-organic framework. MATERIALS ADVANCES 2022; 3:224-231. [PMID: 35128414 PMCID: PMC8724791 DOI: 10.1039/d1ma00866h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 05/04/2023]
Abstract
Synthesis of crystalline materials is elemental in the field of coordination chemistry towards optical applications. In the present work, coordination between copper and benzene-1,3,5-tricarboxylic acid (BTC) is controlled by adjusting the pH scale of the reaction mixture at room temperature to synthesize two crystalline structures: metal-organic framework HKUST-1 and coordination polymer Cu(BTC)·3H2O. The post-synthesis transformation of HKUST-1 into Cu(BTC)·3H2O is further demonstrated. Single crystals of both structures are studied by multi-laser Raman and luminescence spectroscopy. It is found that both crystals exhibit photoluminescence in the range of 700-900 cm-1 within the optical gap of the bulk materials, which can be associated with crystallographic defects. This work gives impetus for the synthesis of large metal-organic crystals based on which optical properties can be studied in depth.
Collapse
Affiliation(s)
| | - Alexander Prado-Roller
- Department of Inorganic Chemistry, University of Vienna Währinger Straβe 42 1090, Vienna Austria
| | - Hidetsugu Shiozawa
- Faculty of Physics, University of Vienna Boltzmanngasse 5 1090 Vienna Austria
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Dolejskova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
14
|
Vervoorts P, Stebani J, Méndez ASJ, Kieslich G. Structural Chemistry of Metal–Organic Frameworks under Hydrostatic Pressures. ACS MATERIALS LETTERS 2021; 3:1635-1651. [DOI: 10.1021/acsmaterialslett.1c00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Pia Vervoorts
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Julia Stebani
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Alba S. J. Méndez
- Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gregor Kieslich
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
15
|
Lai T, Wang J, Sun X, Zhao Y, Song YF. Controllable Modulation of Defects for Layered Double Hydroxide Nanosheets by Altering Intercalation Anions for Efficient Electrooxidation Catalysis. Chem Asian J 2021; 16:3993-3998. [PMID: 34636154 DOI: 10.1002/asia.202101084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Indexed: 11/07/2022]
Abstract
Hydrazine (N2 H4 ) is considered as one of the most potential energy storage materials in liquid fuel cells, as it contains high energy and power density, and the high-efficiency oxidation of N2 H4 in fuel cells has drawn great attention. However, the most used catalysts are expensive noble metal catalysts, thus the development of highly efficient non-noble metal catalysts is crucial to reduce the cost of hydrazine oxidation in practical industry. Herein, we synthesized a series of CoFe-layered double hydroxides (CoFe-LDHs) intercalated with different anions via a simple one-step co-precipitation method for the electrooxidation of hydrazine. Through altering the intercalated anions of CoFe-LDHs, the defects and the electronic structure can be well controlled, and the catalytic performance for the electrooxidation of hydrazine were well promoted by using NO3 - intercalated into CoFe-LDH compared with other anions (like Cl- , BO3 3- , CO3 2- ). This work developed a series of hydrazine electrooxidation catalysts and established the relationship between the intercalated anions, the fine structure of the catalyst and the electrocatalytic performance.
Collapse
Affiliation(s)
- Tianyi Lai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jikang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Hosseini Monjezi B, Kutonova K, Tsotsalas M, Henke S, Knebel A. Aktuelle Trends zu Metall‐organischen und kovalenten organischen Netzwerken als Membranmaterialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bahram Hosseini Monjezi
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Ksenia Kutonova
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Manuel Tsotsalas
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sebastian Henke
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Alexander Knebel
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
17
|
Hosseini Monjezi B, Kutonova K, Tsotsalas M, Henke S, Knebel A. Current Trends in Metal-Organic and Covalent Organic Framework Membrane Materials. Angew Chem Int Ed Engl 2021; 60:15153-15164. [PMID: 33332695 PMCID: PMC8359388 DOI: 10.1002/anie.202015790] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been thoroughly investigated with regards to applications in gas separation membranes in the past years. More recently, new preparation methods for MOFs and COFs as particles and thin-film membranes, as well as for mixed-matrix membranes (MMMs) have been developed. We will highlight novel processes and highly functional materials: Zeolitic imidazolate frameworks (ZIFs) can be transformed into glasses and we will give an insight into their use for membranes. In addition, liquids with permanent porosity offer solution processability for the manufacture of extremely potent MMMs. Also, MOF materials influenced by external stimuli give new directions for the enhancement of performance by in situ techniques. Presently, COFs with their large pores are useful in quantum sieving applications, and by exploiting the stacking behavior also molecular sieving COF membranes are possible. Similarly, porous polymers can be constructed using MOF templates, which then find use in gas separation membranes.
Collapse
Affiliation(s)
- Bahram Hosseini Monjezi
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Ksenia Kutonova
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sebastian Henke
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Alexander Knebel
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
18
|
Allendorf MD, Stavila V, Witman M, Brozek CK, Hendon CH. What Lies beneath a Metal-Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. J Am Chem Soc 2021; 143:6705-6723. [PMID: 33904302 DOI: 10.1021/jacs.0c10777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rational design principles established for metal-organic frameworks (MOFs) allow clear structure-property relationships, fueling expansive growth for energy storage and conversion, catalysis, and beyond. However, these design principles are based on the assumption of compositional and structural rigidity, as measured crystallographically. Such idealization of MOF structures overlooks subtle chemical aspects that can lead to departures from structure-based chemical intuition. In this Perspective, we identify unexpected behavior of MOFs through literature examples. Based on this analysis, we conclude that departures from ideality are not uncommon. Whereas linker topology and metal coordination geometry are useful starting points for understanding MOF properties, we anticipate that deviations from the idealized crystal representation will be necessary to explain important and unexpected behaviors. Although this realization reinforces the notion that MOFs are highly complex materials, it should also stimulate a broader reexamination of the literature to identify corollaries to existing design rules and reveal new structure-property relationships.
Collapse
Affiliation(s)
- Mark D Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Matthew Witman
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States.,Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
19
|
Ferreira Sanchez D, Ihli J, Zhang D, Rohrbach T, Zimmermann P, Lee J, Borca CN, Böhlen N, Grolimund D, Bokhoven JA, Ranocchiari M. Spatio‐Chemical Heterogeneity of Defect‐Engineered Metal–Organic Framework Crystals Revealed by Full‐Field Tomographic X‐ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Johannes Ihli
- Swiss Light Source Paul Scherrer Institut (PSI) 5232 Villigen Switzerland
| | - Damin Zhang
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
- NanoElectroCatalysis Group Department of Chemistry and Biochemistry University of Bern Bern Switzerland
| | - Thomas Rohrbach
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Patric Zimmermann
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Jinhee Lee
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Camelia N. Borca
- Swiss Light Source Paul Scherrer Institut (PSI) 5232 Villigen Switzerland
| | - Natascha Böhlen
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Daniel Grolimund
- Swiss Light Source Paul Scherrer Institut (PSI) 5232 Villigen Switzerland
| | - Jeroen A. Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
- Institute for Chemical and Bioengineering ETH Zurich 8093 Zürich Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute 5232 Villigen PSI Switzerland
| |
Collapse
|
20
|
Ferreira Sanchez D, Ihli J, Zhang D, Rohrbach T, Zimmermann P, Lee J, Borca CN, Böhlen N, Grolimund D, van Bokhoven JA, Ranocchiari M. Spatio-Chemical Heterogeneity of Defect-Engineered Metal-Organic Framework Crystals Revealed by Full-Field Tomographic X-ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10032-10039. [PMID: 33523530 DOI: 10.1002/anie.202013422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The introduction of structural defects in metal-organic frameworks (MOFs), often achieved through the fractional use of defective linkers, is emerging as a means to refine the properties of existing MOFs. These linkers, missing coordination fragments, create unsaturated framework nodes that may alter the properties of the MOF. A property-targeted utilization of this approach demands an understanding of the structure of the defect-engineered MOF. We demonstrate that full-field X-ray absorption near-edge structure computed tomography can help to improve our understanding. This was demonstrated by visualizing the chemical heterogeneity found in defect-engineered HKUST-1 MOF crystals. A non-uniform incorporation and zonation of the defective linker was discovered, leading to the presence of clusters of a second coordination polymer within HKUST-1. The former is suggested to be responsible, in part, for altered MOF properties; thereby, advocating for a spatio-chemically resolved characterization of MOFs.
Collapse
Affiliation(s)
| | - Johannes Ihli
- Swiss Light Source, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| | - Damin Zhang
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.,NanoElectroCatalysis Group, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Thomas Rohrbach
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Patric Zimmermann
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Jinhee Lee
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Camelia N Borca
- Swiss Light Source, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| | - Natascha Böhlen
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.,Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zürich, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| |
Collapse
|
21
|
Haldar R, Kozlowska M, Ganschow M, Ghosh S, Jakoby M, Chen H, Ghalami F, Xie W, Heidrich S, Tsutsui Y, Freudenberg J, Seki S, Howard IA, Richards BS, Bunz UHF, Elstner M, Wenzel W, Wöll C. Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal-organic framework. Chem Sci 2021; 12:4477-4483. [PMID: 34168750 PMCID: PMC8179632 DOI: 10.1039/d0sc07073d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/07/2021] [Indexed: 11/23/2022] Open
Abstract
Charge carrier mobility is an important figure of merit to evaluate organic semiconductor (OSC) materials. In aggregated OSCs, this quantity is determined by inter-chromophoric electronic and vibrational coupling. These key parameters sensitively depend on structural properties, including the density of defects. We have employed a new type of crystalline assembly strategy to engineer the arrangement of the OSC pentacene in a structure not realized as crystals to date. Our approach is based on metal-organic frameworks (MOFs), in which suitably substituted pentacenes act as ditopic linkers and assemble into highly ordered π-stacks with long-range order. Layer-by-layer fabrication of the MOF yields arrays of electronically coupled pentacene chains, running parallel to the substrate surface. Detailed photophysical studies reveal strong, anisotropic inter-pentacene electronic coupling, leading to efficient charge delocalization. Despite a high degree of structural order and pronounced dispersion of the 1D-bands for the static arrangement, our experimental results demonstrate hopping-like charge transport with an activation energy of 64 meV dominating the band transport over a wide range of temperatures. A thorough combined quantum mechanical and molecular dynamics investigation identifies frustrated localized rotations of the pentacene cores as the reason for the breakdown of band transport and paves the way for a crystal engineering strategy of molecular OSCs that independently varies the arrangement of the molecular cores and their vibrational degrees of freedom.
Collapse
Affiliation(s)
- Ritesh Haldar
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Mariana Kozlowska
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Ganschow
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Marius Jakoby
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Hongye Chen
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute of Nano Science Nanjing China
| | - Farhad Ghalami
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Weiwei Xie
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Shahriar Heidrich
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ian A Howard
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT), Light Technology Institute (LTI) Engesserstrasse 13 76131 Karlsruhe Germany
| | - Bryce S Richards
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT), Light Technology Institute (LTI) Engesserstrasse 13 76131 Karlsruhe Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcus Elstner
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
22
|
Jiang Y, Heinke L. Photoswitchable Metal-Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2-15. [PMID: 33347762 DOI: 10.1021/acs.langmuir.0c02859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preparation of functional materials from photoswitchable molecules where the molecular changes multiply to macroscopic effects presents a great challenge in material science. An attractive approach is the incorporation of the photoswitches in nanoporous, crystalline metal-organic frameworks, MOFs, often showing remote-controllable chemical and physical properties. Because of the short light-penetration depth, thin MOF films are particularly interesting, allowing the entire illumination of the material. In the present progress report, we review and discuss the status of photoswitchable MOF films. These films may serve as model systems for quantifying the isomer switching yield by infrared and UV-vis spectroscopy as well as for uptake experiments exploring the switching effects on the host-guest interaction, especially on guest adsorption and diffusion. In addition, the straightforward device integration facilitates various experiments. In this way, unique features were demonstrated, such as photoswitchable membrane separation with continuously tunable selectivity, light-switchable proton conductivity of the guests in the pores, and remote-controllable electronic conduction.
Collapse
Affiliation(s)
- Yunzhe Jiang
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Kanno M, Kitao T, Ito T, Terashima K. Synthesis of a metal–organic framework by plasma in liquid to increase reduced metal ions and enhance water stability. RSC Adv 2021; 11:22756-22760. [PMID: 35480462 PMCID: PMC9034360 DOI: 10.1039/d1ra00942g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Synthesis of a metal–organic framework by plasma in liquid was demonstrated with HKUST-1 as an example. HKUST-1 synthesized by this method contains a higher amount of monovalent copper ions than that synthesized by other conventional methods. The enhanced water stability was also confirmed. Plasma in liquid provides a method for the synthesis of HKUST-1 with increased reduced metal ions and high water stability.![]()
Collapse
Affiliation(s)
- Moriyuki Kanno
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Takashi Kitao
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| |
Collapse
|
24
|
Jablonka KM, Moosavi SM, Asgari M, Ireland C, Patiny L, Smit B. A data-driven perspective on the colours of metal-organic frameworks. Chem Sci 2020; 12:3587-3598. [PMID: 34163632 PMCID: PMC8179528 DOI: 10.1039/d0sc05337f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Colour is at the core of chemistry and has been fascinating humans since ancient times. It is also a key descriptor of optoelectronic properties of materials and is often used to assess the success of a synthesis. However, predicting the colour of a material based on its structure is challenging. In this work, we leverage subjective and categorical human assignments of colours to build a model that can predict the colour of compounds on a continuous scale. In the process of developing the model, we also uncover inadequacies in current reporting mechanisms. For example, we show that the majority of colour assignments are subject to perceptive spread that would not comply with common printing standards. To remedy this, we suggest and implement an alternative way of reporting colour—and chemical data in general. All data is captured in an objective, and standardised, form in an electronic lab notebook and subsequently automatically exported to a repository in open formats, from where it can be interactively explored by other researchers. We envision this to be key for a data-driven approach to chemical research. Colour is at the core of chemistry and has been fascinating humans since ancient times.![]()
Collapse
Affiliation(s)
- Kevin Maik Jablonka
- Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Seyed Mohamad Moosavi
- Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Mehrdad Asgari
- Institute of Mechanical Engineering (IGM), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland.,Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Valais Switzerland
| | - Christopher Ireland
- Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Luc Patiny
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| |
Collapse
|
25
|
Kozlova SG, Ryzhikov MR, Shayapov VR, Samsonenko DG. Effect of spin-phonon interactions on Urbach tails in flexible [M 2(bdc) 2(dabco)]. Phys Chem Chem Phys 2020; 22:15242-15247. [PMID: 32608401 DOI: 10.1039/d0cp01944e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optical properties of metal-organic frameworks [M2(bdc)2(dabco)] (M = Co, Ni, Cu, Zn) in the wavelength region of 300-1000 nm were studied, and the electronic band-to-band transitions were determined and characterized by the Kubelka-Munk approach and DFT calculations. Urbach edges for band-to-band transitions were determined. The effect of spin-phonon interactions on the width of Urbach edges in paramagnetic [M2(bdc)2(dabco)] is discussed. The obtained data may be useful to interpret polymerization, hybridization, and catalytic reactions in [M2(bdc)2(dabco)] pores and to design electronic and optical devices.
Collapse
Affiliation(s)
- Svetlana G Kozlova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue 3, 630090, Novosibirsk, Russian Federation.
| | | | | | | |
Collapse
|
26
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
27
|
Haldar R, Heinke L, Wöll C. Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905227. [PMID: 31763731 DOI: 10.1002/adma.201905227] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 05/18/2023]
Abstract
When fabricating macroscopic devices exploiting the properties of organic chromophores, the corresponding molecules need to be condensed into a solid material. Since optical absorption properties are often strongly affected by interchromophore interactions, solids with a well-defined structure carry substantial advantages over amorphous materials. Here, the metal-organic framework (MOF)-based approach is presented. By appropriate functionalization, most organic chromophores can be converted to function as linkers, which can coordinate to metal or metal-oxo centers so as to yield stable, crystalline frameworks. Photoexcitations in such chromophore-based MOFs are surveyed, with a special emphasis on light-switchable MOFs from photochromic molecules. The conventional powder form of MOFs obtained using solvothermal approaches carries certain disadvantages for optical applications, such as limited efficiency resulting from absorption and light scattering caused by the (micrometer-sized) powder particles. How these problems can be avoided by using MOF thin films is demonstrated.
Collapse
Affiliation(s)
- Ritesh Haldar
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Thin Films of Homochiral Metal–Organic Frameworks for Chiroptical Spectroscopy and Enantiomer Separation. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chiral nanoporous solids are a fascinating class of materials, allowing efficient enantiomer separation. Here, we review the status, applications, and potential of thin films of homochiral metal–organic frameworks (MOFs). Combining the advantages of MOFs, whose well-defined, crystalline structures can be rationally tuned, with the benefits of thin films enables new opportunities for the characterization of the enantioselectivity, e.g., via chiroptical spectroscopy and straightforward molecular uptake quantifications. By incorporating photoresponsive molecules in the chiral MOF films, the enantioselectivity of the material can be dynamically remote-controlled. The most promising application of MOF films is their use as membranes, where the enantioselective separation of chiral molecules is demonstrated and parameters for further improvements are discussed.
Collapse
|
29
|
Wang Z, Henke S, Paulus M, Welle A, Fan Z, Rodewald K, Rieger B, Fischer RA. Defect Creation in Surface-Mounted Metal-Organic Framework Thin Films. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2655-2661. [PMID: 31840974 DOI: 10.1021/acsami.9b18672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Defect engineering is a strategy for tailoring the properties of metal-organic frameworks (MOFs). Plenty of efforts have been devoted to study the defect chemistry and structures of bulk MOFs; however, the reported example of a defect-engineered surface-mounted MOF (SURMOF) thin film is rare. In this work, defects were incorporated in SURMOF thin films by using defect-generating linkers and taking advantage of the liquid-phase stepwise epitaxial layer-by-layer growth (LBL). Two methods based on the LBL, named mixing method and alternating method, are proposed for incorporating defects in the prototypical SURMOF HKUST-1 by partially substituting the parent H3btc (benzene-1,3,5-tricarboxylic acid) linker with a set of defect-generating linkers H2ip (isophthalic acid), H2OH-ip (5-hydroxyisophthalic acid), and H2pydc (3,5-pyridinedicarboxylic acid). The crystallinity and phase purity of the obtained "defected" SURMOFs were confirmed by X-ray diffraction, infrared reflection absorption spectroscopy, and Raman spectroscopy. The incorporation of the defect-generating linkers and the types of induced defects were characterized by ultraviolet-visible spectroscopy, time-of-flight secondary ion mass spectrometry, methanol adsorption, scanning electron microscopy, and 1H nuclear magnetic resonance spectroscopy (after digestion of the samples). These two methods provide avenues for controlling the defect formation in MOF thin films.
Collapse
Affiliation(s)
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie , Technische Universität Dortmund , Otto-Hahn Str. 6 , 44227 Dortmund , Germany
| | - Michael Paulus
- Fakultät Physik/DELTA , Technische Universität Dortmund , Maria-Goeppert-Mayer-Str. 2 , 44221 Dortmund , Germany
| | - Alexander Welle
- Karlsruher Institut für Technologie , Institut für Funktionelle Grenzflächen (IFG) and Karlsruhe Nano Micro Facility (KNMF) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | | | | | | | | |
Collapse
|
30
|
Khajavian R, Mirzaei M, Alizadeh H. Current status and future prospects of metal–organic frameworks at the interface of dye-sensitized solar cells. Dalton Trans 2020; 49:13936-13947. [DOI: 10.1039/d0dt02798g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this Frontier Article recent progresses and challenges at the interface of metal–organic frameworks and dye-sensitized solar cells are highlighted and discussed.
Collapse
Affiliation(s)
- Ruhollah Khajavian
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Masoud Mirzaei
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Hanie Alizadeh
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| |
Collapse
|
31
|
Zhang Z, Müller K, Heidrich S, Koenig M, Hashem T, Schlöder T, Bléger D, Wenzel W, Heinke L. Light-Switchable One-Dimensional Photonic Crystals Based on MOFs with Photomodulatable Refractive Index. J Phys Chem Lett 2019; 10:6626-6633. [PMID: 31596091 DOI: 10.1021/acs.jpclett.9b02614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photonic crystals are solids with regular structures having periodicities comparable to the wavelength of light. Here, we showcase the photomodulation of the refractive index of a crystalline material and present a quasi-one-dimensional photonic crystal with remote-controllable optical properties. The photonic material is composed of layers of TiO2 and films of a nanoporous metal-organic framework (MOF) with azobenzene side groups. While the rigid MOF lattice is unaffected, the optical density is reversibly modified by the light-induced trans-cis-azobenzene isomerization. Spectroscopic ellipsometry and precise DFT calculations show the optical-density change results from the different orbital localizations of the azobenzene isomers and their tremendously different oscillator strengths. The photomodulation of the MOF refractive index controls the optical properties of the quasi-one-dimensional photonic crystal with Bragg reflexes reversibly shifted by more than 4 nm. This study may path the way to photoswitchable photonic materials applied in advanced, tunable optical components and lens coatings and in light-based information processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Bléger
- Department of Chemistry and IRIS Adlershof , Humboldt-Universität zu Berlin , 12489 Berlin , Germany
| | | | | |
Collapse
|
32
|
Affiliation(s)
- Omar F Mohammed
- King Abdullah University of Science and Technology (KAUST) , Division of Physical Sciences and Engineering , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Heinke L, Wöll C. Surface-Mounted Metal-Organic Frameworks: Crystalline and Porous Molecular Assemblies for Fundamental Insights and Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806324. [PMID: 30701602 DOI: 10.1002/adma.201806324] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/08/2018] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline coordination polymers, assembled from inorganic nodes connected by organic linker molecules. An enormous surface area, huge compositional variety, regular structure, and favorable mechanical properties are among their outstanding properties. Monolithic MOF thin films, i.e., surface-mounted metal-organic frameworks (SURMOFs), with high degree of structural order and adjustable defect density, can be prepared on solid substrates using layer-by-layer techniques. Recent studies where SURMOFs served as model systems for quantitative studies of molecular interactions in porous media, including diffusion, are reviewed. Moreover, SURMOFs are ideally suited for the incorporation of photoactive molecules as well as to study electrical transport through crystalline molecular assemblies. Recent work has demonstrated that the realization of crystalline chromophore assemblies via the SURMOF approach allows the study of fundamental aspects of exciton transport, exciton channeling, and photon upconversion at internal interfaces in organic semiconductor materials. Due to their crystalline nature, MOF materials are well suited for quantitative comparisons with theoretical results; especially, since defect densities and types can be characterized and varied in a straightforward fashion. The active role of these nanoporous films in advanced applications, like for remote-controlled release of molecules, membranes with photoswitchable selectivity, and ion-conductors with adjustable conductivity, are also emphasized.
Collapse
Affiliation(s)
- Lars Heinke
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Adams M, Kozlowska M, Baroni N, Oldenburg M, Ma R, Busko D, Turshatov A, Emandi G, Senge MO, Haldar R, Wöll C, Nienhaus GU, Richards BS, Howard IA. Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium-Porphyrin-Based Surface-Anchored Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15688-15697. [PMID: 30938507 DOI: 10.1021/acsami.9b03079] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Efficient photon-harvesting materials require easy-to-deposit materials exhibiting good absorption and excited-state transport properties. We demonstrate an organic thin-film material system, a palladium-porphyrin-based surface-anchored metal-organic framework (SURMOF) thin film that meets these requirements. Systematic investigations using transient absorption spectroscopy confirm that triplets are very mobile within single crystalline domains; a detailed analysis reveals a triplet transfer rate on the order of 1010 s-1. The crystalline nature of the SURMOFs also allows a thorough theoretical analysis using the density functional theory. The theoretical results reveal that the intermolecular exciton transfer can be described by a Dexter electron exchange mechanism that is considerably enhanced by virtual charge-transfer exciton intermediates. On the basis of the photophysical results, we predict exciton diffusion lengths on the order of several micrometers in perfectly ordered, single-crystalline SURMOFs. In the presently available samples, strong interactions of excitons with domain boundaries present in these metal-organic thin films limit the diffusion length to the diameter of these two-dimensional grains, which amount to about 100 nm. Our results demonstrate high potential of SURMOFs for light-harvesting applications.
Collapse
Affiliation(s)
| | | | | | | | - Rui Ma
- Institute of Applied Physics , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | | | | | - Ganapathi Emandi
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin , The University of Dublin , 152-160 Pearse Street , 2 Dublin , Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin , The University of Dublin , 152-160 Pearse Street , 2 Dublin , Ireland
| | | | | | - G Ulrich Nienhaus
- Institute of Applied Physics , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , 61801 Illinois , United States
| | - Bryce S Richards
- Light Technology Institute , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Ian A Howard
- Light Technology Institute , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| |
Collapse
|
35
|
|
36
|
Wu XS, Wang YX, Li SQ, Qian Y, Zhai L, Wang XZ, Ren XM. Metal ion coordination enhancing quantum efficiency of ligand phosphorescence in a double-stranded helical chain coordination polymer of Pb 2+ with nicotinic acid. Dalton Trans 2018; 47:14636-14643. [PMID: 30276395 DOI: 10.1039/c8dt03589j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new 1D phosphorescence coordination polymer (CP) [Pb2O(C6H4NO2)2]n (1; C6H4NO2 = nicotinate) was synthesized by a solvothermal reaction and PbO was used as a Pb(ii) source instead of traditional Pb(ii) salts. This remarkably thermal-stable CP crystallizes in the space group I41/a. In the crystal structure of 1, two different Pb(ii) ions show a five-coordinated and hemidirected coordination geometry, two nonequivalent nicotinate ligands link to Pb(ii) ions in μ2-η1:η1 and μ4-η2:η2 modes, and the hemidirected coordination polyhedra of Pb(ii) form a helical lead-oxide chain via an edge-sharing fashion along the c-axis. Under ambient conditions, 1 emits cyan ligand-based phosphorescence with an absolute quantum yield as high as 59.4% and a lifetime of 9.86 ms under UV-light irradiation. Under the same conditions, nicotinic acid emits simultaneously fluorescence and phosphorescence with a total absolute quantum yield of 4.8%. The great enhancement of phosphorescence quantum yield in 1, regarding nicotinic acid, is assigned to the heavy atom effect of Pb(ii) and negligible ππ interaction between pyridyl rings. Noticeably, the vibronic fine structure is observed in the emission spectrum of 1 at room temperature. Additionally, 1 shows thermochromic behavior, and such functionality probably has realistic application in the field of temperature detection.
Collapse
Affiliation(s)
- Xiao-Shuo Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Guo W, Hassan ZM, Kübel C, Haldar R, Weidler PG, Heissler S, Peikert K, Fröba M, Redel E, Wöll C. MOF-templated synthesis of 3D Bi 2O 3 supracrystals with bcc packing. NANOSCALE 2018; 10:17099-17104. [PMID: 30179247 DOI: 10.1039/c8nr04204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a non-conventional, MOF-based approach with modified linkers to fabricate 3D Bi2O3 supracrystals. The nanoparticle (NP) assembly exhibits bcc-packing, which is difficult to achieve with other methods. The NPs possess a very narrow size distribution. The individual NPs were synthesized inside the pores of a surface-mounted metal-organic framework (SURMOF) template via a photo-decomposition procedure. The supracrystals were thoroughly characterized using X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy as well as high-resolution transmission electron microscopy (HR-TEM) and SAED (Selected Area Electron Diffraction). In order to achieve sharp size distributions of the NPs, the pores within the SURMOF were functionalized with amino (-NH2) functional groups acting as nucleation centers. MOFs lacking such additional functionalities, Cu3(BTC)2, yielded much broader size distributions. These findings provide a unique molecular design tool for creating nanometer-sized reaction compartments for the synthesis of supracrystals with packing types not accessible via self-assembly.
Collapse
Affiliation(s)
- Wei Guo
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Almutlaq J, Yin J, Mohammed OF, Bakr OM. The Benefit and Challenges of Zero-Dimensional Perovskites. J Phys Chem Lett 2018; 9:4131-4138. [PMID: 29953235 DOI: 10.1021/acs.jpclett.8b00532] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To break free of the limitations imposed by three-dimensional (3D) perovskites, such as their lackluster stability, researchers have opened new frontiers into lower-dimensional perovskite derivatives. Thanks to advances in solvent-based synthesis methods, zero-dimensional (0D) inorganic perovskites, mainly Cs4PbBr6, have recently reemerged in various forms (from single crystals to nanocrystals) as materials with properties that bridge organic molecules and inorganic semiconductors. These properties include intrinsic Pb2+ ion emission, large exciton binding energy, and small polaron formation upon photoexcitation, in addition to anomalous green photoluminescence with improved stability and high quantum yield. Moreover, the demonstration of Cs4PbBr6-based light-emitting diode (LED) devices highlights the accelerating efforts toward their applications and motivates further investigations of these emerging materials. This Perspective summarizes the progress in the field of Cs4PbBr6 perovskites, focusing on their molecular-electronic properties and hotly debated green photoluminescence. We conclude by presenting the implications of the unique findings and suggesting opportunities for the future development and applications of these 0D perovskites.
Collapse
|
39
|
Ullman AM, Jones CG, Doty FP, Stavila V, Talin AA, Allendorf MD. Hybrid Polymer/Metal-Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24201-24208. [PMID: 29939713 DOI: 10.1021/acsami.8b07377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.
Collapse
Affiliation(s)
- Andrew M Ullman
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| | - Christopher G Jones
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| | - F Patrick Doty
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| | - Vitalie Stavila
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| | - A Alec Talin
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| | - Mark D Allendorf
- Sandia National Laboratories , Livermore , California 94551-0969 , United States
| |
Collapse
|
40
|
Wang Y, Wöll C. Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catal Letters 2018. [DOI: 10.1007/s10562-018-2432-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Zhou W, Grosjean S, Bräse S, Heinke L. Thermal cis-to-trans Isomerization of Azobenzene Side Groups in Metal-Organic Frameworks investigated by Localized Surface Plasmon Resonance Spectroscopy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The energy barrier for cis-to-trans isomerization is among the key parameters for photoswitchable molecules such as azobenzene. Recently, we introduced a well-defined model system based on thin films of crystalline, nanoporous metal-organic frameworks, MOFs. The system enables the precise investigation of the thermal cis-to-trans relaxation of virtually isolated azobenzene pendant groups by means of infrared spectroscopy in vacuum. Here, this approach is extended by using localized surface plasmon resonance spectroscopy. This simple and relatively inexpensive setup enables the investigation of the thermal cis-to-trans isomerization in different environments, here in argon gas or in liquid butanediol. The energy barrier for the cis-to-trans-relaxation in argon, 1.17±0.20eV, is identical to the barrier in vacuum, while the energy barrier in liquid butanediol is slightly larger, 1.26±0.15eV.
Collapse
Affiliation(s)
- Wencai Zhou
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Sylvain Grosjean
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
- Soft Matter Synthesis Lab, Institute of Biological Interfaces 3 (IBG3), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , Hermann-von Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
42
|
Müller K, Singh Malhi J, Wohlgemuth J, Fischer RA, Wöll C, Gliemann H, Heinke L. Water as a modulator in the synthesis of surface-mounted metal–organic framework films of type HKUST-1. Dalton Trans 2018; 47:16474-16479. [PMID: 30406780 DOI: 10.1039/c8dt03310b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By using water as modulator, the growth of thin nanoporous SURMOF films, prepared in a layer-by-layer fashion, can be improved.
Collapse
Affiliation(s)
- Kai Müller
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Jasleen Singh Malhi
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Jonas Wohlgemuth
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Roland A. Fischer
- Inorganic and Metal-Organic Chemistry
- Catalysis Research Centre
- Technical University Munich
- D-85748 Garching
- Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|