1
|
Chen S, Lee CJM, Tan GSX, Ng PR, Zhang P, Zhao J, Novoselov KS, Andreeva DV. Ultra-Tough Graphene Oxide/DNA 2D Hydrogel with Intrinsic Sensing and Actuation Functions. Macromol Rapid Commun 2025; 46:e2400518. [PMID: 39101702 DOI: 10.1002/marc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.
Collapse
Affiliation(s)
- Siyu Chen
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Gladys Shi Xuan Tan
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pengxiang Zhang
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Jinpei Zhao
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| |
Collapse
|
2
|
Moncada D, Bouza R, Rico M, Rodríguez-Llamazares S, Pettinelli N, Aragón-Herrera A, Feijóo-Bandín S, Gualillo O, Lago F, Farrag Y, Salavagione H. Injectable Carrageenan/Green Graphene Oxide Hydrogel: A Comprehensive Analysis of Mechanical, Rheological, and Biocompatibility Properties. Polymers (Basel) 2024; 16:2345. [PMID: 39204565 PMCID: PMC11359936 DOI: 10.3390/polym16162345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, physically crosslinked injectable hydrogels based on carrageenan, locust bean gum, and gelatin, and mechanically nano-reinforced with green graphene oxide (GO), were developed to address the challenge of finding materials with a good balance between injectability and mechanical properties. The effect of GO content on the rheological and mechanical properties, injectability, swelling behavior, and biocompatibility of the nanocomposite hydrogels was studied. The hydrogels' morphology, assessed by FE-SEM, showed a homogeneous porous architecture separated by thin walls for all the GO loadings investigated. The rheology measurements evidence that G' > G″ over the whole frequency range, indicating the dominant elastic nature of the hydrogels and the difference between G' over G″ depends on the GO content. The GO incorporation into the biopolymer network enhanced the mechanical properties (ca. 20%) without appreciable change in the injectability of the nanocomposite hydrogels, demonstrating the success of the approach described in this work. In addition, the injectable hydrogels with GO loadings ≤0.05% w/v exhibit negligible toxicity for 3T3-L1 fibroblasts. However, it is noted that loadings over 0.25% w/v may affect the cell proliferation rate. Therefore, the nano-reinforced injectable hybrid hydrogels reported here, developed with a fully sustainable approach, have a promising future as potential materials for use in tissue repair.
Collapse
Affiliation(s)
- Danny Moncada
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Rebeca Bouza
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Maite Rico
- CITENI, Grupo de Polímeros, Campus Industrial de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepción 4051381, Chile
| | - Natalia Pettinelli
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepción 4051381, Chile
| | - Alana Aragón-Herrera
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Francisca Lago
- IDIS (Instituto de Investigación Sanitaria de Santiago), Cellular and Molecular Cardiology Research Unit, Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Yousof Farrag
- NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain
| | - Horacio Salavagione
- Departamento de Física de Polímeros, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
3
|
Wu X, Qi Z, Li X, Wang H, Yang K, Cai H, Han X. Polymerizable deep eutectic solvent treated lignocellulose: Green strategy for synergetic production of tough strain sensing elastomers and nanocellulose. Int J Biol Macromol 2024; 264:130670. [PMID: 38453108 DOI: 10.1016/j.ijbiomac.2024.130670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Liquid free ion-conductive elastomers (ICEs) have demonstrated promising potential in various advanced application scenarios including sensor, artificial skin, and human-machine interface. However, ICEs that synchronously possess toughness, adhesiveness, stability, and anti-bacterial capability are still difficult to achieve yet highly demanded. Here, a one-pot green and sustainable strategy was proposed to fabricate multifunctional ICEs by extracting non-cellulose components (mainly lignin and hemicellulose) from lignocellulose with polymerizable deep eutectic solvents (PDES) and the subsequent in-situ photo-polymerization process. Ascribing to the uniform dispersion of non-cellulose components in PDES, the resultant ICEs demonstrated promising mechanical strength (a tensile strength of ~1200 kPa), high toughness (~9.1 MJ m-3), favorable adhesion (a lap-shear strength up to ~61.5 kPa toward metal), conducive stabilities, and anti-bacterial capabilities. With the help of such advantages, the ICEs exhibited sensitive (a gauge factor of ~23.5) and stable (~4000 cycles) performances in human motion and physiological signal detection even under sub-zero temperatures (e.g., -20 °C). Besides, the residue cellulose can be mechanically isolated into nanoscale fibers, which matched the idea of green chemistry.
Collapse
Affiliation(s)
- Xiaoxue Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Zhiqiang Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Xinyi Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Hao Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Keyan Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China
| | - Hongzhen Cai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China.
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, 255000, China.
| |
Collapse
|
4
|
Gwon Y, Park S, Kim W, Park S, Sharma H, Jeong HE, Kong H, Kim J. Graphene Hybrid Tough Hydrogels with Nanostructures for Tissue Regeneration. NANO LETTERS 2024; 24:2188-2195. [PMID: 38324001 DOI: 10.1021/acs.nanolett.3c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Over the past few decades, hydrogels have attracted considerable attention as promising biomedical materials. However, conventional hydrogels require improved mechanical properties, such as brittleness, which significantly limits their widespread use. Recently, hydrogels with remarkably improved toughness have been developed; however, their low biocompatibility must be addressed. In this study, we developed a tough graphene hybrid hydrogel with nanostructures. The resultant hydrogel exhibited remarkable mechanical properties while representing an aligned nanostructure that resembled the extracellular matrix of soft tissue. Owing to the synergistic effect of the topographical properties, and the enhanced biochemical properties, the graphene hybrid hydrogel had excellent stretchability, resilience, toughness, and biocompatibility. Furthermore, the hydrogel displayed outstanding tissue regeneration capabilities (e.g., skin and tendons). Overall, the proposed graphene hybrid tough hydrogel may provide significant insights into the application of tough hydrogels in tissue regeneration.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61011, Republic of Korea
| |
Collapse
|
5
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
6
|
Saddique A, Kim JC, Bae J, Cheong IW. Low-temperature, ultra-fast, and recyclable self-healing nanocomposites reinforced with non-solvent silylated modified cellulose nanocrystals. Int J Biol Macromol 2024; 254:127984. [PMID: 37951429 DOI: 10.1016/j.ijbiomac.2023.127984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.
Collapse
Affiliation(s)
- Anam Saddique
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin Chul Kim
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea.
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Chen Y, Hu Z, Wang D, Xue X, Pu H. Reversible Change in Performances of Polymer Networks via Invertible Architecture-Transformation of Cross-Links. ACS Macro Lett 2023; 12:1311-1316. [PMID: 37708566 DOI: 10.1021/acsmacrolett.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
A polymer nanoparticle network using single-chain nanoparticles (SCNPs) as cross-links is designed. The experimental and theoretical study shows that incorporating SCNPs in polymer networks leads to smaller mesh size, faster terminal relaxation time, and reduced fluctuation among cross-links, resulting in a significant increase in shear storage modulus, and enhancement in tensile stress. Notably, the reversible single-chain collapse of SCNPs under thermal stimulation enables the polymer network to undergo coherent changes between two topological states, thereby exhibiting reversible transformations between soft and stiff states. This approach and finding can effectively tailor the mechanical properties of polymer networks, potentially leading to the development of intelligent, responsive materials.
Collapse
Affiliation(s)
- Yangjing Chen
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| | - Zhiyu Hu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Deping Wang
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, China
| | - Hongting Pu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| |
Collapse
|
8
|
Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydr Polym 2023; 310:120610. [PMID: 36925232 DOI: 10.1016/j.carbpol.2023.120610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Shape memory hydrogels attract increasing attention as flexible strain sensors due to their shape recovery property that can improve the lifetime of the sensor. Herein, we have designed a magnetic shape memory hydrogel based on Fe3O4 nanoparticles, carrageenan, and poly (acrylamide-co-acrylic acid) with self-adhesive and conductive properties. The resulting double network hydrogel showed promising actuator and strain sensor applications. Electrical conductivity was observed in this hydrogel without using additional ions. The presence of magnetite nanoparticles increased the tensile strength and temporary shape fixity ratio to around 6.5 MPa and 94.3 %, respectively. The excellent cantilever and catheter-like behavior of the hydrogels were illustrated through magnetic routing by an external magnet. Also, these hydrogels demonstrated suitable performance in the 500 cycles strain sensing tests before and after their initial shape recovery.
Collapse
Affiliation(s)
- Sakineh Alipour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
9
|
Chen TY, Jiang YJ, Chien HW. Developing Transparent and Conductive PolyHEMA Gels Using Deep Eutectic Solvents. Polymers (Basel) 2023; 15:2605. [PMID: 37376251 DOI: 10.3390/polym15122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Poly(2-hydroxyethyl methacrylate) (polyHEMA) hydrogels are commonly used in biomaterials such as contact lenses. However, water evaporation from these hydrogels can cause discomfort to wearers, and the bulk polymerization method used to synthesize them often results in heterogeneous microstructures, reducing their optical properties and elasticity. In this study, we synthesized polyHEMA gels using a deep eutectic solvent (DES) instead of water and compared their properties to traditional hydrogels. Fourier-transform infrared spectroscopy (FTIR) showed that HEMA conversion in DES was faster than in water. DES gels also demonstrated higher transparency, toughness, and conductivity, along with lower dehydration, than hydrogels. The compressive and tensile modulus values of DES gels increased with HEMA concentration. A DES gel with 45% HEMA showed excellent compression-relaxation cycles and had the highest strain at break value in the tensile test. Our findings suggest that DES is a promising alternative to water for synthesizing contact lenses with improved optical and mechanical properties. Furthermore, DES gels' conduction properties may enable their application in biosensors. This study presents an innovative approach to synthesizing polyHEMA gels and provides insights into their potential applications in the biomaterials field.
Collapse
Affiliation(s)
- Tai-Yu Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Yi-Jie Jiang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
| |
Collapse
|
10
|
Guo R, Yu D, Wang S, Fu L, Lin Y. Nanosheet-hydrogel composites: from preparation and fundamental properties to their promising applications. SOFT MATTER 2023; 19:1465-1481. [PMID: 36752168 DOI: 10.1039/d2sm01471h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are an important class of soft materials with elastic and intelligent properties. Nevertheless, these traditional hydrogels usually possess poor mechanical properties and limited functions, which greatly restrict their further applications. With the rapid development of nanotechnology, there have been significant advances in the design and fabrication of functional nanocomposite hydrogels with unique properties and functions. Among various materials, nanosheets with planar topography, large specific surface areas, and versatile physicochemical properties have attracted intense research interest. Herein, this review summarises the synthesis mechanisms, fundamental properties, and promising applications of nanosheet-incorporated hydrogels. In particular, how the nanosheet structure is applied to improve the overall performance of the hydrogel in each application is emphasized. Additionally, the current challenges and prospects are briefly discussed in this area. We expect that the combination of nanosheets and hydrogels can attract more researchers' interest and bring new opportunities in the future.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Lianlian Fu
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
11
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Kausar A. Self-healing aeronautical nanocomposites. POLYMERIC NANOCOMPOSITES WITH CARBONACEOUS NANOFILLERS FOR AEROSPACE APPLICATIONS 2023:263-296. [DOI: 10.1016/b978-0-323-99657-0.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
Graphene nanoplate incorporated Gelatin/poly(2-(Acryloyloxy)ethyl trimethylammonium chloride) composites hydrogel for highly effective removal of Alizarin Red S from aqueous solution. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Song J, Kim Y, Kang K, Lee S, Shin M, Son D. Stretchable and Self-Healable Graphene–Polymer Conductive Composite for Wearable EMG Sensor. Polymers (Basel) 2022; 14:polym14183766. [PMID: 36145910 PMCID: PMC9505217 DOI: 10.3390/polym14183766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/11/2022] Open
Abstract
In bioelectronics, stretchable and self-healable electrodes can reliably measure electrophysiological signals from the human body because they have good modulus matching with tissue and high durability. In particular, the polymer–graphene composite has advantages when it is used as an electrode for bioelectronic sensor devices. However, it has previously been reported that external stimuli such as heat or light are required for the self-healing process of polymer/graphene composites. In this study, we optimized a conducting composite by mixing a self-healing polymer (SHP) and graphene. The composite materials can not only self-heal without external stimulation but also have rapid electrical recovery from repeated mechanical damage such as scratches. In addition, they had stable electrical endurance even when the cyclic test was performed over 200 cycles at 50% strain, so they can be useful for a bioelectronic sensor device with high durability. Finally, we measured the electromyogram signals caused by the movement of arm muscles using our composite, and the measured data were transmitted to a microcontroller to successfully control the movement of the robot’s hand.
Collapse
Affiliation(s)
- Jihyang Song
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Yewon Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyumin Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sangkyu Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.S.); (D.S.)
| | - Donghee Son
- Department of Superintelligence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.S.); (D.S.)
| |
Collapse
|
16
|
Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 33:1595-1622. [DOI: 10.1080/09205063.2022.2068941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Liu S, Xu L, Yuan Z, Huang M, Yang T, Chen S. 3D Interlayer Slidable Multilayer Nano-Graphene Oxide Acrylate Crosslinked Tough Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8200-8210. [PMID: 35765949 DOI: 10.1021/acs.langmuir.2c00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of three-dimensional crosslinked units with a spatial structure is of great significance for improving the mechanical properties of hydrogels. However, almost all the nanocomposites incorporated in hydrogels were defined as rigid nanofillers without further discussion on the potential contribution from the spatial structure change. In this work, the 3D nano chemical crosslinker multilayer graphene oxide acrylate (mGOa) was developed as a pressure-responsive crosslinker to achieve both low elastic modulus and high compression stress by synergizing more polymer chains against the loading force through interlayer sliding. Results showed that the hydrogel crosslinked by only 2 mg/mL mGOa nano chemical crosslinker in the poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogel (molar ratio: 1:1) can effectively enhance the mechanical strength up to 14.1 ± 2.1 MPa at a high compressive strain (90.6%) with an elastic modulus of less than 0.03 MPa at the initial 5% compression, whereas the hydrogel crosslinked by methacrylated single-layer graphene oxide (sGOa) or a small-molecule chemical crosslinker, N,N'-methylene bisacrylamide, can only reach 2.3 ± 0.8 MPa and 1.4 ± 0.4 MPa, respectively. In addition, the instantaneous modulus of the mGOa crosslinked hydrogel rapidly increased to the peak value with the increase of strain. The repeated compression test of HcA-mGOa hydrogels showed the responsive increase of the modulus, which was promoted by the synergism of polymer chains under compression. This indicated that the interlayer sliding of mGOa is the key contributor to mechanical strength enhancement, which provides a new rationale to design tough hydrogels.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhefan Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
18
|
Xiong L, Zheng W, Cao S, Zheng Y. Organic–Inorganic Double-Gel System Thermally Insulating and Hydrophobic Polyimide Aerogel. Polymers (Basel) 2022; 14:polym14142818. [PMID: 35890593 PMCID: PMC9321330 DOI: 10.3390/polym14142818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Aerogel materials are used in various fields, but there is a shortage of aerogel materials with an excellent combination of mechanical properties, thermal stability, and easy preparation. In this study, polyimide aerogel materials with superior mechanical properties, thermal stability, and low thermal conductivity were prepared by forming a double-gel system in the liquid phase. The amino-modified gel, prepared by coating SiO2 nano-microspheres with GO through a modified sol-gel method (SiO2@GO-NH2), was subsequently homogeneously dispersed with PAA wet gel in water to form a double-gel system. The construction of a double-gel system enabled the PI aerogel to shape a unique honeycomb porous structure and a multi-layered interface of PI/SiO2/GO. The final obtained PI aerogel possessed effective thermal conductivity (0.0309 W/m·K) and a high specific modulus (46.19 m2/s2). In addition, the high thermal stability (543.80 °C in Ar atmosphere) and the ability to retain properties under heat treatment proved its durability in high thermal environments. The hydrophobicity (131.55°) proves its resistance to water from the environment. The excellent performance of this PI aerogel and its durability in thermal working environments make it possible to be applied in varied industrial and research fields, such as construction and energy, where heat and thermal insulation are required.
Collapse
|
19
|
Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ. Fast-Curing Injectable Microporous Hydrogel for In Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2022; 5:2786-2794. [PMID: 35576622 DOI: 10.1021/acsabm.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seth D. Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jason M. Brown
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Ryann D. Boudreau
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuhan Lee
- Engineering in Medicine, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
20
|
Rahmani S, Olad A, Rahmani Z. Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: study of drug delivery behavior. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Çeper EB, Su E, Okay O, Güney O. Surface modification of graphene oxide for preparing self‐healing nanocomposite hydrogels. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ezgi B. Çeper
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Esra Su
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Oguz Okay
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| | - Orhan Güney
- Departments of Chemistry and Polymer Science & Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
22
|
Rumon MMH, Sarkar SD, Uddin MM, Alam MM, Karobi SN, Ayfar A, Azam MS, Roy CK. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels. RSC Adv 2022; 12:7453-7463. [PMID: 35424695 PMCID: PMC8982252 DOI: 10.1039/d2ra00122e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/01/2022] [Indexed: 01/23/2023] Open
Abstract
Extraordinary self-healing efficiency is rarely observed in mechanically strong hydrogels, which often limits the applications of hydrogels in biomedical engineering. We have presented an approach to utilize a special type of graphene oxide-based crosslinker (GOBC) for the simultaneous improvement of toughness and self-healing properties of conventional hydrogels. The GOBC has been prepared from graphene oxide (GO) by surface oxidation and further introduction of vinyl groups. It has been designed in such a way that the crosslinker is able to form both covalent bonds and noncovalent interactions with the polymer chains of hydrogels. To demonstrate the efficacy of GOBC, it was incorporated in a conventional polyacrylamide (PAM) and polyacrylic acid (PAA) hydrogel matrix, and the mechanical and self-healing properties of the prepared hydrogels were investigated. In PAM-GOBC hydrogels, it has been observed that the mechanical properties such as tensile strength, Young's modulus, and toughness are significantly improved by the incorporation of GOBC without compromising the self-healing efficiency. The PAM-GOBC hydrogel with a modulus of about 0.446 MPa exhibited about 70% stress healing efficiency after 40 h. Whereas, under the same conditions a PAM hydrogel with commonly used crosslinker N,N'-methylene-bis(acrylamide) of approximately the same modulus demonstrated no self-healing at all. Similar improvement of self-healing properties and toughness in PAA-GOBC hydrogel has also been observed which demonstrated the universality of the crosslinker. This crosslinker-based approach to improve the self-healing properties is expected to offer the possibility of the application of commonly used hydrogels in many different sectors, particularly in developing artificial tissues.
Collapse
Affiliation(s)
| | - Stephen Don Sarkar
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Md Mosfeq Uddin
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Md Mahbub Alam
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | | | - Aruna Ayfar
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Md Shafiul Azam
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| | - Chanchal Kumar Roy
- Bangladesh University of Engineering and Technology (BUET) Dhaka-1000 Bangladesh
| |
Collapse
|
23
|
Gao X, Deng T, Huang X, Yu M, Li D, Lin J, Yu C, Tang C, Huang Y. Porous boron nitride nanofibers as effective nanofillers for poly(vinyl alcohol) composite hydrogels with excellent self-healing performances. SOFT MATTER 2022; 18:859-866. [PMID: 34985488 DOI: 10.1039/d1sm01361k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New composite hydrogels with excellent self-healing properties were prepared by combining poly(vinyl alcohol) (PVA) and boron nitride nanofibers (BNNFs) via a facile one-pot assembly method. One-dimensional porous BNNFs with high aspect ratio, abundant hydroxyl functional groups, especially excellent flexibility which has been first demonstrated in experiments, can act as a decent inorganic nanofillers to effectively improve the mechanical and self-healing properties of PVA hydrogels. Both the tensile and compression performances of hydrogels have been greatly improved by the trace addition of BNNFs (only ∼1.25 wt%). Compared with other BN nanofillers with spherical particles and lamellar morphologies, BNNFs with high aspect ratios and good flexibility play a unique role in the preparation of PVA composite hydrogels with cross-linked three-dimensional polymeric networks. This can be explained by the different topological structures of composite hydrogels formed. The abundant hydroxyl functional groups can form a lot of reversible hydrogen bonds with the molecular chains of PVA, so the as-prepared hydrogels have a high self-healing efficiency. The best healing efficiency of the composite hydrogels with 2.25 wt% BNNFs reaches as high as 97.31% after self-healing for 30 minutes. The good flexibility of BNNFs is beneficial to the movement of the PVA chain, which is beneficial to the self-healing process of composite hydrogels. The outstanding self-healing performance is very important for the application of composite hydrogels in the biomedical field and wearable flexible devices.
Collapse
Affiliation(s)
- Xiangqian Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Tiantian Deng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xindi Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Mengmeng Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Danyang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chao Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
24
|
Xie F, Gao X, Yu Y, Lu F, Zheng L. Dually cross-linked single network poly(ionic liquid)/ionic liquid ionogels for a flexible strain-humidity bimodal sensor. SOFT MATTER 2021; 17:10918-10925. [PMID: 34811559 DOI: 10.1039/d1sm01453f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gel electrolytes have aroused extensive interest for diverse flexible electronics due to their high ionic conductivity and inherent stretchability. However, gel electrolytes still face challenges in terms of mechanical properties, fatigue resistance, and environmental adaptation, which severely limit the practical application of gel-based electronics. In this paper, we have synthesized a novel polymerizable ionic liquid [SBMA][AA] by mixing zwitterionic sulfobetaine methacrylate with acrylic acid. Then a dually cross-linked single network poly(ionic liquid)/ionic liquid (DCSN PIL/IL) ionogel was prepared by a simple one-step photopolymerization of the [SBMA][AA] in another IL 1-ethyl-3-methylimidazolium dicyanoamide ([EmIm][DCA]). The synergistic effect between covalent crosslinking and dynamic physical crosslinking points endows the ionogel with good mechanical properties as well as outstanding fatigue resistance. Gratifyingly, the entrapment of [EmIm][DCA] in the ionogel matrix yields excellent environmental adaptability and high ionic conductivity. Meanwhile, the DCSN PIL/IL ionogel also exhibited strong adhesive capacity due to the abundance of carboxyl and sulphonic acid groups. The outstanding electromechanical properties make the DCSN PIL/IL ionogel a perfect candidate for strain sensors to monitor diverse human body activities, such as the movement of the thumb knuckle and handwriting. Interestingly, the DCSN PIL/IL ionogel also displayed high responsiveness to humidity. Therefore, it is believed that this DCSN PIL/IL ionogel offers a broad prospect in flexible strain-humidity bimodal sensors.
Collapse
Affiliation(s)
- Fengjin Xie
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Yang Yu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
25
|
Tang R, Meng Q, Wang Z, Lu C, Zhang M, Li C, Li Y, Shen X, Sun Q. Multifunctional Ternary Hybrid Hydrogel Sensor Prepared via the Synergistic Stabilization Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57725-57734. [PMID: 34814687 DOI: 10.1021/acsami.1c17895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since highly stretchable hydrogels have demonstrated their promising applications in flexible tactile sensors and wearable devices, the current challenge has been imposed on stretchable and multifunctional electronics. Here, we report a multifunctional sensor composed of a liquid metal (LM) nanodroplet-adhered self-assembled polymeric network, anionic carboxymethylcellulose (CMC), and cationic polyacrylamide (PAAm). The synergistic effect, zeta potential reduction, by CMC and macromolecules enveloped by LM contributes to the stabilization of the ternary system during preparation and, thus, the homogenization of the products. By engineering and optimizing the ternary hybrid hydrogels, excellent extensibility (tensile strain near 300%), readily reversible hysteresis loops, and accessible deformability (low modulus of 104 Pa) are afforded. The fabricated sensor exhibits a high tensile strain gauge factor of around 0.7 and a high compressive stress sensitivity of up to 0.12 kPa-1, a fast response time below 125 ms, and a high stability and precision in usage. In a series of practical scenarios, the assembled sensor displays distinguished abilities to monitor bodily motions, record electrocardiograms, authenticate handwriting, discern temperature, and infer materials, making them highly promising for multifunctional intelligent soft sensing.
Collapse
Affiliation(s)
- Ruixin Tang
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Qingyu Meng
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Zhaosong Wang
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Chengjiang Lu
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Minghao Zhang
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Caicai Li
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Yingying Li
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Xiaoping Shen
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| | - Qingfeng Sun
- School of Engineering, Zhejiang A&F University, No. 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province 311300, People's Republic of China
| |
Collapse
|
26
|
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021; 298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
Abstract
Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are numerous research works reported in the literature which consider various aspects as preparation approaches, design strategies, properties control, and applications of hydrogel-based strain sensors. This article aims to present a review on this exciting topic with a new insight on the hydrogel-based wearable strain sensors in terms of their features, strain sensory performance, and prospective applications. In this respect, we first briefly review recent advances related to designing the materials and the methods for promoting hydrogels' intrinsic features. Then, strain (both tensile and pressure) sensing performance of prepared hydrogels is critically studied, and alternative approaches for their high-performance sensing are proposed. Subsequently, this review provides several promising applications of hydrogel-based strain sensors, including bioapplications and human-machine interface devices. Finally, challenges and future outlooks of conductive and stretchable hydrogels employed in the wearable strain sensors are discussed.
Collapse
|
27
|
Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. SOFT MATTER 2021; 17:8786-8804. [PMID: 34596200 DOI: 10.1039/d1sm00997d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.
Collapse
Affiliation(s)
- Qin Yu
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Zirong Zheng
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xinhao Dong
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Rui Cao
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Shuheng Zhang
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xiaolin Wu
- Daqing Research Institute of Exploration and Development, Daqing Oilfield Co., Ltd, 163318, China
| | - Xinya Zhang
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
| |
Collapse
|
28
|
|
29
|
Kadumudi FB, Hasany M, Pierchala MK, Jahanshahi M, Taebnia N, Mehrali M, Mitu CF, Shahbazi MA, Zsurzsan TG, Knott A, Andresen TL, Dolatshahi-Pirouz A. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100047. [PMID: 34247417 DOI: 10.1002/adma.202100047] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.
Collapse
Affiliation(s)
- Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Masoud Hasany
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | | | | | - Nayere Taebnia
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Mechanical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Cristian Florian Mitu
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Arnold Knott
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
30
|
Xing W, Tang Y. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
32
|
Xue S, Ye Z, Tang Q, Wang Y. A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymeric hydrogels with excellent biocompatibility, high hydrophilicity, and water-holding capacity have attracted considerable concerns in widely fields. However, most hydrogels exhibit poor mechanical property, which largely limited their applications. Herein, a novel dual-crosslinking polymeric hydrogel crosslinked by covalent bonds and metal coordination interactions between Fe3+ and –COO- was fabricated through accessible method. The metal coordination interactions within the hydrogel were established through dipping in the FeCl3 solution to reinforce the backbones of the hydrogel. The obtained polymeric hydrogel exhibits enhanced tensile strength (∼4.92 MPa), stiffness (∼6.168 MPa), and toughness (∼2.835 MJ m−3).
Collapse
Affiliation(s)
- Shishan Xue
- School of Chemistry and Chemical Engineering , Mianyang Normal University , Mianyang 62100 , China
| | - Zhiyong Ye
- School of Chemistry and Chemical Engineering , Mianyang Normal University , Mianyang 62100 , China
| | - Qiao Tang
- School of Chemistry and Chemical Engineering , Mianyang Normal University , Mianyang 62100 , China
| | - Yu Wang
- School of Chemistry and Chemical Engineering , Mianyang Normal University , Mianyang 62100 , China
| |
Collapse
|
33
|
Abstract
Flexible bioelectronics have promising applications in electronic skin, wearable devices, biomedical electronics, etc. Hydrogels have unique advantages for bioelectronics due to their tissue-like mechanical properties and excellent biocompatibility. Particularly, conductive and tissue adhesive hydrogels can self-adhere to bio-tissues and have great potential in implantable wearable bioelectronics. This review focuses on the recent progress in tissue adhesive hydrogel bioelectronics, including the mechanism and preparation of tissue adhesive hydrogels, the fabrication strategies of conductive hydrogels, and tissue adhesive hydrogel bioelectronics and applications. Some perspectives on tissue adhesive hydrogel bioelectronics are provided at the end of the review.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | - Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
34
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
35
|
Liu Y, Zheng J, Zhang X, Du Y, Yu G, Li K, Jia Y, Zhang Y. Bioinspired modified graphene oxide/polyurethane composites with rapid self-healing performance and excellent mechanical properties. RSC Adv 2021; 11:14665-14677. [PMID: 35423966 PMCID: PMC8698205 DOI: 10.1039/d1ra00944c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022] Open
Abstract
Self-healing efficiency and mechanical strength are always a pair of mechanical contradictions of a polymer. Herein, a series of novel mussel-inspired modified graphene oxide/polyurethane composites were successfully fabricated via rational molecular design and introducing hyperbranched polymer-modified graphene oxide. The composites exhibit outstanding self-healing performances with a self-healing efficiency of 87.9%. Especially, their self-healing properties possess exceptional water-insensitivity, which presents a high self-healing efficiency of 92.5% under 60 °C water for 2 h and 74.6% under 25 °C water for 6 h. Furthermore, the tensile strength of the composites increased by 107.7% with a high strain of 2170%. In addition, the composites show a remarkable recovery capability of 76.3% and 83.7% under tensile and compression loading, respectively, after 20 cycles. This strategy shows prominent application potential in high-performance solid propellants, protective coating, electronic skin, soft sensors and other water-insensitive devices. We successfully modified graphene oxide with amino-terminated hyperbranched polyamide(MGO), and obtained novel mussel-inspired MGO/polyurethane composites with outstanding self-healing and mechanical performances via rational molecular design.![]()
Collapse
Affiliation(s)
- Yahao Liu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Jian Zheng
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Xiao Zhang
- Engineering University of PAP Xi'an 710086 China
| | - Yongqiang Du
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Guibo Yu
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Ke Li
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering Wuhan 430033 China
| | - Yunfei Jia
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| | - Yu Zhang
- Shijiazhuang Campus, Army Engineering University Shijiazhuang 050003 China
| |
Collapse
|
36
|
Li P, Dai X, Sui Y, Li R, Zhang C. Thermally induced and physically cross-linked hydrogel doped with graphene oxide for controlled release. SOFT MATTER 2021; 17:3664-3671. [PMID: 33667289 DOI: 10.1039/d1sm00151e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is an ideal hydrogel material because of its water solubility, non-toxicity, and excellent mechanical properties. Here, we added GO to oligo(lysine)-modified F127 to prepare a series of FLGO composite hydrogels. The FLGO hydrogel was thermally induced, stable and injectable. And the content of GO would affect the sol-gel transition, rheological properties and glass transition temperature of the FLGO hydrogel. GO was connected to the matrix through electrostatic interactions and hydrogen bonds. The cross-linking effect of GO enhanced the FLGO hydrogel. We also studied the release properties of the FLGO hydrogel loaded with anticancer drug 5-fluorouracil. Compared with F127 hydrogel, the FLGO hydrogel showed a linear, slower and stable release pattern within one week. The release rate of FLGO hydrogel could be adjusted by the pH and it was faster under acidic conditions. Therefore, the FLGO hydrogel is expected to be used as a drug release system in the field of biomedicine.
Collapse
Affiliation(s)
- Peihong Li
- School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China.
| | | | | | | | | |
Collapse
|
37
|
Bai J, Wang R, Ju M, Zhou J, Zhang L, Jiao T. Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. SCIENCE CHINA MATERIALS 2021. [PMID: 0 DOI: 10.1007/s40843-020-1507-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
38
|
Zhang G, Chen S, Peng Z, Shi W, Liu Z, Shi H, Luo K, Wei G, Mo H, Li B, Liu L. Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12531-12540. [PMID: 33685117 DOI: 10.1021/acsami.1c00819] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-network conductive hydrogels have drawn wide attention in epidemic electronics such as epidemic sensors and electrodes because of their inherent low Young's modulus, high skin-compliance, and tunable mechanical strength. However, it is still full of challenges to gain a dual-network hydrogel with high stretchability, low hysteresis, and skin-adhesive performance simultaneously. Herein, to address this issue, a novel dual-network hydrogel (denoted as PAa hydrogel) with polyacrylamide as the first network and topologically entangled polydopamine as the secondary network was prepared through a facile gel-phase in situ self-polymerization and soaking treatment. Benefiting from the topological enhancement as well as the synergetic effects of hydrogen bonds and metal coordination bonds, low modulus (∼10 kPa), excellent stretchability (1090.8%), high compression (90%), negligible hysteresis (η = 0.019, energy loss coefficient), rapid recovery in seconds, and self-adhesion are obtained in the PAa hydrogels. To demonstrate their practical use, a states-independent and skin-adhesive epidemic sensor was successfully attached on human skin for motion detection. What is more, by using the hydrogel as an epidemic electrode, electromyogram signals were accurately detected and wirelessly transmitted to a smart phone. This work offers a new insight to understand the strengthening mechanism of dual network hydrogels and a design strategy for both epidemic sensors and electrodes.
Collapse
Affiliation(s)
- Guangyong Zhang
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Song Chen
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Zefei Peng
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Wei Shi
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Zelin Liu
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Hang Shi
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Kaiying Luo
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Ganghui Wei
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| | - Hongqiang Mo
- College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bin Li
- College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lan Liu
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
39
|
Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2021; 8:3437-3459. [PMID: 32100788 DOI: 10.1039/c9tb02570g] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robotics and artificial skin. Compared to flexible sensors based on filler/elastomer composites, conductive hydrogels are advantageous due to their biomimetic structures and properties, as well as biocompatibility. Numerous chemical and structural designs provide unlimited opportunities to tune the properties and performance of conductive hydrogels to match various demands for practical applications. Many electronically and ionically conductive hydrogels have been developed to fabricate pressure and strain sensors with different configurations, including resistance type and capacitance type. The sensitivity, reliability and stability of hydrogel sensors are dependent on their network structures and mechanical properties. This review focuses on tough conductive hydrogels for flexible sensors. Representative strategies to prepare stretchable, strong, tough and self-healing hydrogels are briefly reviewed since these strategies are illuminating for the development of tough conductive hydrogels. Then, a general account on various conductive hydrogels is presented and discussed. Recent advances in tough conductive hydrogels with well designed network structures and their sensory performance are discussed in detail. A series of conductive hydrogel sensors and their application in wearable devices are reviewed. Some perspectives on flexible conductive hydrogel sensors and their applications are presented at the end.
Collapse
Affiliation(s)
- Zhenwu Wang
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | | | | |
Collapse
|
40
|
Wang H, Li J, Yu X, Yan G, Tang X, Sun Y, Zeng X, Lin L. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr Polym 2021; 255:117443. [DOI: 10.1016/j.carbpol.2020.117443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023]
|
41
|
Yang J, Cristian V, Dong A, Zhang J. A Facile Strategy to Achieve Synergistic Multiple Hydrogen Bonding Interactions for Constructing Robust Hydrogels with Self‐healing Capability, Shape Transformation and Actuation Function. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jumin Yang
- Department of Polymer Science and Engineering Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Valenzuela Cristian
- Department of Polymer Science and Engineering Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Anjie Dong
- Department of Polymer Science and Engineering Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300350 China
| |
Collapse
|
42
|
Ren J, Wang X, Zhang A, Zhang L, Zhao L, Li Y, Yang W. Fabrication Tough and Electrically Conductive Graphene-Based Nanocomposite Gels with Self-Oscillating Performance. Macromol Res 2021. [DOI: 10.1007/s13233-020-8168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Yang WJ, Wang X, Zhang R, Wang Y, Qiu Q, Yuwen L, Wang L. A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability. J Mater Chem B 2021; 9:2266-2274. [DOI: 10.1039/d0tb02830d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By employing the excellent photothermal conversion properties of molybdenum disulfide (MoS2) nanosheets, a hybrid hydrogel was prepared with light-triggered rapid self-healing capability.
Collapse
Affiliation(s)
- Wen Jing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Xiaodong Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Rui Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Yuxin Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Qiu Qiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications
- Nanjing
| |
Collapse
|
44
|
Efstathiou S, Wemyss AM, Patias G, Al-Shok L, Grypioti M, Coursari D, Ma C, Atkins CJ, Shegiwal A, Wan C, Haddleton DM. Self-healing and mechanical performance of dynamic glycol chitosan hydrogel nanocomposites. J Mater Chem B 2021; 9:809-823. [DOI: 10.1039/d0tb02390f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evaluation of Schiff base nanocomposite hydrogels properties using a benzaldehyde multifunctional amphiphilic polyacrylamide crosslinker in conjunction with glycol chitosan.
Collapse
Affiliation(s)
| | - Alan M. Wemyss
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- International Institute for Nanocomposites Manufacturing (IINM)
| | | | - Lucas Al-Shok
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Congkai Ma
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | | |
Collapse
|
45
|
Zhao D, Feng M, Zhang L, He B, Chen X, Sun J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr Polym 2020; 256:117580. [PMID: 33483074 DOI: 10.1016/j.carbpol.2020.117580] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Hydrogels are widely used in many fields but generally suffer from low mechanical strength and poor self-healing performance. Here, a novel and facile method was developed to prepare a semi-interpenetrating polymer network (semi-IPN) hydrogel with layered structure and improved properties based on sodium alginate (SA) and polyacrylamide (PAM). Systematic characterizations revealed a formation mechanism of layered structure via hydrogen bonds (HBs) promoted self-assembly of SA in the porous PAM matrix. Also, HBs can also display a key role in enhancing self-healing of the hydrogel, by which the hydrogel possesses a self-healing capacity of 99 % with sprayed by a few of water. Moreover, the layered semi-IPN structure makes the tensile strength of PAMSA hydrogel reach 266 kPa. The fabricated PAMSA hydrogel with layered microstructure containing SA provides a protocol to broaden the functionality and variety of the hydrogels.
Collapse
Affiliation(s)
- Dingwei Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China
| | - Mi Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China
| | - Ling Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China; Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Light Industry Court No. 1, Ganjingzi, Dalian 116034, PR China
| | - Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China
| | - Xinyan Chen
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Sciences, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, PR China.
| |
Collapse
|
46
|
Komeily-Nia Z, Qu LT, Li JL. Progress in the Understanding and Applications of the Intrinsic Reactivity of Graphene‐Based Materials. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zahra Komeily-Nia
- Institute for Frontier Materials Deakin University Geelong Victoria 3217 Australia
| | - Liang-Ti Qu
- Department of Chemistry Tsinghua University Beijing 100081 P. R. China
| | - Jing-Liang Li
- Institute for Frontier Materials Deakin University Geelong Victoria 3217 Australia
| |
Collapse
|
47
|
Hasda AM, Vuppaladadium SSR, Qureshi D, Prasad G, Mohanty B, Banerjee I, Shaikh H, Anis A, Sarkar P, Pal K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Yuan W, Li Z, Xie X, Zhang ZY, Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact Mater 2020; 5:819-831. [PMID: 32637746 PMCID: PMC7321771 DOI: 10.1016/j.bioactmat.2020.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nanocomposite hydrogels consist of polymeric network embedded with functional nanoparticles or nanostructures, which not only contribute to the enhanced mechanical properties but also exhibit the bioactivities for regulating cell behavior. Bisphosphonates (BPs) are capable of coordinating with various metal ions and modulating bone homeostasis. Thanks to the inherent dynamic properties of metal-ligand coordination bonds, BP-based nanocomposite hydrogels possess tunable mechanical properties, highly dynamic structures, and the capability to mediate controlled release of encapsulated therapeutic agents, thereby making them highly versatile for various biomedical applications. This review presents the comprehensive overview of recent developments in BP-based nanocomposite hydrogels with an emphasis on the properties of embedded nanoparticles (NPs) and interactions between hydrogel network and NPs. Furthermore, various challenges in the biomedical applications of these hydrogels are discussed to provide an outlook of potential clinical translation.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, PR China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058, PR China
| |
Collapse
|
49
|
Yang J, Du Y, Li X, Qiao C, Jiang H, Zheng J, Lin C, Liu L. Fatigue-Resistant, Notch-Insensitive Zwitterionic Polymer Hydrogels with High Self-Healing Ability. Chempluschem 2020; 85:2158-2165. [PMID: 32955799 DOI: 10.1002/cplu.202000520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Indexed: 02/05/2023]
Abstract
Introducing self-healing properties into hydrogels can prolong their application lifetime. However, achieving mechanical strength without sacrificing self-healing properties is still a major challenge. We prepared a series of zwitterionic polymer hydrogels by random copolymerization of zwitterionic ionic monomer (SBMA), cationic monomer (DAC) and hydrophilic monomer (HEMA). The ionic bonds and hydrogen bonds formed in the hydrogels can efficiently dissipate energy and rebuild the network. The resulting hydrogels show high mechanical strength (289-396 KPa of fracture stress, 433-864 % of fracture stress) and have great fatigue resistance. The hydrogel with a 1 : 1 molar ratio of SBMA:DAC possesses the best self-healing properties (self-healing efficiency up to 96.5 % at room temperature for 10 h). The self-healing process is completely spontaneous and does not require external factors to assist. In addition, the hydrogel also possesses notch insensitivity with a fracture energy of 12000 J m-2 . After combining the conductivity of RGO aerogel, the hydrogel/RGO composites show good strain sensitivity with high reliability and self-healing ability, which has certain significance in broadening the application of these zwitterionic hydrogels.
Collapse
Affiliation(s)
- Jianbo Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yongxu Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xuelin Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haihui Jiang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jiyong Zheng
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| | - Libin Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.,State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, P. R. China
| |
Collapse
|
50
|
Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001379. [PMID: 32999820 PMCID: PMC7507554 DOI: 10.1002/advs.202001379] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Indexed: 05/24/2023]
Abstract
3D printing is a rapidly growing technology that has an enormous potential to impact a wide range of industries such as engineering, art, education, medicine, and aerospace. The flexibility in design provided by this technique offers many opportunities for manufacturing sophisticated 3D devices. The most widely utilized method is an extrusion-based solid-freeform fabrication approach, which is an extremely attractive additive manufacturing technology in both academic and industrial research communities. This method is versatile, with the ability to print a range of dimensions, multimaterial, and multifunctional 3D structures. It is also a very affordable technique in prototyping. However, the lack of variety in printable polymers with advanced material properties becomes the main bottleneck in further development of this technology. Herein, a comprehensive review is provided, focusing on material design strategies to achieve or enhance the 3D printability of a range of polymers including thermoplastics, thermosets, hydrogels, and other polymers by extrusion techniques. Moreover, diverse advanced properties exhibited by such printed polymers, such as mechanical strength, conductance, self-healing, as well as other integrated properties are highlighted. Lastly, the stimuli responsiveness of the 3D printed polymeric materials including shape morphing, degradability, and color changing is also discussed.
Collapse
Affiliation(s)
- Zhen Jiang
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Broden Diggle
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Ming Li Tan
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Jekaterina Viktorova
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | | | - Luke A. Connal
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|