1
|
Lee DY, Haider Z, Krishnan SK, Kanagaraj T, Son SH, Jae J, Kim JR, Murphin Kumar PS, Kim HI. Oxygen-enriched carbon quantum dots from coffee waste: Extremely active organic photocatalyst for sustainable solar-to-H 2O 2 conversion. CHEMOSPHERE 2024; 361:142330. [PMID: 38759805 DOI: 10.1016/j.chemosphere.2024.142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Solar-driven artificial photosynthesis offers a promising avenue for hydrogen peroxide (H2O2) generation, an efficient and economical replacement for current methods. The efficiency and selectivity hurdles of the two-electron oxygen reduction reaction (ORR) in solar-to- H2O2 conversion are substantial barriers to large scale production. In this manuscript, a simple biomass-assisted synthesis was performed to produce oxygen-enriched carbon quantum dots (OE-CQDs) from spent coffee waste, acting as an efficient photocatalyst for solar-powered H2O2 production. OE-CQDs can stabilize and store light-generated electrons effectively, boosting charge separation and enhancing photocatalytic performance with longevity. The maximal photocatalytic H2O2 production was achieved viz the utilization of OE-CQDs with generation rate of 356.86 μmol g-1 h-1 by retaining 80% activity without any external sacrificial donors. The outstanding performance of synthesized OE-CQDs under light exposure at wavelength (λ) of 280 nm has been ensured by the quantum yield value of 9.4% upon H2O2 generation. The combinatorial benefits of OE-CQDs with their authentic crystalline structure and oxygen enrichment, is expected to be enhancing the ORR activity through accelerating charge transfer, and optimizing oxygen diffusion. Consequently, our eco-friendly method holds considerable promise for creating highly efficient, metal-free photocatalysts for artificial H2O2 production.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea.
| | - Zeeshan Haider
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea; Department of Physics, Incheon National University, 119-Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autosome de Puebla, Apdo. Postal J-48, Puebla, 72570, Mexico.
| | - Thamaraiselvi Kanagaraj
- Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, 600077, India.
| | - Sang Hwan Son
- Department of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jungho Jae
- Department of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jung Rae Kim
- Department of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Paskalis Sahaya Murphin Kumar
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea; Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi, 62102, Taiwan.
| | - Hyoung-Il Kim
- Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea; Future City Open Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
3
|
Omar RA, Talreja N, Chuhan D, Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. ENVIRONMENTAL RESEARCH 2024; 246:118096. [PMID: 38171470 DOI: 10.1016/j.envres.2023.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.
Collapse
Affiliation(s)
- Rishabh Anand Omar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru-562 106, Karnataka, India.
| | - Divya Chuhan
- Department of Drinking Water and Sanitation, Ministry of Jal Shakti, 1208-A, Pandit Deendayal Antyodaya Bhawan, CGO Complex, Lodhi Road, New Delhi 110003 India
| | - Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| |
Collapse
|
4
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
5
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
6
|
Cotchim S, Thavarungkul P, Kanatharana P, Thantipwan T, Jiraseree-Amornkun A, Wannapob R, Limbut W. A portable electrochemical immunosensor for ovarian cancer uses hierarchical microporous carbon material from waste coffee grounds. Mikrochim Acta 2023; 190:232. [PMID: 37213023 DOI: 10.1007/s00604-023-05798-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
A simple label-free electrochemical immunosensor for ovarian cancer (OC) detection was developed using a hierarchical microporous carbon material fabricated from waste coffee grounds (WCG). The analysis method exploited near-field communication (NFC) and a smartphone-based potentiostat. Waste coffee grounds were pyrolyzed with potassium hydroxide and used to modify a screen-printed electrode. The modified screen-printed electrode was decorated with gold nanoparticles (AuNPs) to capture a specific antibody. The modification and immobilization processes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor had an effective dynamic range of 0.5 to 50.0 U mL-1 of cancer antigen 125 (CA125) tumor marker with a correlation coefficient of 0.9995. The limit of detection (LOD) was 0.4 U mL-1. A comparison of the results obtained from human serum analysis with the proposed immunosensor and the results obtained from the clinical method confirmed the accuracy and precision of the proposed immunosensor.
Collapse
Affiliation(s)
- Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Thaweesak Thantipwan
- , Silicon Craft Technology PLC, No. 40, Thetsabanrangsannua Rd., Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Amorn Jiraseree-Amornkun
- , Silicon Craft Technology PLC, No. 40, Thetsabanrangsannua Rd., Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Rodtichoti Wannapob
- , Silicon Craft Technology PLC, No. 40, Thetsabanrangsannua Rd., Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
7
|
Determination of Heavy Metal Ions in Infant Milk Powder Using a Nanoporous Carbon Modified Disposable Sensor. Foods 2023; 12:foods12040730. [PMID: 36832804 PMCID: PMC9956227 DOI: 10.3390/foods12040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Due to the risk of heavy metal pollution in infant milk powder, it is significant to establish effective detection methods. Here, a screen-printed electrode (SPE) was modified with nanoporous carbon (NPC) to detect Pb(II) and Cd(II) in infant milk powder using an electrochemical method. Using NPC as a functional nanolayer facilitated the electrochemical detection of Pb(II) and Cd(II) due to its efficient mass transport and large adsorption capacity. Linear responses were obtained for Pb (II) and Cd(II) in the range from 1 to 60 µg L-1 and 5 to 70 µg L-1, respectively. The limit of detection was 0.1 µg L-1 for Pb(II) and 1.67 µg L-1 for Cd(II). The reproducibility, stability, and anti-interference performance of the prepared sensor were tested as well. The heavy metal ion detection performance in the extracted infant milk powder shows that the developed SPE/NPC possesses the ability to detect Pb(II) and Cd(II) in milk powder.
Collapse
|
8
|
Pandey K, Kyung Jeong H. Coffee Waste-Derived Porous Carbon Based Flexible Supercapacitors. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Kusumawati Y, Hutama AS, Wellia DV, Subagyo R. Natural resources for dye-sensitized solar cells. Heliyon 2021; 7:e08436. [PMID: 34917788 PMCID: PMC8668837 DOI: 10.1016/j.heliyon.2021.e08436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
While the development of dye-sensitized solar cells (DSSCs) has been ongoing for more than 30 years, the currently obtained efficiency is unsatisfactory. However, the study of DSSC development has produced a fundamental understanding of cell performance and inspired other devices, such as perovskite cell solar cells. DSSCs consist of a dye-sensitized photoanode, a counter electrode, and a redox couple in the electrolyte system. Each of the components has an important role and cofunctions with each other to obtain a high power conversion efficiency. Various modifications to each DSSC component have been applied to improve their performance. Additionally, to generate improvements, the effort to reduce production costs has been crucial. The utilization of natural sources for DSSC components is a possible solution to this issue. The utilization of natural resources also aims to increase the value of the natural resource itself. In this review, the applications of various natural sources for DSSC components are described, as well as the modification efforts that have been made to enhance their performance. The discussion covers the utilization of natural dye for sensitizer dyes in liquid DSSC applications: (1) utilization of biopolymers for quasi-solid DSSC electrolytes, (2) green synthesis methods for photoanode semiconductors, and (3) development of natural carbon counter electrodes. The detailed factors that influence improvements in cell performance are also addressed.
Collapse
Affiliation(s)
- Yuly Kusumawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| | - Aulia S. Hutama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Jalan Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Diana V. Wellia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 24516, Indonesia
| | - Riki Subagyo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Sukolilo Campus, Surabaya, 60111, Indonesia
| |
Collapse
|
10
|
Goto Y, Nakayasu Y, Abe H, Katsuyama Y, Itoh T, Watanabe M. Synthesis of unused-wood-derived C-Fe-N catalysts for oxygen reduction reaction by heteroatom doping during hydrothermal carbonization and subsequent carbonization in nitrogen atmosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200348. [PMID: 34510926 DOI: 10.1098/rsta.2020.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 06/13/2023]
Abstract
There is an urgent need to develop renewable sources of energy and use existing resources in an efficient manner. In this study, in order to improve the utilization of unused biomass and develop green processes and sustainable technologies for energy production and storage, unused Douglas fir sawdust (SD) was transformed into catalysts for the oxygen reduction reaction. Fe and N were doped into SD during hydrothermal carbonization, and the N- and Fe-doped wood-derived carbon (Fe/N/SD) was carbonized in a nitrogen atmosphere. After the catalyst had been calcined at 800°C, its showed the highest current density (-5.86 mAcm-2 at 0.5 V versus reversible hydrogen electrode or RHE) and Eonset value (0.913 V versus RHE). Furthermore, its current density was higher than that of Pt/C (20 wt% Pt) (-5.66 mA cm-2 @0.5 V versus RHE). Finally, after 50 000 s, the current density of sample Fe/N/SD (2 : 10 : 10) remained at 79.3% of the initial value. Thus, the synthesized catalysts, which can be produced readily at a low cost, are suitable for use in various types of energy generation and storage devices, such as fuel cells and air batteries. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Collapse
Affiliation(s)
- Yasuto Goto
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yuta Nakayasu
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yuto Katsuyama
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Itoh
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaru Watanabe
- Research Center of Supercritical Fluid Technology, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Environment Conservation Center, Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
11
|
Wu N, Zou Y, Xu R, Zhong J, Li J. Incorporation of linear poly(ionic liquid)s inside acid-base dualistic carbons for CO2 cycloaddition reaction. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Preparation of modified carbon paste electrodes from orange peel and used coffee ground. New materials for the treatment of dye-contaminated solutions using electro-Fenton processes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zhao J, Cui Y, Zhang J, Wu J, Yue Y, Qian G. Fabrication of a Sustainable Closed Loop for Waste-Derived Materials in Electrochemical Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachun Zhao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Yaowen Cui
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, P. R. China
| | - Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong
District, Pingxiang City, Jiangxi 337022, P. R. China
| |
Collapse
|
14
|
Acid-directed preparation of micro/mesoporous heteroatom doped defective graphitic carbon as bifunctional electroactive material: Evaluation of trace metal impurity. J Colloid Interface Sci 2021; 604:227-238. [PMID: 34265683 DOI: 10.1016/j.jcis.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
Extensive research to explore cost-effective carbon materials as electrocatalysts and electrode materials for energy conversion and storage has been conducted in the recent literature. This raised a crucial question regarding the origin of this electrocatalytic activity from the heteroatom doping/ hierarchical porous defect-rich architecture and/ or the trace metal impurities introduced during synthesis/ inherent to the precursor. In this work, an insight into this issue is provided by considering a lignocellulosic biowaste, Euryale Ferox (foxnut) shells as a precursor to derive micro/ mesoporous defective graphitic carbon sheets by the phosphoric acid (H3PO4) dictated in-situ carbonization for oxygen reduction reaction (ORR) and supercapacitor applications. The sample synthesized at 900 °C (FP900) shows an onset potential of 0.98 V vs. reversible hydrogen electrode (RHE), ORR current density of 5.5 mA cm-2, and current stability of 93% (in 10 h measurement) in 0.1 M KOH. In addition, a symmetric supercapacitor device is assembled using the prepared material and the specific capacitance of 207.5 F g-1 at 1 A g-1 is obtained. An attempt to explain the origin of the electrochemical performance is made by establishing parallels with the physicochemical characterizations. The inherently doped heteroatoms give rise to electroactive functionalities and the wide enough pore size distribution improves the active sites utilization efficiency by enhancing the accessibility to electrolytic ions resulting in better electrochemical performance. Furthermore, the contribution from the intrinsic trace metal impurities is evaluated using X-ray fluorescence (XRF) spectroscopy. The presented research clarifies the non-contributing nature of trace metal species owing to the inaccessibility of active sites and lower abundance in F900 and FP900, respectively.
Collapse
|
15
|
Li J, Yun S, Han F, Si Y, Arshad A, Zhang Y, Chidambaram B, Zafar N, Qiao X. Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J Colloid Interface Sci 2020; 578:184-194. [PMID: 32526522 DOI: 10.1016/j.jcis.2020.04.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022]
Abstract
Manganese tungstate (MnWO4), zinc tungstate (ZnWO4), and copper tungstate (CuWO4) embedded biomass-derived carbon (MWO-C, ZWO-C, CWO-C) was synthesized by hydrothermal treatment and investigated as counter electrode (CE) catalysts to test electrochemical activity. Biomass-derived carbon was used as the shape controlling agent, which changed the morphology of MWO from spherical to spindle-like. Owing to the synergistic effect between tungsten-based bimetal oxides and biomass-derived carbon, the MWO-C, ZWO-C, and CWO-C catalysts exhibited enhanced electrochemical performance in dye-sensitized solar cells (DSSCs) system. The MWO-C, ZWO-C and CWO-C catalysts in DSSCs showed outstanding power conversion efficiency (PCE) of 7.33%, 7.61%, and 6.52%, respectively, as compared with 7.04% for Pt based devices. Biomass-derived carbon improves the catalytic properties of tungsten-based nanohybrids. The results showed that biomass-derived carbon-enhanced inorganic compound as CE catalysts are promising alternatives to Pt-based CE catalysts for energy conversion devices.
Collapse
Affiliation(s)
- Jingwen Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yiming Si
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Asim Arshad
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yongwei Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Brundha Chidambaram
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Nosheen Zafar
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinying Qiao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
16
|
Aftabuzzaman M, Lu C, Kim HK. Recent progress on nanostructured carbon-based counter/back electrodes for high-performance dye-sensitized and perovskite solar cells. NANOSCALE 2020; 12:17590-17648. [PMID: 32820785 DOI: 10.1039/d0nr04112b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) favor minimal environmental impact and low processing costs, factors that have prompted intensive research and development. In both cases, rare, expensive, and less stable metals (Pt and Au) are used as counter/back electrodes; this design increases the overall fabrication cost of commercial DSSC and PSC devices. Therefore, significant attempts have been made to identify possible substitutes. Carbon-based materials seem to be a favorable candidate for DSSCs and PSCs due to their excellent catalytic ability, easy scalability, low cost, and long-term stability. However, different carbon materials, including carbon black, graphene, and carbon nanotubes, among others, have distinct properties, which have a significant role in device efficiency. Herein, we summarize the recent advancement of carbon-based materials and review their synthetic approaches, structure-function relationship, surface modification, heteroatoms/metal/metal oxide incorporation, fabrication process of counter/back electrodes, and their effects on photovoltaic efficiency, based on previous studies. Finally, we highlight the advantages, disadvantages, and design criteria of carbon materials and fabrication challenges that inspire researchers to find low cost, efficient and stable counter/back electrodes for DSSCs and PSCs.
Collapse
Affiliation(s)
- M Aftabuzzaman
- Global GET-Future Lab & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea.
| | | | | |
Collapse
|
17
|
Hong J, Kim H, Lee JE, Ko YN, Park KT, Kim YE, Youn MH, Jeong SK, Park J, Lee W. Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0544-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
He G, Yan G, Song Y, Wang L. Biomass Juncus Derived Nitrogen-Doped Porous Carbon Materials for Supercapacitor and Oxygen Reduction Reaction. Front Chem 2020; 8:226. [PMID: 32351930 PMCID: PMC7174754 DOI: 10.3389/fchem.2020.00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
Juncus is a perennial herb aquatic plant found worldwide, with high reproductive ability in warm regions. It has three-dimensional hierarchical porous triangular networks structures composited of tubular fibers. Here, juncus derived nitrogen-doped porous carbon (NDPC) was prepared by mixing juncus and ZnCl2 through one-step pyrolysis and activation which is a low-cost, simple, and environmentally friendly method. The NDPC had hierarchical porous structures and a high specific surface area and was applied for supercapacitor and oxygen reduction reaction (ORR). The resulted NDPC-3-800 was prepared by mixing juncus with ZnCl2 at a mass ratio of 1:3 and then carbonized at 800°C, it was used as electrode material of a supercapacitor. The supercapacitor exhibited excellent specific capacitance of 290.5 F g−1 and 175.0 F g−1 in alkaline electrolyte at the current densities of 0.5 A g−1 and 50 A g−1, respectively. The supercapacitor showed good cycle stability, and the capacitance was maintained at 94.5% after 10,000 cycles. The NDPC-5-800 was prepared by mixing juncus with ZnCl2 at a mass ratio of 1:5 and then carbonized at 800°C. It exhibited outstanding ORR catalytic activity and stability attributing to their high specific surface area and abundant actives sites. The juncus can derive various materials for application in different fields.
Collapse
Affiliation(s)
- Guanghua He
- Engineering & Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China.,Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Genping Yan
- Engineering & Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
19
|
Liu Y, Su M, Li D, Li S, Li X, Zhao J, Liu F. Soybean straw biomass-derived Fe-N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media. RSC Adv 2020; 10:6763-6771. [PMID: 35493871 PMCID: PMC9049722 DOI: 10.1039/c9ra07539a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/21/2019] [Indexed: 11/21/2022] Open
Abstract
The development of highly efficient oxygen reduction reaction (ORR) catalysts is of great significance for the large-scale commercialization of fuel cells. In this work, honeycomb-like Fe-N co-doped porous carbon materials (Fe-N-PC) were prepared through a facile one-step pyrolysis strategy using soybean straw biomass as the precursor. The obtained Fe-N-PC catalyst exhibits excellent ORR performance with an onset potential of 0.989 V and a half-wave potential of 0.854 V in alkaline conditions, which positively shift only by 5 mV and 27 mV, respectively than those of the commercial Pt/C catalyst. Furthermore, the onset potential and the half-wave potential of the Fe-N-PC catalysts are up to 0.886 V and 0.754 V, respectively, under acidic conditions, which are superior to those of many other Fe, N-doped electrocatalysts. The ORR process can be regarded as a four-electron transfer process based on RRDE measurements. Moreover, the Fe-N-PC catalyst also shows greater stability and satisfactory methanol tolerance than the Pt/C catalyst. The superior electrocatalytic performance of Fe-N-PC may be attributed to the abundant nanoporous structure, large BET surface area, and Fe-N co-doping, which provide abundant and highly efficient active sites.
Collapse
Affiliation(s)
- Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Miaojun Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Dahuan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Shenshen Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Xiying Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University Kaifeng 475004 P. R. China
| | - Fujian Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University Fuzhou 350002 P. R. China
| |
Collapse
|
20
|
Chodankar NR, Ji SH, Han YK, Kim DH. Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery. NANO-MICRO LETTERS 2019; 12:1. [PMID: 34138077 PMCID: PMC7770717 DOI: 10.1007/s40820-019-0337-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 05/21/2023]
Abstract
Rechargeable alkaline batteries (RABs) have received remarkable attention in the past decade for their high energy, low cost, safe operation, facile manufacture, and eco-friendly nature. To date, expensive electrode materials and current collectors were predominantly applied for RABs, which have limited their real-world efficacy. In the present work, we propose a scalable process to utilize electronic waste (e-waste) Cu wires as a cost-effective current collector for high-energy wire-type RABs. Initially, the vertically aligned CuO nanowires were prepared over the waste Cu wires via in situ alkaline corrosion. Then, both atomic-layer-deposited NiO and NiCo-hydroxide were applied to the CuO nanowires to form a uniform dendritic-structured NiCo-hydroxide/NiO/CuO/Cu electrode. When the prepared dendritic-structured electrode was applied to the RAB, it showed excellent electrochemical features, namely high-energy-density (82.42 Wh kg-1), excellent specific capacity (219 mAh g-1), and long-term cycling stability (94% capacity retention over 5000 cycles). The presented approach and material meet the requirements of a cost-effective, abundant, and highly efficient electrode for advanced eco-friendly RABs. More importantly, the present method provides an efficient path to recycle e-waste for value-added energy storage applications.
Collapse
Affiliation(s)
- Nilesh R Chodankar
- School of Chemical Engineering, Chonnam National University, Gwangju, 500-757, South Korea
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Su-Hyeon Ji
- School of Chemical Engineering, Chonnam National University, Gwangju, 500-757, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
21
|
Wang J, Zhang H, Zhao J, Zhang R, Zhao N, Ren H, Li Y. Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots. Mikrochim Acta 2019; 186:733. [DOI: 10.1007/s00604-019-3870-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022]
|
22
|
Kim M, Yoo JM, Ahn C, Jang J, Son YJ, Shin H, Kang J, Kang YS, Yoo SJ, Lee K, Sung Y. Rational Generation of Fe−N
x
Active Sites in Fe−N−C Electrocatalysts Facilitated by Fe−N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201901242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minhyoung Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Chi‐Yeong Ahn
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jue‐Hyuk Jang
- Center for Hydrogen Fuel Cell ResearchKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Yoon Jun Son
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jiho Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Yun Sik Kang
- Center for Hydrogen Fuel Cell ResearchKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Current address: Fuel Cell Engineering TeamHyundai Mobis Uiwang, Gyeonggi 16082 Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen Fuel Cell ResearchKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Energy & Environment Technology KIST SchoolUniversity of Science and Technology (UST) Seoul 02792 Republic of Korea
- KHU-KIST Department of Converging Science and TechnologyKyung Hee University Seoul 02447 Republic of Korea
| | - Kug‐Seung Lee
- Beamline DepartmentPohang Accelerator Laboratory (PAL) Pohang 37673 Republic of Korea
| | - Yung‐Eun Sung
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
23
|
Kang SM, Kim M, Jeoun Y, Hudaya C, Sung Y. NaCrO
2
/Coffee Waste–derived Nitrogen‐doped Carbon Composite as High‐Performance Cathode Material for Sodium Ion Batteries. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Mun Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical & Biological EngineeringSeoul National University Seoul 08826 Republic of Korea
| | - Min‐Seob Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical & Biological EngineeringSeoul National University Seoul 08826 Republic of Korea
| | - Yunseo Jeoun
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical & Biological EngineeringSeoul National University Seoul 08826 Republic of Korea
| | - Chairul Hudaya
- Department of Electrical Engineering, Faculty of EngineeringUniversitas Indonesia, Kampus Baru UI Depok 16424 Indonesia
| | - Yung‐Eun Sung
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical & Biological EngineeringSeoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
24
|
Kim H, Sohail M, Wang C, Rosillo-Lopez M, Baek K, Koo J, Seo MW, Kim S, Foord JS, Han SO. Facile One-Pot Synthesis of Bimetallic Co/Mn-MOFs@Rice Husks, and its Carbonization for Supercapacitor Electrodes. Sci Rep 2019; 9:8984. [PMID: 31222002 PMCID: PMC6586648 DOI: 10.1038/s41598-019-45169-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 12/02/2022] Open
Abstract
Novel hybrid nanomaterials comprising metal-organic framework compounds carbonised in the presence of biomass material derived from rice husk have been investigated as a new class of sustainable supercapacitor materials for electrochemical energy storage. Specifically, two synthetic routes were employed to grow Co/Mn metal-organic framework compounds in the channels of rice husks, which had been activated previously by heat treatment in air at 400 °C to produce a highly porous network. Pyrolysis of these hybrid materials under nitrogen at 700 °C for 6 h produced metal-containing phases within the nanocarbon, comprising intimate mixtures of Co, MnO and CoMn2O4. The materials thus produced are characterized in detail using a range of physical methods including XRD, electron microscopy and X-ray photoelectron spectroscopy. The synthetic pathway to the metal-organic framework compound is shown to influence significantly the physical properties of the resulting material. Electrochemical evaluation of the materials fabricated revealed that higher specific capacitances were obtained when smaller crystallite sized bimetallic Co/Mn-MOFs were grown inside the rice husks channels compared to larger crystallite sizes. This was in-part due to increased metal oxide loading into the rice husk owing to the smaller crystallite size as well as the increased pseudocapacitance exhibited by the smaller crystallite sizes and increased porosity.
Collapse
Affiliation(s)
- Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
- Advanced Energy and System Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Muhammad Sohail
- Energy Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Advanced Energy and System Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chenbo Wang
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, United Kingdom
| | - Martin Rosillo-Lopez
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, United Kingdom
| | - Kangkyun Baek
- Center Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu Pohang, 37673, Republic of Korea
| | - Jaehyoung Koo
- Center Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu Pohang, 37673, Republic of Korea
| | - Myung Won Seo
- Green Fuel Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Seyoung Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - John S Foord
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, United Kingdom.
| | - Seong Ok Han
- Energy Materials Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.
| |
Collapse
|
25
|
Zhang Z, Yang S, Li H, Zan Y, Li X, Zhu Y, Dou M, Wang F. Sustainable Carbonaceous Materials Derived from Biomass as Metal-Free Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805718. [PMID: 30589116 DOI: 10.1002/adma.201805718] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 06/09/2023]
Abstract
Although carbon is the second most abundant element in the biosphere, a large proportion of the available carbon resources in biomass from agriculture, stock farming, ocean fisheries, and other human activities is currently wasted. The use of sustainable carbonaceous materials as an alternative to precious metals in electrocatalysis is a promising pathway for transforming sustainable biomass resources into sustainable energy-conversion systems. The development of rational syntheses of metal-free carbonaceous catalysts derived from sustainable biomass has therefore become a topic of significant interest in materials chemistry. However, great efforts are still required to develop methods that are low cost, scalable, and environmentally friendly and which afford carbonaceous materials having an electrocatalytic performance comparable to, or even better than, existing precious metal catalysts. Herein, recent achievements in developing metal-free carbonaceous catalysts based on biomass are reviewed and discussed and the critical issues which still need to be addressed are highlighted. The focus is on representative synthesis and optimization strategies applicable to different kinds of biomass, as well as studies of the physicochemical structure and electrochemical performance of the resulting metal-free carbonaceous catalysts. Finally, some guidelines for the future development of this important area are provided.
Collapse
Affiliation(s)
- Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hanyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongxi Zan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueyan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
26
|
Chun Y, Ko YG, Do T, Jung Y, Kim SW, Su Choi U. Spent coffee grounds: Massively supplied carbohydrate polymer applicable to electrorheology. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Shin H, Kang N, Kang D, Kang JS, Ko JH, Lee DH, Park S, Son SU, Sung YE. Understanding the Roles of Sulfur Dopants in Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction: The Relationship between Catalytic Activity and Work Function. ChemElectroChem 2018. [DOI: 10.1002/celc.201800103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heejong Shin
- Center for Nanoparticle Research; Institute for Basic Science (IBS); Seoul 08826 Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Narae Kang
- Center for Nanoparticle Research; Institute for Basic Science (IBS); Seoul 08826 Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Daye Kang
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Jin Soo Kang
- Center for Nanoparticle Research; Institute for Basic Science (IBS); Seoul 08826 Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Ju Hong Ko
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Doo Hun Lee
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Subin Park
- Center for Nanoparticle Research; Institute for Basic Science (IBS); Seoul 08826 Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Seung Uk Son
- Department of Chemistry; Sungkyunkwan University; Suwon 16419 Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research; Institute for Basic Science (IBS); Seoul 08826 Korea
- School of Chemical and Biological Engineering; Seoul National University; Seoul 08826 Korea
| |
Collapse
|