1
|
Kang RH, Baek SW, Oh CK, Kim YH, Kim D. Recent Advances of Macrostructural Porous Silicon for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5609-5626. [PMID: 39818715 PMCID: PMC11788993 DOI: 10.1021/acsami.4c18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties. In drug delivery, pSi's potential for controlled and sustained release of therapeutic agents has been well-studied, making it suitable for chronic disease treatment. Innovative approaches, like microneedle arrays and hybrid drug delivery systems, are highlighted, along with challenges, such as scalability and stability, in biological environments. pSi-based biosensors offer exceptional sensitivity for detecting biomarkers, benefiting early disease diagnosis. In tissue engineering, fibrous and particulate pSi scaffolds mimic the extracellular matrix, promoting cell proliferation and tissue regeneration. pSi is also gaining momentum in orthopedic implants, demonstrating the potential for bone regeneration. Despite its promise, challenges like mechanical strength, scalability, and long-term stability must be addressed. Looking forward, future research should focus on optimizing production methods, enhancing stability, and exploring hybrid materials for pSi, paving the way for its widespread clinical use in personalized medicine, advanced drug delivery, and next-generation biosensors and implants.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department
of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Woo Baek
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Kyu Oh
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
- Institute
for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
| | - Dokyoung Kim
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Center
for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical
Research Center for Bioreaction to Reactive Oxygen Species and Biomedical
Science Institute, School of Medicine, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science
and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Queiroz SM, Veriato TS, Raniero L, Castilho ML. Gold nanoparticles conjugated with epidermal growth factor and gadolinium for precision delivery of contrast agents in magnetic resonance imaging. Radiol Phys Technol 2024; 17:153-164. [PMID: 37991701 DOI: 10.1007/s12194-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
The utilization of contrast agents in magnetic resonance imaging (MRI) has become increasingly important in clinical diagnosis. However, the low diagnostic specificity of this technique is a limiting factor for the early detection of tumors. To develop a new contrast agent with a specific target for early stage tumors, we present the synthesis and characterization of a nanocontrast composed of gold nanoparticles (AuNPs), gadopentetic acid (Gd-DTPA), and epidermal growth factor (EGF). Carbodiimide-based chemistry was utilized to modify Gd-DTPA for functionalization with AuNPs. This resulted in the formation of the Au@Gd-EGF nanocontrast. The relaxation rate (1/T1) of the nanocontrast was analyzed using MRI, and cytotoxicity was determined based on cell viability and mitochondrial activity in a human breast adenocarcinoma cell line. Fourier-transform infrared spectroscopy analysis confirmed the effectiveness of carbodiimide in the formation of the Gd-DTPA-cysteamine complex in the presence of bands at 930, 1042, 1232, 1588, and 1716 cm-1. The complexes exhibited good interactions with the AuNPs. However, the signal intensity of the Au@Gd-EGF nanocontrast was lower than that of the commercial contrast agent because the r1/r2 relaxivities of the Gd-DTPA-based contrast agents were lower than those of the gadoversetamide-based molecules. The Au@Gd-EGF nanocontrast agent exhibited good biocompatibility, low cytotoxicity, and high signal intensity in MRI with active targeted delivery, suggesting significant potential for future applications in the early diagnosis of tumors.
Collapse
Affiliation(s)
- Suélio M Queiroz
- Bionanotechnology Laboratory, Research and Development Institute, University of Vale do Paraíba, São José dos Campos, São Paulo, 12244000, Brazil
| | - Thaís S Veriato
- Bionanotechnology Laboratory, Research and Development Institute, University of Vale do Paraíba, São José dos Campos, São Paulo, 12244000, Brazil
| | - Leandro Raniero
- Nanosensors Laboratory, Research and Development Institute, University of Vale do Paraiba, Sao Jose dos Campos, Sao Paulo, 12244000, Brazil
| | - Maiara L Castilho
- Bionanotechnology Laboratory, Research and Development Institute, University of Vale do Paraíba, São José dos Campos, São Paulo, 12244000, Brazil.
| |
Collapse
|
3
|
Qian J, Wen H, Tamarov K, Xu W, Lehto V. Recent Developments in Porous Silicon Nanovectors with Various Imaging Modalities in the Framework of Theranostics. ChemMedChem 2022; 17:e202200004. [PMID: 35212460 PMCID: PMC9314675 DOI: 10.1002/cmdc.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The number of in vitro, ex vivo, and in vivo studies on porous silicon (PSi) nanoparticles for biomedical applications has increased extensively over the last decade. The focus of the reports has been on the carrier properties of PSi concerning the therapeutic aspect due to several beneficial nanovector characteristics including high payload capacity, biocompatibility, and versatile surface chemistry. Recently, increasing attention has been paid to the diagnostic aspects of PSi, which is typically attributed to the biotraceability of the nanovector. Also, PSi has been studied as a contrast agent. When both these aspects, therapy and diagnosis, are integrated into one nanovector, we can discuss a real nanotheranostics approach. Herein, we review the recent progress developing PSi for various imaging modalities, specifically focusing on optical imaging, magnetic resonance imaging, and nuclear medicine imaging. Furthermore, we summarized the knowledge gaps that must be covered before applying PSi in clinical imaging, highlighting future research trends.
Collapse
Affiliation(s)
- Jing Qian
- Department of Applied PhysicsUniversity of Eastern FinlandYliopistonranta 170211KuopioFinland
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| | - Huang Wen
- Department of Applied PhysicsUniversity of Eastern FinlandYliopistonranta 170211KuopioFinland
| | - Konstantin Tamarov
- Department of Applied PhysicsUniversity of Eastern FinlandYliopistonranta 170211KuopioFinland
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandYliopistonranta 170211KuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandYliopistonranta 170211KuopioFinland
| |
Collapse
|
4
|
Yang FX, Ma XT, Han SY. Rapid Determination of Sunset Yellow in Soft Drinks Using Silicon Nanoparticles Synthesized under Mild Conditions. ANAL SCI 2021; 37:1749-1755. [PMID: 34219118 DOI: 10.2116/analsci.21p140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sunset yellow (SY) is a synthetic colorant which can cause allergies, diarrhea and other symptoms in sensitive people. When ingested too much, it can accumulate in the body and cause damage to the kidneys and liver. Therefore, the content of SY in food must be strictly controlled. In order to regulate their use and ensure food quality, simple and cost-effective methods need to be developed to identify them. In this experiment, fluorescent silicon nanoparticles (SiNPs) were prepared by a one-step method, which is simple, mild and less time-consuming. The fluorescent SiNPs prepared had good thermal stability, excellent salt resistance and pH stability. SY effectively quenched the fluorescence of SiNPs by fluorescence resonance energy transfer when added to the system as an interfering substance. The method had a good linear relationship in the range of SY concentration of 0.050 - 14.0 μg mL-1 and the detection limit is 0.023 μg mL-1. The established sensor was applied to the detection of SY in beverages, and the recovery rate was 93.8 - 102.4%. Based on the excellent selectivity and sensitivity of the method, it could provide a convenient way for the detection of SY in food samples.
Collapse
Affiliation(s)
- Fu-Xia Yang
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University
| | - Xiao-Tong Ma
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University
| | - Shun-Yu Han
- Gansu Key Laboratory of Viticulture and Enology, College of Food Science and Engineering, Gansu Agricultural University
| |
Collapse
|
5
|
Kim J, Jo D, Yang SH, Joo CG, Whiting N, Pudakalakatti S, Seo H, Son HY, Min SJ, Bhattacharya P, Huh YM, Shim JH, Lee Y. 29Si Isotope-Enriched Silicon Nanoparticles for an Efficient Hyperpolarized Magnetic Resonance Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56923-56930. [PMID: 34793118 DOI: 10.1021/acsami.1c16617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon particles have garnered attention as promising biomedical probes for hyperpolarized 29Si magnetic resonance imaging and spectroscopy. However, due to the limited levels of hyperpolarization for nanosized silicon particles, microscale silicon particles have primarily been the focus of dynamic nuclear polarization (DNP) applications, including in vivo magnetic resonance imaging (MRI). To address these current challenges, we developed a facile synthetic method for partially 29Si-enriched porous silicon nanoparticles (NPs) (160 nm) and examined their usability in hyperpolarized 29Si MRI agents with enhanced signals in spectroscopy and imaging. Hyperpolarization characteristics, such as the build-up constant, the depolarization time (T1), and the overall enhancement of the 29Si-enriched silicon NPs (10 and 15%), were thoroughly investigated and compared with those of a naturally abundant NP (4.7%). During optimal DNP conditions, the 15% enriched silicon NPs showed more than 16-fold higher enhancements─far beyond the enrichment ratio─than the naturally abundant sample, further improving the signal-to-noise ratio in in vivo 29Si MRI. The 29Si-enriched porous silicon NPs used in this work are potentially capable to serve as drug-delivery vehicles in addition to hyperpolarized 29Si in vivo, further enabling their potential future applicability as a theragnostic platform.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Donghyuk Jo
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Seung-Hyun Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
- Interdisciplinary Program in Nanomedical Science and Technology, Nanomedical National Core Research Center, Yonsei University, Seoul 03722, South Korea
| | - Chan-Gyu Joo
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Hyeonglim Seo
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Jeong Hyun Shim
- Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
| | - Youngbok Lee
- Department of Bionano Technology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
- Department of Applied Chemistry, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
6
|
Oh JH, Kang RH, Kim J, Bang EK, Kim D. Thermally induced silane dehydrocoupling on porous silicon nanoparticles for ultra-long-acting drug release. NANOSCALE 2021; 13:15560-15568. [PMID: 34596178 DOI: 10.1039/d1nr03263a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report an ultra-long-acting drug release nano-formulation based on porous silicon nanoparticles (pSiNPs) that are prepared by thermally induced silane dehydrocoupling and lipid-coating. This robust formulation offers the ability to release an anticancer drug, for up to 2 weeks, in various biological environments; pH 7.4 buffer, cancer cells, and tumor xenograft model.
Collapse
Affiliation(s)
- Ji Hyeon Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Eun-Kyoung Bang
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J, Li W. The Application of Inorganic Nanoparticles in Molecular Targeted Cancer Therapy: EGFR Targeting. Front Pharmacol 2021; 12:702445. [PMID: 34322025 PMCID: PMC8311435 DOI: 10.3389/fphar.2021.702445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an anticancer drug target for a number of cancers, such as non-small cell lung cancer. However, unsatisfying treatment effects, terrible side-effects, and development of drug resistance are current insurmountable challenges of EGFR targeting treatments for cancers. With the advancement of nanotechnology, an increasing number of inorganic nanomaterials are applied in EGFR-mediated therapy to improve those limitations and further potentiate the efficacy of molecular targeted cancer therapy. Given their facile preparation, easy modification, and biosecurity, inorganic nanoparticles (iNPs) have been extensively explored in cancer treatments to date. This review presents an overview of the application of some typical metal nanoparticles and nonmetallic nanoparticles in EGFR-targeted therapy, then discusses and summarizes the relevant advantages. Moreover, we also highlight future perspectives regarding their remaining issues. We hope these discussions inspire future research on EGFR-targeted iNPs.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| |
Collapse
|
8
|
Wu X, Zhang X, Feng W, Feng H, Ding Z, Zhao Q, Li X, Tang N, Zhang P, Li J, Wang J. A Targeted Erythrocyte Membrane-Encapsulated Drug-Delivery System with Anti-osteosarcoma and Anti-osteolytic Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27920-27933. [PMID: 34125517 DOI: 10.1021/acsami.1c06059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapy is one of the main treatment methods for osteosarcoma. However, conventional chemotherapy lacks targeting properties, and its long-term and extensive use will have serious side effects on patients. For this reason, a multifunctional nanodrug system (V-RZCD) targeting osteosarcoma was developed in this study. V-RZCD consists of two parts: (1) the core (ZCD), wherein calcium ions (Ca2+) and zoledronic acid (ZA) form a metal-organic framework for loading doxorubicin (DOX), and (2) the shell (V-R), a vascular endothelial growth factor (VEGF) ligand-modified red blood cell membrane nanovesicle. By targeting the VEGF, V-RZCD can specifically bind to the VEGF receptors that are highly expressed on the surface of osteosarcoma cells. Importantly, compared with free ZA and DOX, V-RZCD not only clearly inhibits the proliferation of osteosarcoma but also significantly inhibits osteolysis induced by osteosarcoma. In summary, V-RZCD represents a new way to treat osteosarcoma.
Collapse
Affiliation(s)
- Xin Wu
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiaobo Zhang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wanjiang Feng
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Haoming Feng
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xisheng Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Ning Tang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pan Zhang
- Department of Infectious Diseases, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jianlong Wang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
9
|
Li H, Ménard M, Vardanyan A, Charnay C, Raehm L, Oliviero E, Seisenbaeva GA, Pleixats R, Durand JO. Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Adv 2021; 11:10777-10784. [PMID: 35423553 PMCID: PMC8695893 DOI: 10.1039/d1ra01581h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
The synthesis through click chemistry of triethoxysilylated cyclen derivative-based ligands is described. Different methods were used such as the copper catalyzed Huisgen's reaction, or thiol–ene reaction for the functionalization of the cyclen scaffold with azidopropyltriethoxysilane or mercaptopropyltriethoxysilane, respectively. These ligands were then grafted on magnetic mesoporous silica nanoparticles (MMSN) for extraction and separation of Ni(ii) and Co(ii) metal ions from model solutions. The bare and ligand-modified MMSN materials revealed high adsorption capacity (1.0–2.13 mmol g−1) and quick adsorption kinetics, achieving over 80% of the total capacity in 1–2 hours. The adsorption of metal ions through ligand-functionalized magnetic mesoporous silica nanoparticles is described.![]()
Collapse
Affiliation(s)
- Hao Li
- ICGM
- Univ. Montpellier
- CNRS
- ENSCM
- 34095 Montpellier
| | | | - Ani Vardanyan
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | | | | | | | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | | |
Collapse
|
10
|
Herlan C, Bräse S. Lanthanide conjugates as versatile instruments for therapy and diagnostics. Dalton Trans 2020; 49:2397-2402. [PMID: 32030383 DOI: 10.1039/c9dt04851k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanides have demonstrated outstanding properties in many fields of research including biology and medicinal chemistry. Their unique luminescence and magnetic properties make them the metals of choice for next generation theranostics that efficiently combine the two central pillars of medicine - diagnostics and therapy. Attached to targeting units, lanthanide complexes pave the way for real-time imaging of drug uptake and distribution as well as specific regulation of subcellular processes with few side effects. This enables individualized treatment options for severe diseases characterized by altered cell expression. The highly diverse results achieved as well as insights into the challenges that research in this area has to face in the upcoming years will be summarized in the present review.
Collapse
Affiliation(s)
- Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Luo M, Lewik G, Ratcliffe JC, Choi CHJ, Mäkilä E, Tong WY, Voelcker NH. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33637-33649. [PMID: 31433156 DOI: 10.1021/acsami.9b10787] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a dire need to develop more effective therapeutics to combat brain cancer such as glioblastoma multiforme (GBM). An ideal treatment is expected to target deliver chemotherapeutics to glioma cells across the blood-brain barrier (BBB). The overexpression of transferrin (Tf) receptor (TfR) on the BBB and the GBM cell surfaces but not on the surrounding cells renders TfR a promising target. While porous silicon nanoparticles (pSiNPs) have been intensely studied as a delivery vehicle due to their high biocompatibility, degradability, and drug-loading capacity, the potential to target deliver drugs with transferrin (Tf)-functionalized pSiNPs remains unaddressed. Here, we developed and systematically evaluated Tf-functionalized pSiNPs (Tf@pSiNPs) as a glioma-targeted drug delivery system. These nanoparticles showed excellent colloidal stability and had a low toxicity profile. As compared with nontargeted pSiNPs, Tf@pSiNPs were selective to BBB-forming cells and GBM cells and were efficiently internalized through clathrin receptor-mediated endocytosis. The anticancer drug doxorubicin (Dox) was effectively loaded (8.8 wt %) and released from Tf@pSiNPs in a pH-responsive manner over 24 h. Furthermore, the results demonstrate that Dox delivered by Tf@pSiNPs induced significantly enhanced cytotoxicity to GBM cells across an in vitro BBB monolayer compared with free Dox. Overall, Tf@pSiNPs offer a potential toolbox for enabling targeted therapy to treat GBM.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Guido Lewik
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Faculty of Medicine , Ruhr-University Bochum , Bochum 44801 , Germany
| | - Julian Charles Ratcliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy , University of Turku , Turku 20014 , Finland
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
- Melbourne Centre for Nanofabrication , Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , VIC 3168 , Australia
- Materials Science and Engineering , Monash University , 14 Alliance Lane , Clayton , VIC 3800 , Australia
| |
Collapse
|
12
|
Tieu T, Alba M, Elnathan R, Cifuentes‐Rius A, Voelcker NH. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800095] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- Prof. N. H. Voelcker Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- T. Tieu, Dr. M. Alba, Prof. N. H. Voelcker CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| |
Collapse
|
13
|
Cifuentes-Rius A, Butler LM, Voelcker NH. Precision nanomedicines for prostate cancer. Nanomedicine (Lond) 2018; 13:803-807. [DOI: 10.2217/nnm-2018-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anna Cifuentes-Rius
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
| | - Lisa M Butler
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health & Medical Research Institute, Adelaide SA 5001, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- South Australian Health & Medical Research Institute, Adelaide SA 5001, Australia
| |
Collapse
|
14
|
Li S, Wang F, He XW, Li WY, Zhang YK. One-pot hydrothermal preparation of gadolinium-doped silicon nanoparticles as a dual-modal probe for multicolor fluorescence and magnetic resonance imaging. J Mater Chem B 2018; 6:3358-3365. [DOI: 10.1039/c8tb00415c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One-pot hydrothermal preparation of gadolinium-doped silicon nanoparticles as a dual-modal probe for multicolor fluorescence and magnetic resonance imaging.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Nankai University
| | - Feng Wang
- The State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin 300071
- China
| | - Xi-Wen He
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Nankai University
| | - Wen-You Li
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Nankai University
| | - Yu-Kui Zhang
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Nankai University
| |
Collapse
|
15
|
McInnes SJP, Santos A, Kumeria T. Porous Silicon Particles for Cancer Therapy and Bioimaging. NANOONCOLOGY 2018. [DOI: 10.1007/978-3-319-89878-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|