1
|
Lu J, Pan X, Zhang W, Han J, Chen J, Song M, Xu C, Li X, Wang J, Wang L. Hydrogel sensing platforms for monitoring contractility in in vitro cardiac models. NANOSCALE 2025; 17:8436-8452. [PMID: 40091817 DOI: 10.1039/d4nr04087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Heart failure (HF) affects over 64 million people globally, marked by high incidence and mortality rates. Accurate measurements of myocardial contractility are crucial for evaluating cardiac pathomechanisms and monitoring disease progression. Hydrogel sensing devices, known for their flexibility, programmable structures, biocompatibility, and cell adhesion, are ideal for studying cardiac function, minimizing disruption to cardiomyocytes, and supporting long-term culture and monitoring. These platforms, while employing diverse detection principles to accurately measure cell contractility, still face challenges in achieving long-term stability and durability. This review summarizes current methods for monitoring cardiomyocyte contractility, emphasizes the significant impact of substrate mechanical properties on cellular function, and explores recent advances in hydrogel-based platforms for monitoring cell contraction forces. It also discusses the technical challenges and future prospects for measuring cardiac systolic function with these devices.
Collapse
Affiliation(s)
- Junxiu Lu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xiatong Pan
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
2
|
Mallya D, Gadre MA, Varadharajan S, Vasanthan KS. 3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns. Front Bioeng Biotechnol 2025; 13:1457872. [PMID: 40028291 PMCID: PMC11868281 DOI: 10.3389/fbioe.2025.1457872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
A drug to be successfully launched in the market requires a significant amount of capital, resources and time, where the unsuccessful results in the last stages lead to catastrophic failure for discovering drugs. This is the very reason which calls for the invention of innovative models that can closely mimic the human in vivo model for producing reliable results. Throughout the innovation line, there has been improvement in the rationale in silico designing but yet there is requirement for in vitro-in vivo correlations. During the evolving of the drug testing models, the 3D models produced by different methods have been proven to produce better results than the traditional 2D models. However, the in vitro fabrications of live tissues are still bottleneck in realizing their complete potential. There is an urgent need for the development of single, standard and simplified in vitro 3D tissue models that can be reliable for investigating the biological and pathological aspects of drug discovery, which is yet to be achieved. The existing pre-clinical models have considerable drawbacks despite being the gold standard in pre-clinical research. The major drawback being the interspecies differences and low reliability on the generated results. This gap could be overcome by the fabrication of bioengineered human disease models for drug screening. The advancement in the fabrication of 3D models will provide a valuable tool in screening drugs at different stages as they are one step closer to bio-mimic human tissues. In this review, we have discussed on the evolution of preclinical studies, and different models, including mini tissues, spheroids, organoids, bioengineered three dimensional models and organs on chips. Furthermore, we provide details of different disease models fabricated across various organs and their applications. In addition to this, the review also focuses on the limitations and the current prospects of the role of three dimensionally bioprinted models in drug screening and development.
Collapse
Affiliation(s)
- Divya Mallya
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mrunmayi Ashish Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S. Varadharajan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Kim K, Lee Y, Jung KB, Kim Y, Jang E, Lee MO, Son MY, Lee HJ. Highly Stretchable 3D Microelectrode Array for Noninvasive Functional Evaluation of Cardiac Spheroids and Midbrain Organoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412953. [PMID: 39676473 DOI: 10.1002/adma.202412953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Organoids are 3D biological models that recapitulate the complex structures and functions of human organs. Despite the rapid growth in the generation of organoids, in vitro assay tools are still limited to 2D forms. Thus, a comprehensive and continuous functional evaluation of the electrogenic organoids remains a challenge. Here, a highly stretchable 3D multielectrode array (sMEA) with protruding microelectrodes is presented for functional evaluation of electrogenic organoids. The optimized serpentine structures with bridge structures cover the surface of the organoids conformally even in immersion. The protruding microelectrodes form a stable contact with the organoids and allow electrophysiological recordings with high signal-to-noise ratio (SNR). sMEAs are fabricated in wafer-scale for repeatable, scalable, and mass production and packed into an easy-to-use, user-friendly, and robust microwell for fast dissemination of technology. The versatility of sMEA is validated by measuring electrophysiological signals from cardiac spheroids and midbrain organoids with a wide range of sizes from 500 to 1500 µm. Also, electrophysiological signals recorded with high SNR enable functional evaluation of the effects of drugs. The proposed sMEA with high SNR and user-friendly interface could be the key player in high-throughput drug screening, 3D spatiotemporal mapping of electrogenic organoids, and standardization of protocols for quality assessment.
Collapse
Affiliation(s)
- Kiup Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngsun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yoojeong Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunyoung Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Li T, Wan Z, Wang Q, Qiao F, Pan G, Zhao C, Zhu Y, Zhou H, Tan Y, Zhou Z, Zhang D. Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406144. [PMID: 39822158 DOI: 10.1002/smll.202406144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/25/2024] [Indexed: 01/19/2025]
Abstract
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter. This design allows the sensor to detect minimal forces as low as l µN. This sensor is successfully applied to monitor human-induced pluripotent stem cell-derived human-engineered heart tissue (hEHT) models that can self-assemble and contact optical fiber-based strings. The sensor detects micro newton contraction forces in real-time by measuring the wavelength drift resulting from hEHT contractions. In addition, the sensor is precise and durable, exhibiting a fatigue resistance of up to 800 000 cycles, making it suitable for long-term monitoring. The device effectively measured the contractile force of the hEHTs under various physiological conditions, including natural contraction, electrical stimulation, and stretching. Moreover, multichannel detection enables the study and demonstration of short- and long-term effectiveness of multiple drugs. This breakthrough sensor addresses the critical need for high-precision real-time monitoring in drug evaluation and provides a solid foundation for screening drugs to treat cardiomyopathy.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhongjun Wan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
| | - Qian'ao Wang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Feng Qiao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ganlin Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
| | - Chen Zhao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yongwen Zhu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Haotian Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
- Cardiovascular Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
5
|
Jiang Y, Xue M, Ou L, Wu H, Yang J, Zhang W, Zhou Z, Gao Q, Lin B, Kong W, Chen S, Sun D. Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. Tissue Eng Regen Med 2025; 22:211-224. [PMID: 39804547 PMCID: PMC11794902 DOI: 10.1007/s13770-024-00688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Accepted: 11/30/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time. METHODS We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed. RESULTS Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the Lucas-Kanade (LK) optical flow method, and provided better stability and accuracy in the results. CONCLUSION This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
Collapse
Affiliation(s)
- Yuqing Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huiquan Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jianhui Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wangzihan Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhuomin Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiang Gao
- Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan, 528231, Guangdong, China
| | - Weiwei Kong
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan, 528231, Guangdong, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
6
|
Wu SD, Weller H, Vossmeyer T, Hsu SH. Motion Sensing by a Highly Sensitive Nanogold Strain Sensor in a Biomimetic 3D Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56599-56610. [PMID: 39253872 PMCID: PMC11503636 DOI: 10.1021/acsami.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Recent advancements in flexible electronics have highlighted their potential in biomedical applications, primarily due to their human-friendly nature. This study introduces a new flexible electronic system designed for motion sensing in a biomimetic three-dimensional (3D) environment. The system features a self-healing gel matrix (chitosan-based hydrogel) that effectively mimics the dynamics of the extracellular matrix (ECM), and is integrated with a highly sensitive thin-film resistive strain sensor, which is fabricated by incorporating a cross-linked gold nanoparticle (GNP) thin film as the active conductive layer onto a biocompatible microphase-separated polyurethane (PU) substrate through a clean, rapid, and high-precision contact printing method. The GNP-PU strain sensor demonstrates high sensitivity (a gauge factor of ∼50), good stability, and waterproofing properties. The feasibility of detecting small motion was evaluated by sensing the beating of human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte spheroids embedded in the gel matrix. The integration of these components exemplifies a proof-of-concept for using flexible electronics comprising self-healing hydrogel and thin-film nanogold in cardiac sensing and offers promising insights into the development of next-generation biomimetic flexible electronic devices.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- Fraunhofer
Center for Applied Nanotechnology CAN, Grindelallee 117, Hamburg 20146, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Shan-hui Hsu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Cellular and System Medicine, National
Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
7
|
Peng X, Wu L, Li Q, Ge Y, Xu T, Zhao J. An Easy-to-Use Arrayed Brain-Heart Chip. BIOSENSORS 2024; 14:517. [PMID: 39589976 PMCID: PMC11592345 DOI: 10.3390/bios14110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Multi-organ chips are effective at emulating human tissue and organ functions and at replicating the interactions among tissues and organs. An arrayed brain-heart chip was introduced whose configuration comprises open culture chambers and closed biomimetic vascular channels distributed in a horizontal pattern, separated from each other by an endothelial barrier based on fibrin matrix. A 300 μm-high and 13.2 mm-long endothelial barrier surrounded each organoid culture chamber, thereby satisfying the material transport requirements. Numerical simulations were used to analyze the construction process of fibrin barriers in order to optimize the structural design and experimental manipulation, which exhibited a high degree of correlation with experiment results. In each interconnective unit, a cerebral organoid, a cardiac organoid, and endothelial cells were co-cultured stably for a minimum of one week. The permeability of the endothelial barrier and recirculating perfusion enabled cross talk between cerebral organoids and cardiac organoids, as well as between organoids and endothelial cells. This was corroborated by the presence of cardiac troponin I (cTnI) in the cerebral organoid culture chamber and the observation of cerebral organoid and endothelial cells invading the fibrin matrix after one week of co-culture. The arrayed chip was simple to manipulate, clearly visible under a microscope, and compatible with automated pipetting devices, and therefore had significant potential for application.
Collapse
Affiliation(s)
- Xiyao Peng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiegang Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.P.); (Q.L.); (Y.G.); (T.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Ou L, Wu T, Qiu B, Jin H, Xu F, Wu H, Zhang W, Xue M, Zhou Z, Lin B, Sun D, Chen S. Real-Time Wireless Sensing of Cardiomyocyte Contractility by Integrating Magnetic Microbeam and Oriented Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45861-45870. [PMID: 39177826 DOI: 10.1021/acsami.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In vitro cardiomyocyte mechano-sensing platform is crucial for evaluating the mechanical performance of cardiac tissues and will be an indispensable tool for application in drug discovery and disease mechanism study. Magnetic sensing offers significant advantages in real-time, in situ wireless monitoring and resistance to ion interference. However, due to the mismatch between the stiffness of traditional rigid magnetic material and myocardial tissue, sensitivity is insufficient and it is difficult to achieve cell structure induction and three-dimensional cultivation. Herein, a magnetic sensing platform that integrates a neodymium-iron-boron/polydimethylsiloxane (NdFeB/PDMS) flexible microbeam with suspended and ordered polycaprolactone (PCL) nanofiber membranes was developed, providing a three-dimensional anisotropic culture environment for cardiomyocyte growth and simultaneously realizing in situ wireless contractility monitoring. The as-prepared sensor presented an ultrahigh sensitivity of 442.2 μV/μm and a deflection resolution of 2 μm. By continuously monitoring the cardiomyocyte growth status and drug stimulation feedback, we verified the capability of the platform to capture dynamic changes in cardiomyocyte contractility. This platform provides a perspective tool for evaluating cardiomyocyte maturity and drug performance.
Collapse
Affiliation(s)
- Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Tianhao Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Huiquan Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wangzihan Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhuomin Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co., Ltd., Foshan 528231, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Bolonduro OA, Chen Z, Fucetola CP, Lai YR, Cote M, Kajola RO, Rao AA, Liu H, Tzanakakis ES, Timko BP. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402236. [PMID: 39054679 PMCID: PMC11423186 DOI: 10.1002/advs.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here we report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm-2 results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.
Collapse
Affiliation(s)
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yan-Ru Lai
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Megan Cote
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Rofiat O Kajola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Akshita A Rao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Emmanuel S Tzanakakis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
- Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
11
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
12
|
Xu F, Jin H, Liu L, Yang Y, Cen J, Wu Y, Chen S, Sun D. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:96. [PMID: 39006908 PMCID: PMC11239895 DOI: 10.1038/s41378-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.
Collapse
Affiliation(s)
- Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Lingling Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Yuanyuan Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Jianzheng Cen
- Guangdong Provincial People’s Hospital, Guangzhou, 510080 China
| | - Yaobin Wu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
13
|
Morita T, Nie M, Takeuchi S. Human induced pluripotent stem cell-derived cardiac muscle rings for biohybrid self-beating actuator. LAB ON A CHIP 2024; 24:3377-3387. [PMID: 38916038 DOI: 10.1039/d4lc00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cardiac muscle, a subtype of striated muscle composing our heart, has garnered attention as a source of autonomously driven actuators due to its inherent capability for spontaneous contraction. However, conventional cardiac biohybrid robots have utilized planar (2D) cardiac tissue consisting of a thin monolayer of cardiac myotubes with a thickness of 3-5 μm, which can generate a limited contractile force per unit footprint. In this study, 3D cardiac muscle rings were proposed as robotic actuator units. These units not only exhibit higher contractile force per unit footprint compared to their 2D counterparts due to their increased height, but they can also be integrated into desired 3D configurations. We fabricated cardiac muscle rings from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), evaluated their driving characteristics, and verified the actuation effects by integrating them with artificial components. After the 10th day from culture, the cardiac muscle rings exhibited rhythmic spontaneous contraction and increased contractile force in response to stretching stimuli. Furthermore, after constructing a centimeter-sized biohybrid self-beating actuator with an antagonistic pair structure of cardiac muscle rings, the periodic antagonistic beating motion at its tail portion was confirmed. We believe that 3D cardiac muscle rings, possessing high contractile force and capable of being positioned within limited 3D space, can be used as potent biohybrid robotic actuators.
Collapse
Affiliation(s)
- Tomohiro Morita
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 113-8656, Japan.
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 113-8656, Japan.
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 113-8656, Japan.
- Institude of Industrial Science (IIS), The University of Tokyo, 153-8505, Japan
- International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo Institutes for Advanced Study (UTIAS), 113-0033, Japan
| |
Collapse
|
14
|
Boschi A, Iachetta G, Buonocore S, Hubarevich A, Hurtaud J, Moreddu R, Marta d’Amora, Formoso MB, Tantussi F, Dipalo M, De Angelis F. Interferometric Biosensor for High Sensitive Label-Free Recording of HiPS Cardiomyocytes Contraction in Vitro. NANO LETTERS 2024; 24:6451-6458. [PMID: 38776267 PMCID: PMC11157657 DOI: 10.1021/acs.nanolett.3c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/24/2024]
Abstract
Heart disease remains a leading cause of global mortality, underscoring the need for advanced technologies to study cardiovascular diseases and develop effective treatments. We introduce an innovative interferometric biosensor for high-sensitivity and label-free recording of human induced pluripotent stem cell (hiPSC) cardiomyocyte contraction in vitro. Using an optical cavity, our device captures interference patterns caused by the contraction-induced displacement of a thin flexible membrane. First, we demonstrate the capability to quantify spontaneous contractions and discriminate between contraction and relaxation phases. We calculate a contraction-induced vertical membrane displacement close to 40 nm, which implies a traction stress of 34 ± 4 mN/mm2. Finally, we investigate the effects of a drug compound on contractility amplitude, revealing a significant reduction in contractile forces. The label-free and high-throughput nature of our biosensor may enhance drug screening processes and drug development for cardiac treatments. Our interferometric biosensor offers a novel approach for noninvasive and real-time assessment of cardiomyocyte contraction.
Collapse
Affiliation(s)
- Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Giuseppina Iachetta
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Salvatore Buonocore
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Julien Hurtaud
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | - Maria Blanco Formoso
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Center
for Research in Nanomaterials and Biomedicine, University of Vigo, 36310 Vigo, Spain
| | - Francesco Tantussi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
15
|
Bolonduro OA, Chen Z, Lai YR, Cote M, Rao AA, Liu H, Tzanakakis ES, Timko BP. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571704. [PMID: 38168441 PMCID: PMC10760153 DOI: 10.1101/2023.12.15.571704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We report an integrated optogenetic and bioelectronic platform for stable and long-term modulation and monitoring of cardiomyocyte function in vitro. Optogenetic inputs were achieved through expression of a photoactivatable adenylyl cyclase (bPAC), that when activated by blue light caused a dose-dependent and time-limited increase in autonomous cardiomyocyte beat rate. Bioelectronic readouts were achieved through an integrated planar multi-electrode array (MEA) that provided real-time readouts of electrophysiological activity from 32 spatially-distinct locations. Irradiation at 27 μW/mm2 resulted in a ca. 14% increase in beat rate within 20-25 minutes, which remained stable for at least 2 hours. The beating rate could be cycled through repeated "on" and "off' states, and its magnitude was a monotonic function of irradiation intensity. Our integrated platform opens new avenues in bioelectronic medicine, including closed-loop feedback systems, with potential applications for cardiac regulation including arrhythmia diagnosis and intervention.
Collapse
Affiliation(s)
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University
| | - Yan-Ru Lai
- Department of Biomedical Engineering, Tufts University
| | - Megan Cote
- Department of Biomedical Engineering, Tufts University
| | | | - Haitao Liu
- Department of Biomedical Engineering, Tufts University
- General Surgery Department, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University
- Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University
- Clinical and Translational Science Institute, Tufts Medical Center
| | | |
Collapse
|
16
|
Fang J, Pan Y, Xu J, Xu D, Li H, Liu C, Hu N. Integrated Cardiomyocyte-Based Biosensing Platform for Electroporation-Triggered Intracellular Recording in Parallel with Delivery Efficiency Evaluation. NANO LETTERS 2023; 23:4049-4057. [PMID: 37098848 DOI: 10.1021/acs.nanolett.3c00917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electroporation is a proven technique that can record action potential of cardiomyocytes and serve for biomolecular delivery. To ensure high cell viability, micro-nanodevices cooperating with low-voltage electroporation are frequently utilized in research, and the effectiveness of delivery for intracellular access is typically assessed using an optical imaging approach like flow cytometry. However, the efficiency of in situ biomedical studies is hampered by the intricacy of these analytical approaches. Here, we develop an integrated cardiomyocyte-based biosensing platform to effectively record action potential and evaluate the electroporation quality in terms of viability, delivery efficiency, and mortality. The ITO-MEA device of the platform possesses sensing/stimulating electrodes which combines with the self-developed system to achieve intracellular action potential recording and delivery by electroporation trigger. Moreover, the image acquisition processing system analyzes various parameters effectively to assess delivery performance. Therefore, this platform has the potential for drug delivery therapy and pathology research for cardiology.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuxiang Pan
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiarong Xu
- Foshan Power Supply Bureau of Guangdong Power Grid, Foshan 528000, China
| | - Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
17
|
Chen H, Luo Z, Lin X, Zhu Y, Zhao Y. Sensors-integrated organ-on-a-chip for biomedical applications. NANO RESEARCH 2023; 16:1-28. [PMID: 37359077 PMCID: PMC10130312 DOI: 10.1007/s12274-023-5651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
As a promising new micro-physiological system, organ-on-a-chip has been widely utilized for in vitro pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delicate replication of in vivo-like microenvironment. To better observe the biological processes, a variety of sensors have been integrated to realize in-situ, real-time, and sensitive monitoring of critical signals for organs development and disease modeling. Herein, we discuss the recent research advances made with respect to sensors-integrated organ-on-a-chip in this overall review. Firstly, we briefly explore the underlying fabrication procedures of sensors within microfluidic platforms and several classifications of sensory principles. Then, emphasis is put on the highlighted applications of different types of organ-on-a-chip incorporated with various sensors. Last but not least, perspective on the remaining challenges and future development of sensors-integrated organ-on-a-chip are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yujuan Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
18
|
Liu S, Kumari S, He H, Mishra P, Singh BN, Singh D, Liu S, Srivastava P, Li C. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization. Biosens Bioelectron 2023; 231:115285. [PMID: 37058958 DOI: 10.1016/j.bios.2023.115285] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
As a full-fidelity simulation of human cells, tissues, organs, and even systems at the microscopic scale, Organ-on-a-Chip (OOC) has significant ethical advantages and development potential compared to animal experiments. The need for the design of new drug high-throughput screening platforms and the mechanistic study of human tissues/organs under pathological conditions, the evolving advances in 3D cell biology and engineering, etc., have promoted the updating of technologies in this field, such as the iteration of chip materials and 3D printing, which in turn facilitate the connection of complex multi-organs-on-chips for simulation and the further development of technology-composite new drug high-throughput screening platforms. As the most critical part of organ-on-a-chip design and practical application, verifying the success of organ model modeling, i.e., evaluating various biochemical and physical parameters in OOC devices, is crucial. Therefore, this paper provides a logical and comprehensive review and discussion of the advances in organ-on-a-chip detection and evaluation technologies from a broad perspective, covering the directions of tissue engineering scaffolds, microenvironment, single/multi-organ function, and stimulus-based evaluation, and provides a more comprehensive review of the progress in the significant organ-on-a-chip research areas in the physiological state.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Hongyi He
- West China School of Medicine & West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Parichita Mishra
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Pradeep Srivastava
- School of Biochemical Engineering, IIT BHU, Varanasi, Uttar Pradesh, India.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong(Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
19
|
Paz-Artigas L, Montero-Calle P, Iglesias-García O, Mazo MM, Ochoa I, Ciriza J. Current approaches for the recreation of cardiac ischaemic environment in vitro. Int J Pharm 2023; 632:122589. [PMID: 36623742 DOI: 10.1016/j.ijpharm.2023.122589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Myocardial ischaemia is one of the leading dead causes worldwide. Although animal experiments have historically provided a wealth of information, animal models are time and money consuming, and they usually miss typical human patient's characteristics associated with ischemia prevalence, including aging and comorbidities. Generating reliable in vitro models that recapitulate the human cardiac microenvironment during an ischaemic event can boost the development of new drugs and therapeutic strategies, as well as our understanding of the underlying cellular and molecular events, helping the optimization of therapeutic approaches prior to animal and clinical testing. Although several culture systems have emerged for the recreation of cardiac physiology, mimicking the features of an ischaemic heart tissue in vitro is challenging and certain aspects of the disease process remain poorly addressed. Here, current in vitro cardiac culture systems used for modelling cardiac ischaemia, from self-aggregated organoids to scaffold-based constructs and heart-on-chip platforms are described. The advantages of these models to recreate ischaemic hallmarks such as oxygen gradients, pathological alterations of mechanical strength or fibrotic responses are highlighted. The new models represent a step forward to be considered, but unfortunately, we are far away from recapitulating all complexity of the clinical situations.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Pilar Montero-Calle
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Manuel M Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| |
Collapse
|
20
|
Wang L, Xu X, Chen J, Su W, Zhang F, Li A, Li C, Xu C, Sun Y. Crack Sensing of Cardiomyocyte Contractility with High Sensitivity and Stability. ACS NANO 2022; 16:12645-12655. [PMID: 35867617 DOI: 10.1021/acsnano.2c04260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Measuring myocardial contractility is of great value in exploring cardiac pathogenesis and quantifying drug efficacy. Among the biosensing platforms developed for detecting the weak contractility of a single layer of cardiomyocytes (CMs), thin brittle metal membrane sensors with microcracks are highly sensitive. However, their poor stability limits the application in long-term measurement. Here, we report a high stability crack sensor fabricated by deposition of a 105 nm thick Ag/Cr with microcracks onto a carbon nanotubes-polydimethylsiloxane (CNT-PDMS) layer. This brittle-tough bilayer crack sensor achieved high sensitivity (gauge factor: 108 241.7), a wide working range (0.01-44%), and high stability (stable period >2 000 000 cycles under the strain caused by a monolayer of CMs). During 14-day continuously monitoring CMs culturing and drug treatment testings, the device demonstrated high sensitivity and stability to record the dynamic change caused by contractility of the CMs.
Collapse
Affiliation(s)
- Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xingyuan Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Feng Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
21
|
Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, Pandita S, Tong CW, Marakkar S, Subramanian L, Yadav SS, Cherian AV, Pandita TK, Shameer K, Yadav KK. Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells 2022; 11:cells11111828. [PMID: 35681523 PMCID: PMC9180073 DOI: 10.3390/cells11111828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.
Collapse
Affiliation(s)
- Mufeeda C. Koyilot
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Priyadarshini Natarajan
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Clayton R. Hunt
- Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Sonish Sivarajkumar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Romy Roy
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shreeram Joglekar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Shruti Pandita
- Mays Cancer Center, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA;
| | - Carl W. Tong
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
| | - Shamsudheen Marakkar
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | | | - Shalini S. Yadav
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Anoop V. Cherian
- Molecular Robotics, Cochin 682033, India; (M.C.K.); (P.N.); (S.S.); (R.R.); (S.J.); (S.M.); (A.V.C.)
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Khader Shameer
- School of Public Health, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| | - Kamlesh K. Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA;
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.P.); (K.S.); (K.K.Y.)
| |
Collapse
|
22
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
23
|
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. MICROSYSTEMS & NANOENGINEERING 2022; 8:26. [PMID: 35299653 PMCID: PMC8882466 DOI: 10.1038/s41378-021-00344-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350 China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| |
Collapse
|
24
|
Park J, Wu Z, Steiner PR, Zhu B, Zhang JXJ. Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications. Ann Biomed Eng 2022; 50:111-137. [PMID: 35039976 DOI: 10.1007/s10439-022-02902-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Organ-on-chip or micro-engineered three-dimensional cellular or tissue models are increasingly implemented in the study of cardiovascular pathophysiology as alternatives to traditional in vitro cell culture. Drug induced cardiotoxicity is a key issue in drug development pipelines, but the current in vitro and in vivo studies suffer from inter-species differences, high costs, and lack of reliability and accuracy in predicting cardiotoxicity. Microfluidic heart-on-chip devices can impose a paradigm shift to the current tools. They can not only recapitulate cardiac tissue level functionality and the communication between cells and extracellular matrices but also allow higher throughput studies conducive to drug screening especially with their added functionalities or sensors that extract disease-specific phenotypic, genotypic, and electrophysiological information in real-time. Such electrical and mechanical components can tailor the electrophysiology and mechanobiology of the experiment to better mimic the in vivo condition as well. Recent advancements and challenges are reviewed in the fabrication, functionalization and sensor assisted mechanical and electrophysiological measurements, numerical and computational modeling of cardiomyocytes' behavior, and the clinical applications in drug screening and disease modeling. This review concludes with the current challenges and perspectives on the future of such organ-on-chip platforms.
Collapse
Affiliation(s)
- Jiyoon Park
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Ziqian Wu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Paul R Steiner
- Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Bo Zhu
- Computer Science Department, Dartmouth College, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA. .,Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA.
| |
Collapse
|
25
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Yang Q, Xiao Z, Lv X, Zhang T, Liu H. Fabrication and Biomedical Applications of Heart-on-a-chip. Int J Bioprint 2021; 7:370. [PMID: 34286153 PMCID: PMC8287510 DOI: 10.18063/ijb.v7i3.370] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Heart diseases have become the main killer threatening human health, and various methods have been developed to study heart disease. Among them, heart-on-a-chip has emerged in recent years as a method for constructing disease (or normal) models in vitro and is considered as a promising tool to study heart diseases. Compared with other methods, the advantages of heart-on-a-chip include the high portability, high throughput, and the capability to mimic microenvironments in vivo. It has shown a great potential in disease mechanism study and drug screening. In this paper, we review the recent advances in heart-on-a-chip, including the fabrication methods (e.g., 3D bioprinting) and biomedical applications. By analyzing the structure of the existing heart-on-a-chip, we proposed that a highly integrated heart-on-a-chip includes four elements: Microfluidic chips, cells/microtissues, microactuators to construct the microenvironment, and microsensors for results readout. Finally, the current challenges and future directions of heart-on-a-chip are discussed.
Collapse
Affiliation(s)
- Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Research Institute of Xi’an Jiaotong University, Hangzhou, Zhejiang 311215, P.R. China
| | - Zhanfeng Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
| | - Xuemeng Lv
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
| | - Tingting Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, P.R. China
| | - Han Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450016, P.R. China
| |
Collapse
|
27
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
28
|
Dou W, Wang L, Malhi M, Liu H, Zhao Q, Plakhotnik J, Xu Z, Huang Z, Simmons CA, Maynes JT, Sun Y. A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-Cardiomyocytes. Biosens Bioelectron 2020; 175:112875. [PMID: 33303322 DOI: 10.1016/j.bios.2020.112875] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
The use of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of the heart is limited by their structurally and functionally immature phenotypes. During heart development, mechanical stimuli from in vivo microenvironments are known to regulate cardiomyocyte gene expression and maturation. Accordingly, protocols for culturing iPSC-CMs have recently incorporated mechanical or electromechanical stimulation to induce cellular maturation in vitro; however, the response of iPSC-CMs to different mechanical strain magnitudes is unknown, and existing techniques lack the capability to dynamically measure changes to iPSC-CM contractility in situ as maturation progresses. We developed a microdevice platform which applies cyclical strains of varying magnitudes (5%, 10%, 15% and 20%) to a monolayer of iPSC-CMs, coincidentally measuring contractile stress during mechanical stimulation using fluorescent nanobeads embedded in the microdevice's suspended membrane. Cyclic strain was found to induce circumferential cell alignment on the actuated membranes. In situ contractility measurements revealed that cyclic stimulation gradually increased cardiomyocyte contractility during a 10-day culture period. The contractile stress of iPSC-CM monolayers was found to increase with a higher strain magnitude and plateaued at 15% strain. Cardiomyocyte contractility positively correlated with the elongation of sarcomeres and an increased expression of β-myosin heavy chain (MYH7) in a strain magnitude-dependent manner, illustrating how mechanical stress can be optimized for the phenotypic and proteomic maturation of the cells. iPSC-CMs with improved maturity have the potential to create a more accurate heart model in vitro for applications in disease modeling and therapeutic discovery.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Li Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Manpreet Malhi
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada
| | - Qili Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Julia Plakhotnik
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, M5G 1M1, Canada.
| | - Jason T Maynes
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada; Department of Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada; Department of Computer Science, University of Toronto, M5T 3A1, Canada.
| |
Collapse
|
29
|
Wei X, Zhuang L, Li H, He C, Wan H, Hu N, Wang P. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005828. [PMID: 33230867 DOI: 10.1002/smll.202005828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease is currently a leading killer to human, while drug-induced cardiotoxicity remains the main cause of the withdrawal and attrition of drugs. Taking clinical correlation and throughput into account, cardiomyocyte is perfect as in vitro cardiac model for heart disease modeling, drug discovery, and cardiotoxicity assessment by accurately measuring the physiological multiparameters of cardiomyocytes. Remarkably, cardiomyocytes present both electrophysiological and biomechanical characteristics due to the unique excitation-contraction coupling, which plays a significant role in studying the cardiomyocytes. This review mainly focuses on the recent advances of biosensing technologies for the 2D and 3D cardiac models with three special properties: electrophysiology, mechanical motion, and contractile force. These high-performance multidimensional cardiac models are popular and effective to rebuild and mimic the heart in vitro. To help understand the high-quality and accurate physiologies, related detection techniques are highly demanded, from microtechnology to nanotechnology, from extracellular to intracellular recording, from multiple cells to single cell, and from planar to 3D models. Furthermore, the characteristics, advantages, limitations, and applications of these cardiac biosensing technologies, as well as the future development prospects should contribute to the systematization and expansion of knowledge.
Collapse
Affiliation(s)
- Xinwei Wei
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanjiang He
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping Wang
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
30
|
Cho KW, Lee WH, Kim BS, Kim DH. Sensors in heart-on-a-chip: A review on recent progress. Talanta 2020; 219:121269. [DOI: 10.1016/j.talanta.2020.121269] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
31
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Optimized CNT-PDMS Flexible Composite for Attachable Health-Care Device. SENSORS 2020; 20:s20164523. [PMID: 32823502 PMCID: PMC7472186 DOI: 10.3390/s20164523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023]
Abstract
The CNT-PDMS composite has been widely adopted in flexible devices due to its high elasticity, piezoresistivity, and biocompatibility. In a wide range of applications, CNT-PDMS composite sensors were used for resistive strain measurement. Accordingly, the percolation threshold 2%~4% of the CNT weight ratio in the CNT-PDMS composite was commonly selected, which is expected to achieve the optimized piezoresistive sensitivity. However, the linear range around the percolation threshold weight ratio (2%~4%) limits its application in a stable output of large strain (>20%). Therefore, comprehensive understanding of the electromechanical, mechanical, and electrical properties for the CNT-PDMS composite with different CNT weight ratios was expected. In this paper, a systematic study was conducted on the piezoresistivity, Young’s modulus, conductivity, impedance, and the cross-section morphology of different CNT weight ratios (1 to 10 wt%) of the CNT-PDMS composite material. It was experimentally observed that the piezo-resistive sensitivity of CNT-PDMS negatively correlated with the increase in the CNT weight ratio. However, the electrical conductivity, Young’s modulus, tensile strength, and the linear range of piezoresistive response of the CNT-PDMS composite positively correlated with the increase in CNT weight ratio. Furthermore, the mechanism of these phenomena was analyzed through the cross-section morphology of the CNT-PDMS composite material by using SEM imaging. From this analysis, a guideline was proposed for large strain (40%) measurement applications (e.g., motion monitoring of the human body of the finger, arm, foot, etc.), the CNT weight ratio 8 wt% was suggested to achieve the best piezoresistive sensitivity in the linear range.
Collapse
|
33
|
Dou W, Zhao Q, Malhi M, Liu X, Zhang Z, Wang L, Masse S, Nanthakumar K, Hamilton R, Maynes JT, Sun Y. Label-free conduction velocity mapping and gap junction assessment of functional iPSC-Cardiomyocyte monolayers. Biosens Bioelectron 2020; 167:112468. [PMID: 32829174 DOI: 10.1016/j.bios.2020.112468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cardiac conduction is an important function of the heart. To date, accurate measurement of conduction velocity (CV) in vitro is hindered by the low spatial resolution and poor signal-to-noise ratio of microelectrode arrays (MEAs), or the cytotoxicity and end-point analysis of fluorescence optical imaging. Here, we have developed a new label-free method based on defocused brightfield imaging to quantify CV by analyzing centroid displacements and contraction trajectories of each cardiomyocyte in a monolayer of human stem cell-derived cardiomyocytes (iPSC-CMs). Our data revealed that the time delay between intracellular calcium release and the initiation of cell contraction is highly consistent across cardiomyocytes; however, the duration a cell takes to reach its maximum beating magnitude varies significantly, proving that the time delay in excitation-contraction coupling is largely constant in iPSC-CMs. Standard calcium imaging of the same iPSC-CM populations (~106 cells) was conducted for comparison with our label-free method. The results confirmed that our label-free method was capable of achieving highly accurate CV mapping (17.64 ± 0.89 cm/s vs. 17.95 ± 2.29 cm/s, p-value>0.1). Additionally, our method effectively revealed various shapes in cell beating pattern. We also performed label-free CV mapping on disease-specific iPSC-CM monolayers with plakophilin-2 (PKP2) knockdown, which effectively quantified their low CV values and further validated the arrhythmogenic role of PKP2 mutation in arrhythmogenic right ventricular cardiomyopathy (ARVC) through the disruption of cardiac conduction. The label-free method offers a cytotoxic-free technique for long-term measurement of dynamic beating trajectories, beating propagation and conduction velocities of cardiomyocyte monolayers.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300071, China
| | - Manpreet Malhi
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xingjian Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Li Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | | | | | - Robert Hamilton
- Program in Translational Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Jason T Maynes
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada; Department of Computer Science, University of Toronto, Toronto, M5T 3A1, Canada.
| |
Collapse
|
34
|
Shang Y, Chen Z, Zhang Z, Yang Y, Zhao Y. Heart-on-chips screening based on photonic crystals. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00073-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:616-630. [PMID: 30948098 DOI: 10.1016/j.msec.2019.03.043] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
With advances in nanotechnology, the applications of nanomaterial are developing widely and greatly. The characteristic properties of carbon nanotubes (CNTs) make them the most selective candidate for various multi-functional applications. The greater surface area of the CNTs in addition to the capability to manipulate the surfaces and dimensions has provided greater potential for this nanomaterial. The CNTs possess greater potential for applications in biomedicine due to their vital electrical, chemical, thermal, and mechanical properties. The unique properties of CNT are exploited for numerous applications in the biomedical field. They are useful in both therapeutic and diagnostic applications. They form novel carrier systems which are also capable of site-specific delivery of therapeutic agents. In addition, CNTs are of potential application in biosensing. Many recently reported advanced systems of CNT could be exploited for their immense potential in biomedicine in the future.
Collapse
Affiliation(s)
- V R Raphey
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - T K Henna
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - K P Nivitha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - P Mufeedha
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - Chinnu Sabu
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| |
Collapse
|