1
|
Gu M, Guo L, Wang C, Tian F, Hao R. Preparation of SF-gel-CS-Hap bionic biphasic porous scaffolds and evaluation of physical, mechanical and biological properties. J Biomater Appl 2025:8853282251329591. [PMID: 40123528 DOI: 10.1177/08853282251329591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Objective: Full-thickness cartilage defect are usually accompanied by subchondral bone damage, which is difficult to self-repair once damaged due to the lack of vascularization and innervation. In this study, a biphasic composite scaffold was developed by combining vacuum freeze-drying and iterative freeze-thawing with gelatin, chitosan, silk fibroin, and hydroxyapatite as the basic materials to explore the feasibility of using them for the repair of total cartilage defects. Methods and Results: Six groups of SF-CS-Gel-nHap porous scaffolds (Hap-0%, Hap-1%, Hap- 2%, Hap-3%, Hap-4%, Hap-5%) were prepared by vacuum freeze-drying and chemical cross-linking using filipin protein (SF), gelatin (Gel), chitosan (CS) and hydroxyapatite (Hap) as the base materials. A series of characterization methods were used to systematically analyze and test the morphological features as well as physical and mechanical properties of the scaffolds. Then a novel bionic biphasic porous scaffold was developed by a combination of freeze-drying and freeze-thawing using the SF-CS-Gel as the cartilage phase and the SF-CS-Gel-2%Hap as the subchondral bone phase. Finally, it was co-cultured with chondrocytes to verify the biological properties of the SF-CS-Gel/SF-CS-Gel-2%Hap bionic biphasic porous composite scaffold in vitro. The results showed that the SF-CS-Gel/SF-CS-Gel-2%Hap biphasic scaffolds had a highly porous mesh structure, with an average pore size of 156.06 ± 42.36 μm in the cartilage phase and 214.38 ± 65.82 μm in the subchondral bone phase. Co-cultured with chondrocytes, the live and dead cells stained, cck-8 growth and proliferation curves showed that the bionic scaffolds had good biocompatibility and cytotoxicity. Cytoskeletal staining showed that the morphology of chondrocytes in the bionic scaffolds could maintain three-dimensional growth as in vivo. Conclusion: The results showed that SF-CS-Gel/SF-CS-Gel-2%Hap biphasic scaffolds have good biocompatibility, biodegradability, stability, appropriate mechanical properties and porosity, and are suitable for repairing articular cartilage and subchondral bone. It is expected to be used as a repair material for articular cartilage in clinical applications.
Collapse
Affiliation(s)
- Mingxi Gu
- Department of Internal Medicine, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Lin Guo
- Department of Orthopedic Surgery, Zhongshan Hospital of Dalian University, Dalian, China
| | - Changcheng Wang
- Department of Clinical Medicine, Dalian University of Technology, Dalian, China
| | - Fengde Tian
- Department of Orthopedic Surgery, Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruihu Hao
- Department of Orthopedic Surgery, Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
2
|
Xia X, Liu Z, Wang H, Hu Y, Müller WE, Wang X, Qin K, Zheng J, Zhou H, Yang L, Liang C. Janus orthogonal nanofiber membrane containing CPP@PDA for skull base reconstruction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2025; 204:314-327. [DOI: 10.1016/j.jmst.2024.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
|
3
|
Jafarbeglou M, Meimandi-Parizi A, Derakhshandeh A, Khodakaram-Tafti A, Bigham-Sadegh A, Arkan P, Jafarbeglou M. Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats. Int J Pharm 2024; 666:124826. [PMID: 39401582 DOI: 10.1016/j.ijpharm.2024.124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Chronic osteomyelitis presents significant treatment challenges, necessitating an efficient system for infection elimination and bone repair. This study developed a natural hydrogel scaffold using silk fibroin (SF) and chitosan thiourea (CST), incorporating vancomycin (VC) and quercetin (QC) loaded PLGA nanoparticles (NPs) for dual-purpose treatment. SF/CST hydrogel scaffolds exhibited homogeneous porosity and smaller interconnected pore size than pure SF and pure CST hydrogel scaffolds. Optimal PLGA/QC NPs measured 206 nm in size, displayed spherical morphology, had uniform distribution, and achieved 87 % QC loading. The release study showed sustained long-term release of VC and QC from the hydrogel scaffolds for over 20 days. Biocompatibility tests indicated that hydrogel scaffolds promoted osteoblast adhesion without cytotoxicity, with QC-containing scaffolds enhancing osteoblast growth. Antibacterial tests confirmed retained VC activity against methicillin-resistant Staphylococcus aureus (MRSA) in SF/CST. An experimental study assessed the efficacy of the hydrogel scaffolds in a MRSA-infected rat osteomyelitis model. Radiographic scores demonstrated a significant reduction for SF/CST-VC-PLGA/QC NPs compared to control, indicating reduced osteomyelitis effects. Macroscopic evaluations showed notable reductions in gross pathological effects for VC-containing groups. Histopathological assessments revealed significantly lower osteomyelitis scores and higher healing scores in the SF/CST-VC-PLGA/QC NPs, with reduced inflammatory cell infiltration and more organized connective tissue formation. In conclusion, SF/CST-VC-PLGA/QC NPs is an effective dual drug delivery system for osteomyelitis treatment, demonstrating significant antibacterial activity, enhanced bone regeneration, and reduced infection rate.
Collapse
Affiliation(s)
- Majid Jafarbeglou
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdolhamid Meimandi-Parizi
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Abdollah Derakhshandeh
- Division of Microbiology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azizollah Khodakaram-Tafti
- Division of Pathology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Maryam Jafarbeglou
- Department of Nanotechnology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
4
|
Lotfi MS, Sheibani M, Jafari-Sabet M. Quercetin-based biomaterials for enhanced bone regeneration and tissue engineering. Tissue Cell 2024; 91:102626. [PMID: 39591724 DOI: 10.1016/j.tice.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Quercetin, a natural flavonoid, has been extensively researched for its potential in promoting bone regeneration and tissue engineering. This review aimed to provide a comprehensive overview of the applications of quercetin-based biomaterials in bone regeneration and tissue engineering. The review discusses several studies that have integrated quercetin into biomaterials such as electrospun fibers, hydrogels, microspheres, and nanoparticles. These biomaterials are engineered to imitate the natural extracellular matrix of bone, creating an environment conducive to cell attachment, growth, and differentiation. The investigations presented emphasize the potential of quercetin-derived biomaterials in improving bone regeneration, decreasing oxidative stress and inflammation, and facilitating bone tissue restoration. These biomaterials have demonstrated the ability to facilitate cell encapsulation, maintain consistent quercetin release patterns, and have been applied in a range of uses such as bone grafts, implants, and tissue engineering scaffolds. Biomaterials derived from quercetin are utilized in the treatment of bone-related disorders, including osteoporosis and bone defects. These materials enhance bone regeneration by providing a scaffold for new bone growth, promoting the development of new bone tissue, and improving the mechanical properties of bone tissue.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shao YF, Wang H, Zhu Y, Peng Y, Bai F, Zhang J, Zhang KQ. Hydroxyapatite/Silk Fibroin Composite Scaffold with a Porous Structure and Mechanical Strength Similar to Cancellous Bone by Electric Field-Induced Gel Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60977-60991. [PMID: 39453828 DOI: 10.1021/acsami.4c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Repair and regeneration of bone tissue defects is a multidimensional process that has been highly challenging to date. The artificial bone scaffold materials, which play a core role, still face the conflict that a biofriendly porous structure will reduce the mechanical performance and accelerate degradation. Herein, a multistage porous structured hydroxyapatite (HA)/silk fibroin (SF) composite scaffold (e-HA/SF) was successfully constructed by cleverly utilizing electric field-induced gel technology. The results indicated that the prepared e-HA/SF scaffolds possess biomimetic hierarchical porous structures with a suitable porosity similar to that of cancellous bone. The HA nanocrystals were uniformly encapsulated in the three-dimensional space of the composite scaffold, thus endowing the e-HA/SF composite scaffolds with an enhanced mechanical performance. Notably, the maximum compression stress and Young's modulus of e-HA/SF-2 scaffolds can reach 24.66 ± 0.88 and 28.91 ± 3.19 MPa, respectively, which are equivalent to those of cancellous bone. Such mechanical performance enhancement was previously unattainable through conventional freeze-drying strategies. Moreover, the introduction of bioactive nano-HA can trigger the optimal cell response in both static and dynamic cell culture experiments in vitro. The e-HA/SF composite scaffold developed in this study can better balance the conflict between the porous structure and mechanical and degradation properties of porous scaffolds.
Collapse
Affiliation(s)
- Yun-Fei Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yiran Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yu Peng
- College of Advanced Material Engineering, Jiaxing Nanhu University, Jiaxing 314001, P. R. China
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Sohrabi M, Hesaraki S, Shahrezaee M, Shams-Khorasani A. The release behavior and in vitro osteogenesis of quercetin-loaded bioactive glass/hyaluronic acid/sodium alginate nanocomposite paste. Int J Biol Macromol 2024; 280:136094. [PMID: 39343279 DOI: 10.1016/j.ijbiomac.2024.136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Injectable pastes based on bioactive compounds and natural polymers are of interest in non-invasive bone surgeries. Several quantities of quercetin (100, 150, and 200 μM) were added to a sol-gel derived mesoporous bioactive glass. Injectable pastes based on quercetin-loaded bioactive glass, sodium alginate, and hyaluronic acid were prepared. Aggregated nanoparticles of bioactive glass and quercetin-loaded bioactive glass with mesoporous morphologies were confirmed by TEM and BET techniques. The quercetin release study was assessed in phosphate-buffered solution medium over 200 h and the obtained data were fitted by different eqs. A sustained release of quercetin was found, in which a better regression coefficient was achieved using Weibull equation. Human-derived mesenchymal stem cells were utilized to determine alkaline phosphatase activity and bone-related protein expression by western blotting and real-time PCR evaluations. Quercetin-loaded pastes increased the levels of alkaline phosphatase activity and the expression of Collagen-1, Osteopontin, Osteocalcin, and Runx2 proteins in a concentration-dependent manner. Due to the mesoporous architecture and high specific surface area of bioactive glass, the paste made of these particles and sodium alginate/hyaluronic acid macromolecules is appropriate matrix for quercetin release, resulting in promoted osteogenesis. The further in vivo studies can support the osteogenesis capacity of the quercetin-loaded paste.
Collapse
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran.
| | | | - Alireza Shams-Khorasani
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
| |
Collapse
|
7
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
8
|
Li X, Pang Y, Guan L, Li L, Zhu Y, Whittaker AK, Yang B, Zhu S, Lin Q. Mussel-inspired antimicrobial hydrogel with cellulose nanocrystals/tannic acid modified silver nanoparticles for enhanced calvarial bone regeneration. Int J Biol Macromol 2024; 270:132419. [PMID: 38759859 DOI: 10.1016/j.ijbiomac.2024.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology. The University of Queensland Brisbane, QLD 4072, Australia.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
10
|
Mostofi M, Mostofi F, Hosseini S, Alipour A, Nourany M, Hamidian R, Vahidi S, Farokhi M, Shokrgozar MA, Homaeigohar S, Wang PY, Shahsavarani H. Efficient three-dimensional (3D) human bone differentiation on quercetin-functionalized isotropic nano-architecture chitinous patterns of cockroach wings. Int J Biol Macromol 2024; 258:129155. [PMID: 38171440 DOI: 10.1016/j.ijbiomac.2023.129155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Marzieh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Hamidian
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Samira Vahidi
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Farokhi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | | | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
11
|
Hu Y, Fu Z, Yang S, Zhou Y, Zhu H, Zhu Y, Zhou J, Lin K, Xu Y. A multifunctional quercetin/polycaprolactone electrospun fibrous membrane for periodontal bone regeneration. Mater Today Bio 2024; 24:100906. [PMID: 38226016 PMCID: PMC10788537 DOI: 10.1016/j.mtbio.2023.100906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zeyu Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Shiyuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huimin Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
13
|
Yang J, Zhang L, Ding Q, Zhang S, Sun S, Liu W, Liu J, Han X, Ding C. Flavonoid-Loaded Biomaterials in Bone Defect Repair. Molecules 2023; 28:6888. [PMID: 37836731 PMCID: PMC10574214 DOI: 10.3390/molecules28196888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Skeletons play an important role in the human body, and can form gaps of varying sizes once damaged. Bone defect healing involves a series of complex physiological processes and requires ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied by issues such as insufficient donors and disease transmission, while some bone defect implants are made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical properties, high drug loading efficiency, biocompatibility and biodegradability. However, their antibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids are natural compounds with various biological activities, such as antitumor, anti-inflammatory and analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial for the treatment of bone defects. Several researchers have designed different types of flavonoid-loaded polymer implants for bone defects. These implants have good biocompatibility, and they can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for bone defect repair.
Collapse
Affiliation(s)
- Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Wencong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Jinhui Liu
- Huashikang (Shenyang) Health Industrial Group Corporation, Shenyang 110031, China;
| | - Xiao Han
- Looking Up Starry Sky Medical Research Center, Siping 136001, China;
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
14
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
15
|
Zhou P, Yan B, Wei B, Fu L, Wang Y, Wang W, Zhang L, Mao Y. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction. Regen Biomater 2023; 10:rbad025. [PMID: 37077623 PMCID: PMC10110271 DOI: 10.1093/rb/rbad025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
Bone defects are a persistent challenge in clinical practice. Although repair therapies based on tissue-engineered materials, which are known to have a crucial role in defective bone regeneration, have gathered increased attention, the current treatments for massive bone defects have several limitations. In the present study, based on the immunomodulatory inflammatory microenvironment properties of quercetin, we encapsulated quercetin-solid lipid nanoparticles (SLNs) in a hydrogel. Temperature-responsive poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) modifications were coupled to the main chain of hyaluronic acid hydrogel, constructing a novel, injectable bone immunomodulatory hydrogel scaffold. Extensive in vitro and in vivo data showed that this bone immunomodulatory scaffold forms an anti-inflammatory microenvironment by decreasing M1 polarization, while elevating the M2 polarization. Synergistic effects on angiogenesis and anti-osteoclastic differentiation were observed. These findings further proved that administering quercetin SLNs encapsulated in a hydrogel can aid bone defect reconstruction in rats, providing new insights for large-scale bone defect repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bomin Yan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bangguo Wei
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Liangmin Fu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Ying Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wenrui Wang
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Anhui 233030, China
| | - Li Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yingji Mao
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
16
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
17
|
Song JE, Lee DH, Khang G, Yoon SJ. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol 2023; 229:486-495. [PMID: 36587641 DOI: 10.1016/j.ijbiomac.2022.12.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Collagen, with low antigenicity and excellent cell adhesion, is a biomaterial mainly used for regenerating bone, cartilage, and skin, owing to its biocompatibility and biodegradability. Results from a previous study confirmed that a scaffold mixed with duck feet-derived collagen (DC) and Poly(lactic-co-glycolic acid) (PLGA) reduced inflammatory reaction and increased bone regeneration. To develop an optimal bone substitute we included hydroxyapatite (HAp), a key osteoconductive material, in a DC and PLGA mixture. We fabricated 0, 10, 20, 40, 60, and 80 wt% DC/PLGA/HAp scaffolds and studied their potential for bone tissue engineering. Characteristic analysis of the scaffold and seeding of rabbit bone marrow mesenchymal stem cells (rBMSCs) on the scaffold were conducted to investigate cell proliferation, osteogenic differentiation, and bone formation. We confirmed that increasing DC concentration not only improved the compressive strength of the DC/PLGA/HAp scaffold but also cell proliferation and osteogenic differentiation. It was found through comparison with previous studies that including HAp in the scaffold also promotes osteogenic differentiation. Our study thus shows through in vivo results that the 80 wt% DC/PLGA/HAp scaffold promotes bone mineralization and collagen deposition while reducing the inflammatory response. Hence, 80 wt% DC/PLGA/HAp has excellent potential as a biomaterial for bone regeneration applications.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sun-Jung Yoon
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Orthopedic Surgery, Jeonbuk National University Medical School, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea.
| |
Collapse
|
18
|
Kamal NH, Heikal LA, Ali MM, Aly RG, Abdallah OY. Development and evaluation of local regenerative biomimetic bone-extracellular matrix scaffold loaded with nano-formulated quercetin for orthopedic fractures. BIOMATERIALS ADVANCES 2023; 145:213249. [PMID: 36565670 DOI: 10.1016/j.bioadv.2022.213249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The prevalence of bone injuries is greatly increasing each year and the proper healing of fractures without any complications is very challenging. Self-setting calcium phosphate cements (CPCs) have attracted great attention as bioactive synthetic bone substitutes. Quercetin (QT) is a multipurposed drug with reported bone-conserving properties. The loading of QT and QT-phospholipid complex within nanostructured lipid carriers (NLC) was proposed to overcome the poor physical properties of the drug and to introduce the use of bioactive excipients as phospholipids and olive oil. The aim of this work was to formulate a regenerative scaffold loaded with nano-formulated QT for local treatment of orthopedic fractures. For the first time, scaffolds composed of brushite CPC were prepared and loaded with quercetin lipid nano-systems. In vitro tests proved that the addition of lipid nano-systems did not deteriorate the properties of CPC where QT-NLC/CPC showed an adequate setting time, appropriate compressive strength, and porosity. The scanning electron microscope confirmed maintenance of nanoparticles integrity within the cement. Using a rat femur bone defect animal model, the histological results showed that the QT-NLC/CPC had a superior bone healing potential compared to crude unformulated QT/CPC. In conclusion, QT-NLC /CPC are promising lipid nano-composite materials that could enhance bone regeneration.
Collapse
Affiliation(s)
- Nermeen H Kamal
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Egypt.
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Mai M Ali
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Egypt.
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, Sun Z, Yang X, Xu H. Research progress of natural silk fibroin and the appplication for drug delivery in chemotherapies. Front Pharmacol 2023; 13:1071868. [PMID: 36686706 PMCID: PMC9845586 DOI: 10.3389/fphar.2022.1071868] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin has been widely used in biological fields due to its biocompatibility, mechanical properties, biodegradability, and safety. Recently, silk fibroin as a drug carrier was developed rapidly and achieved remarkable progress in cancer treatment. The silk fibroin-based delivery system could effectively kill tumor cells without significant side effects and drug resistance. However, few studies have been reported on silk fibroin delivery systems for antitumor therapy. The advancement of silk fibroin-based drug delivery systems research and its applications in cancer therapy are highlighted in this study. The properties, applications, private opinions, and future prospects of silk fibroin carriers are discussed to understand better the development of anti-cancer drug delivery systems, which may also contribute to advancing silk fibroin innovation.
Collapse
Affiliation(s)
- Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yuxian Lin
- Department of Pharmacy, Wenzhou People’s Hospital of The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| |
Collapse
|
20
|
Chen Y, Zhu M, Huang B, Jiang Y, Su J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. BIOMATERIALS ADVANCES 2023; 144:213232. [PMID: 36502750 DOI: 10.1016/j.bioadv.2022.213232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the specific structure of natural bone, most of the therapeutics are incapable to be delivered into the targeted site with effective concentrations. Nanotechnology has provided a good way to improve this issue, cell membrane mimetic nanoparticles (NPs) have been emerging as an ideal nanomaterial which integrates the advantages of natural cell membranes with synthetic NPs to significantly improve the biocompatibility as well as achieving long-lasting circulation and targeted delivery. In addition, functionalized modifications of the cell membrane facilitate more precise targeting and therapy. Here, an overview of the preparation of cell membrane-coated NPs and the properties of cell membranes from different cell sources has been given to expatiate their function and potential applications. Strategies for functionalized modification of cell membranes are also briefly described. The application of cell membrane-coated NPs for bone therapy is then presented according to the function of cell membranes. Moreover, the prospects and challenges of cell membrane-coated NPs for translational medicine have also been discussed.
Collapse
Affiliation(s)
- Yutong Chen
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China; School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengru Zhu
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Biaotong Huang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; Wenzhou Institute of Shanghai University, Wenzhou 325000, PR China.
| | - Yingying Jiang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jiacan Su
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
21
|
Aleemardani M, Solouk A, Akbari S, Moeini M. A hydrogel-fiber-hydrogel composite scaffold based on silk fibroin with the dual-delivery of oxygen and quercetin. Biotechnol Bioeng 2023; 120:297-311. [PMID: 36224726 DOI: 10.1002/bit.28259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/04/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Supplying sufficient oxygen within the scaffolds is one of the essential hindrances in tissue engineering that can be resolved by oxygen-generating biomaterials (OGBs). Two main issues related to OGBs are controlling oxygenation and reactive oxygen species (ROS). To address these concerns, we developed a composite scaffold entailing three layers (hydrogel-electrospun fibers-hydrogel) with antioxidant and antibacterial properties. The fibers, the middle layer, reinforced the composite structure, enhancing the mechanical strength from 4.27 ± 0.15 to 8.27 ± 0.25 kPa; also, this layer is made of calcium peroxide and silk fibroin (SF) through electrospinning, which enables oxygen delivery. The first and third layers are physical SF hydrogels to control oxygen release, containing quercetin (Q), a nonenzymatic antioxidant. This composite scaffold resulted in almost more than 40 mmHg of oxygen release for at least 13 days, and compared with similar studies is in a high range. Here, Q was used for the first time for an OGB to scavenge the possible ROS. Q delivery not only led to antioxidant activity but also stabilized oxygen release and enhanced cell viability. Based on the given results, this composite scaffold can be introduced as a safe and controllable oxygen supplier, which is promising for tissue engineering applications, particularly for bone.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
22
|
Hu J, Ding Y, Tao B, Yuan Z, Yang Y, Xu K, Li X, liu P, Cai K. Surface modification of titanium substrate via combining photothermal therapy and quorum-sensing-inhibition strategy for improving osseointegration and treating biofilm-associated bacterial infection. Bioact Mater 2022; 18:228-241. [PMID: 35387171 PMCID: PMC8961458 DOI: 10.1016/j.bioactmat.2022.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Insufficient osseointegration and biofilm-associated bacterial infection are important challenges for clinical application of titanium (Ti)-based implants. Here, we constructed mesoporous polydopamine (MPDA) nanoparticles (NPs) loaded with luteolin (LUT, a quorum sensing inhibitor), which were further coated with the shell of calcium phosphate (CaP) to construct MPDA-LUT@CaP nanosystem. Then, MPDA-LUT@CaP NPs were immobilized on the surface of Ti implants. Under acidic environment of bacterial biofilm-infection, the CaP shell of MPDA-LUT@CaP NPs was rapidly degraded and released LUT, Ca2+ and PO4 3- from the surface of Ti implant. LUT could effectively inhibit and disperse biofilm. Furthermore, under near-infrared irradiation (NIR), the thermotherapy induced by the photothermal conversion effect of MPDA destroyed the integrity of the bacterial membrane, and synergistically led to protein leakage and a decrease in ATP levels. Combined with photothermal therapy (PTT) and quorum-sensing-inhibition strategy, the surface-functionalized Ti substrate had an antibacterial rate of over 95.59% against Staphylococcus aureus and the elimination rate of the formed biofilm was as high as 90.3%, so as to achieve low temperature and efficient treatment of bacterial biofilm infection. More importantly, the modified Ti implant accelerated the growth of cell and the healing process of bone tissue due to the released Ca2+ and PO4 3-. In summary, this work combined PTT with quorum-sensing-inhibition strategy provides a new idea for surface functionalization of implant for achieving effective antibacterial and osseointegration capabilities.
Collapse
Affiliation(s)
- Jingwei Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Kiakojoori K, Najafi F, Torshabi M, Kazemi S, Rabiee SM, Nojehdehian H. Synthesis and characterization of a calcium phosphate bone cement with quercetin-containing PEEK/PLGA microparticles. Biomed Mater 2022; 18. [PMID: 36327455 DOI: 10.1088/1748-605x/ac9ffe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to describe the synthesis and characterization of a calcium phosphate cement (CPC) with polyetheretherketone/poly (lactic-co-glycolic) acid (PEEK/PLGA) micro-particles containing quercetin. CPC powder was synthesized by mixing dicalcium phosphate anhydrate and tetracalcium phosphate. To synthesize PEEK/PLGA microparticles, PLGA85:15 was mixed with 90 wt% PEEK. The weight ratio of quercetin/PLGA/PEEK was 1:9:90 wt%. PEEK/PLGA/quercetin microparticles with 3, 5, and 6 wt% was added to CPC. The setting time, compressive strength, drug release profile, solubility, pH, and porosity of synthesized cement were evaluated. The morphology and physicochemical properties of particles was analyzed by scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and inductively coupled plasma. Cytotoxicity was assessed by the methyl thiazolyl tetrazolium assay using dental pulp stem cells. Expression of osteoblastic differentiation genes was evaluated by real-time polymerase chain reaction. Data were analyzed by one-way ANOVA and Tukey's test (alpha = 0.05). The setting time of 3 wt% CPC was significantly longer than 5 and 6 wt% CPC (P< 0.001). The 6 wt% CPC had significantly higher compressive strength than other groups (P= 0.001). The release of quercetin from CPCs increased for 5 d, and then reached a plateau. XRD and FTIR confirmed the presence of hydroxyapatite in cement composition. Significantly higher expression of osteocalcin (OCN) and osteopontin (OPN) was noted in 3 wt% and 6 wt% CPCs. Addition of quercetin-containing PEEK/PLGA microparticles to CPC enhanced its compressive strength, decreased its setting time, enabled controlled drug release, and up-regulated OPN and OCN.
Collapse
Affiliation(s)
- Kiana Kiakojoori
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hanieh Nojehdehian
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Lee DH, Lee JH, Pyun YC, Shin ME, Shin EY, Been S, Song JE, Migliaresi C, Motta A, Khang G. Impact of Agarose Hydrogels as Cell Vehicles for Neo Retinal Pigment Epithelium Formation: In Vitro Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Luo F, Mao R, Huang Y, Wang L, Lai Y, Zhu X, Fan Y, Wang K, Zhang X. Femtosecond laser optimization of PEEK: efficient bioactivity achieved by synergistic surface chemistry and structures. J Mater Chem B 2022; 10:7014-7029. [PMID: 36043488 DOI: 10.1039/d2tb01142e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly-ether-ether-ketone (PEEK) is considered a potential orthopedic material due to the excellent mechanical properties and chemical resistance, but its biological inertness hampers its further clinical application. In this study, advanced femtosecond laser microfabrication technology was utilized to induce the change of the surface characteristics of PEEK to improve its bioactivity. Meanwhile, the mechanism of surface reaction and improved bioactivity was interpreted in detail from the perspective of material science. The surface physical-chemical characterization results showed that femtosecond laser etching could increase the surface energy, and the contents of active sites including amorphous carbon and carbon-hydroxyl on PEEK surfaces. In vitro validation experiments demonstrated that the samples etched with a femtosecond laser had a better ability to induce apatite deposition and cell proliferation than those treated with popular sulfonation modification, which would lead to better bioactivity and osteointegration. The current work fully presents the mechanism of the femtosecond laser low-temperature plasma effect on PEEK and the resulting surface characteristics, which could broaden the application of PEEK in the orthopedic field. Moreover, it has great potential in the surface design and modification of other biomaterials with enhanced bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yixiang Lai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
26
|
Zhou Z, Fan Y, Jiang Y, Shi S, Xue C, Zhao X, Tan S, Chen X, Feng C, Zhu Y, Yan J, Zhou Z, Zhao Y, Liu J, Chen F, He S. Mineralized Enzyme-Based Biomaterials with Superior Bioactivities for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36315-36330. [PMID: 35929013 DOI: 10.1021/acsami.2c05794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation and metabolic balance of bone tissue is a controllable process of biomineralization, which is regulated by various cells, biomolecules, and ions. Enzyme molecules play an important role in this process, and alkaline phosphatase (ALP) is one of the most critical factors. In this study, inspired by the process of bone biomineralization, a biomimetic strategy is achieved for the preparation of mineralized ALP nanoparticles (MALPNs), by taking advantages of the unique reaction between ALP and calcium ions in Dulbecco's modified Eagle's medium. Benefiting from the mild biomineralization reaction, the MALPN system highly maintains the activity of ALP. Furthermore, the in vitro studies show that the MALPN system significantly enhances the proliferation of bone marrow mesenchymal stem cells and upregulates their osteogenic differentiation. When evaluated as synthetic graft materials for bone regeneration, the MALPN-incorporated gelatin methacryloyl graft shows excellent mechanical properties, a sustained release profile of ALP, and high biocompatibility and efficacy in guiding bone regeneration and vascularization for critical-sized rat calvarial defect. Moreover, we also demonstrate that the biomimetic mineralization strategy can be adopted for other proteins such as acid phosphatase, bovine serum albumin, fibrinogen, and gelatin, suggesting its universality for constructing mineralized protein-/enzyme-based bioactive materials for the application of tissue regeneration.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yunshan Fan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Sheng Shi
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Chao Xue
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xinyu Zhao
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shuo Tan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Xin Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Chaobo Feng
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yancheng Zhu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Jiajun Yan
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Zifei Zhou
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yunfei Zhao
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Junjian Liu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Feng Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shisheng He
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
27
|
Zhang J, Liu Z, Luo Y, Li X, Huang G, Chen H, Li A, Qin S. The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells. Front Pharmacol 2022; 13:849513. [PMID: 35462886 PMCID: PMC9019748 DOI: 10.3389/fphar.2022.849513] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in developing bone tissue engineered constructs due to their osteogenic and chondrogenic differentiation potential. MSC-based tissue engineered constructs are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and directional differentiation. Flavonoids are a secondary metabolite, widely existed in nature and have many biological activities. For a long time, researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro cell experiments, animal studies. In recent years the regulatory effects of flavonoids on mesenchymal stem cells (MSCs) differentiation have been received increasingly attention. Recent studies revealed flavonoids possess the ability to modulate self-renewal and differentiation potential of MSCs. In order to facilitate further research on MSCs osteogenic differentiation of flavonoids, we surveyed the literature published on the use of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological activities as well as the underlying mechanisms, aimed to explore their promising therapeutic application in bone disorders and bone tissue engineered constructs.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yang Luo
- School of Physical Education, Southwest University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guowei Huang
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Huan Chen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
29
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
30
|
Zhao ZH, Ma XL, Ma JX, Kang JY, Zhang Y, Guo Y. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio 2022; 13:100206. [PMID: 35128373 PMCID: PMC8808263 DOI: 10.1016/j.mtbio.2022.100206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Bone defects are a common challenge in the clinical setting. Bone tissue engineering (BTE) is an effective treatment for the clinical problem of large bone defects. In this study, we fabricated silk fibroin (SF)/hydroxyapatite (HAp) scaffolds inlaid with naringin poly lactic-co-glycolic acid (PLGA) microspheres, investigating the feasibility of their application in BTE. Naringin PLGA microspheres were manufactured and adhered to the SF/HAp scaffold. Bone mesenchymal stem cells (BMSCs) were inoculated onto the SF/HAp scaffold containing naringin PLGA microsphere to examine the biocompatibility of the SF/HAp scaffolds. A rabbit femoral distal bone defect model was used to evaluate the in vivo function of the SF/HAp scaffolds containing naringin-loaded PLGA microspheres. The current study demonstrated that SF/HAp scaffolds containing naringin-loaded PLGA microspheres show promise as osteo-modulatory biomaterials for bone regeneration.
Collapse
Key Words
- ALP, Alkaline phosphatase activity
- ANOVA, one-way analysis of variance
- BMSCs, Bone mesenchymal stem cells
- BP, biological process
- BTE, Bone tissue engineering
- Bone defect
- CC, cellular component
- CCK-8, Cell count kit-8
- DAVID, database for annotation, visualization, and integrated discovery
- GO, Gene ontology
- HAp, hydroxyapatite
- HUVEC, human umbilical endothelial cells
- Hydroxyapatite
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MF, molecular function
- Microsphere
- Naringin
- PLGA
- PLGA, poly lactic-co-glycolic acid
- PVA, Polyvinyl alcohol
- RNA-Seq, RNA sequencing
- RT-PCR, real-time quantitative polymerase chain reaction
- SEM, scanning electron microscopy
- SF, silk fibroin
- Silk
Collapse
Affiliation(s)
- Zhi-hu Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Xin-long Ma
- Department of Orthopaedics, Tianjin Hospital, No. 406, Jiefangnan Road, Hexi District, Tianjin, 300000, China
| | - Jian-xiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Jia-yu Kang
- Department of Orthopedics, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| | - Yue Guo
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 122, Munan Road, Tianjin, 300050, China
| |
Collapse
|
31
|
Preethi AM, Bellare JR. Concomitant Effect of Quercetin- and Magnesium-Doped Calcium Silicate on the Osteogenic and Antibacterial Activity of Scaffolds for Bone Regeneration. Antibiotics (Basel) 2021; 10:antibiotics10101170. [PMID: 34680751 PMCID: PMC8532609 DOI: 10.3390/antibiotics10101170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Quercetin is a bioflavonoid which has a broad spectrum of biological activity. Due to its lower chemical stability, it is usually encapsulated, or a metal–quercetin complex is formed to enhance its biological activity at a lower concentration. Here, our novel approach was to form a quercetin complex to magnesium-doped calcium silicate (CMS) ceramics through a coprecipitation technique so as to take advantage of quercetin’s antibacterial activity within the antibacterial and osteogenic potential of the silicate. Due to quercetin’s inherent metal-chelating ability, (Ca+Mg)/Si increased with quercetin concentration. Quercetin in magnesium-doped calcium silicate ceramic showed concentration-dependent pro-oxidant and antioxidant activity in SaOS-2 with respect to quercetin concentration. By optimizing the relative concentration, we were able to achieve 3-fold higher proliferation and 1.6-fold higher total collagen at day 14, and a 1.7-fold higher alkaline phosphatase production at day 7 with respect to polycaprolactone/polyvinylpyrrolidone (PCL/PVP) scaffold. Quercetin is effective against Gram-positive bacteria such as S. aureus. Quercetin is coupled with CMS provided similar effect with lower quercetin concentration than quercetin alone. Quercetin reduced bacterial adhesion, proliferation and biofilm formation. Therefore, quercetin-coupled magnesium-doped calcium silicate not only enhanced osteogenic potential, but also reduced bacterial adhesion and proliferation.
Collapse
Affiliation(s)
- Arul Murugan Preethi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India;
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India;
- Wadhwani Research Center for Bioengineering (WRCB), Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Correspondence:
| |
Collapse
|
32
|
Wang B, Chen L, Xie J, Tang J, Hong C, Fang K, Jin C, Huang C, Xu T, Yang L. Coating Polyelectrolyte Multilayers Loaded with Quercetin on Titanium Surfaces by Layer-By-Layer Assembly Technique to Improve Surface Osteogenesis Under Osteoporotic Condition. J Biomed Nanotechnol 2021; 17:1392-1403. [PMID: 34446142 DOI: 10.1166/jbn.2021.3115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium (Ti) and its alloy implants are widely used in the field of orthopedics, and osteoporosis is an important reason for implantation failure. This study aimed to establish a quercetin (QTN) controlled release system on the surface of titanium implants and to study its effects on osteogenesis and osseointegration on the surface of implants. Polyethylenimine (PEI) was first immobilized on a titanium substrate as the base layer, and then, hyaluronic acid/chitosan-quercetin (HA/CS-QTN) multilayer films were assembled on the PEI layer by a self-assembly technique. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements were used to characterize and analyze the samples. The release characteristics of QTN were studied by release assays. The osteogenic ability of the samples was evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The FTIR, SEM, and contact angle measurements all showed that the PEI substrate layer and HA/CS-QTN multilayer film were successfully immobilized on the titanium matrix. The drug release test showed the successful establishment of a QTN controlled release system. The in vitro results showed that osteoblasts exhibited higher adhesion, proliferation and differentiation ability on the coated titanium matrix than on the pure titanium surface. In addition, the in vivo results showed that the HA/CS-QTN coating significantly increased the new bone mass around the implant. By depositing a PEI matrix layer and HA/CS-QTN multilayer films on titanium implants, a controlled release system of QTN was established, which improved implant surface osseointegration under osteoporotic conditions. This study proposes a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jun Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chenxuan Hong
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Kanhao Fang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chen Jin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Chengbin Huang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Tianhao Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
33
|
Zhou L, Cai L, Ruan H, Zhang L, Wang J, Jiang H, Wu Y, Feng S, Chen J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int J Biol Macromol 2021; 183:1145-1154. [PMID: 33965491 DOI: 10.1016/j.ijbiomac.2021.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Burn injury has posed devastating burdens on the public health due to its inevitable damage to the skin structure resulting in the increased risk of infection. Therefore, it is highly demanding to develop efficacious antibacterial wound-healing dressing. Despite the favourable wound-healing activities, the curative efficacy of phytochemical compounds of quercetin (Qe) and its derivatives is limited by their poor water solubility. Here, we have fabricated a novel electrospun nanofiber membrane (ENM) consisting of polycaprolactone (PCL), chitosan oligosaccharides (COS), and Qe/Rutin (Ru) as the potential bioactive dressing for wound healing. The incorporation of chitosan oligosaccharides (COSs) in the PCL scaffold at the optimized molar ratio not only contributed to the improved hydrophilicity and water absorption performance of the ENM but effectively increased the specific surface area of the formed nanofibers. In particular, the antioxidant and antibacterial activities of the Qe/rutin-loaded nanofiber membranes were tested, which revealed that the PCL-COS-Qe membrane exhibited superior performance among all nanofiber membranes. Therefore, the developed PCL-COS-Qe/Ru nanofiber membranes hold enormous potential as healthcare products, such as wound dressings for burn injuries.
Collapse
Affiliation(s)
- Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Hongjie Ruan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Lane, Nanjing 210004, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
34
|
Huang KH, Chen CY, Chang CY, Chen YW, Lin CP. The synergistic effects of quercetin-containing 3D-printed mesoporous calcium silicate/calcium sulfate/poly-ε-caprolactone scaffolds for the promotion of osteogenesis in mesenchymal stem cells. J Formos Med Assoc 2021; 120:1627-1634. [PMID: 33593691 DOI: 10.1016/j.jfma.2021.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/PURPOSE Several growth factors were proven to be effective in the treatment of bone defects and fractures and thus have great potential for bone regeneration applications. However, it needs low-temperature storage and transportation. This study aimed to investigate the herbal extract quercetin, a candidate for natural flavonoid compounds that have been reported to be involved in regulating inflammation and improving immunity and health. METHODS In this study, we prepared quercetin (Q)/mesoporous calcium silicate calcium sulfate (MSCS)/polycaprolactone (PCL) composite scaffolds using the 3D printing technique, where we immersed it in simulated body fluid (SBF) solution and soaked it for up to 60 days. The characteristics of quercetin scaffold were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), immunofluorescence, and Alizarin Red S staining. RESULTS We found precipitation of apatite on the surface of the scaffold. The in vitro results for cell proliferation, cytotoxicity, and immunofluorescence staining revealed that Wharton's jelly mesenchymal stem cells (WJMSCs) with a 2% quercetin (Q2) scaffold were significantly higher in number than with 1% quercetin (Q1) and MSCS scaffolds. The phalloidin staining of cell skeletons on the surface of Q2 revealed powerful cell-to-cell adhesion and high expression of green fluorescence. The Q2 scaffold also had the highest calcium deposit levels based on Alizarin Red S staining in all scaffolds. This indicated that quercetin was able to induce cell growth and mitosis, echoing the previous preliminary results. CONCLUSION Our initial results indicate that this natural herbal extract can be a good bone-based gene substitution for bone regeneration.
Collapse
Affiliation(s)
- Kuo-Hao Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Yao Chang
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Chen
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; 3D Printing Medical Research Institute, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, Vimalraj S, Rajalakshmi S. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160:105768. [PMID: 33607242 DOI: 10.1016/j.ejps.2021.105768] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Bone tissue regeneration is augmented by biocompatible nanofiber scaffolds, that supports reliable and enhanced bone formation. Zinc is an essential mineral that is vital for routine skeletal growth and it emerges to be able to improve bone regeneration. Phytochemicals, particularly flavonoids have achieved prominent interest for their therapeutic ability, they have demonstrated promising effects on bone by encouraging osteoblastogenesis, which finally leads to bone formation. In this study, we have synthesized bioactive zinc(II) quercetin complex material and used for nanofibers scaffold fabrication to enhance bone tissue regeneration property. Two derivatives of zinc(II) quercetin complexes [(Zn(quercetin) (H2O)2) (Zn+Q), and Zn(quercetin)(phenanthroline) (Zn+Q(PHt)) have been synthesized and characterized using UV-Visible spectrophotometer and Fourier Transform-IR spectroscopy. The UV-Visible absorption and IR spectra prove the B-ring chelation of the flavonoid quercetin to zinc(II) rather C-ring chelation. The potential ability of the above synthesized metal complexes on osteogenesis and angiogenesis have been studied. Besides the bioactivity of the metal complexes, the control quercetin has also been examined. The chick embryo chorioallantoic membrane (CAM) assay demonstrated that the angiogenic parameters were increased by the (Zn+Q(PHt)) complex. Amongst, (Zn+Q(PHt)) complex showed significant activity and thereby this complex has been further examined for the bone tissue activity by incorporating the complex into a nanofiber through electrospinning method. At the molecular level, Runx2, mRNA and protein, ALP and type 1 collagen mRNAs, and osteoblast-specific microRNA, pre-mir-15b were examined using real time RT-PCR and Western blot assay. Histology studies showed that the (PCL/gelatin/Zn+Q(PHt)) was biocompatibility in-ovo. Overall, the present study showed that quercetin-zinc complex (Zn+Q(PHt)) incorporated into PCL/gelatin nanofiber can act as a pharmacological agent for treating bone associated defects and promote bone regeneration.
Collapse
Affiliation(s)
- Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advance Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Manickaraj Shairam
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | | | | | | | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, India; Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | - Subramaniyam Rajalakshmi
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India.
| |
Collapse
|
36
|
Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomater 2021; 119:57-74. [PMID: 33166714 DOI: 10.1016/j.actbio.2020.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The fabrication of functional tissue or organs substitutes has always been the pursuit of goals in the field of tissue engineering. But even biocompatible tissue-engineered scaffolds still suffer from immune rejection, subsequent long-term oxidative stress and inflammation, which can delay normal tissue repair and regeneration. As a well-known natural antioxidant, polyphenols have been widely used in tissue engineering in recent years. The introduced polyphenols not only reduce the damage of oxidative stress to normal tissues, but show specific affinity to functional molecules, such as receptors, enzyme, transcription and transduction factors, etc. Therefore, polyphenols can promote the recovery process of damaged tissues by both regulating tissue microenvironment and participating in cell events, which embody specifically in antioxidant, anti-inflammatory, antibacterial and growth-promoting properties. In addition, based on its hydrophilic and hydrophobic moieties, polyphenols have been widely used to improve the mechanical properties and anti-degradation properties of tissue engineering scaffolds. In this review, the research advances of tissue engineering scaffolds containing polyphenols is discussed systematically from the aspects of action mechanism, introduction method and regulation effect of polyphenols, in order to provide references for the rational design of polyphenol-related functional scaffolds.
Collapse
|
37
|
Li H, Wu R, Yu H, Zheng Q, Chen Y. Bioactive Herbal Extracts of Traditional Chinese Medicine Applied with the Biomaterials: For the Current Applications and Advances in the Musculoskeletal System. Front Pharmacol 2021; 12:778041. [PMID: 34776987 PMCID: PMC8581265 DOI: 10.3389/fphar.2021.778041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional Chinese medicine (TCM) has demonstrated superior therapeutic effect for musculoskeletal diseases for thousands of years. Recently, the herbal extracts of TCM have received rapid advances in musculoskeletal tissue engineering (MTE). A literature review collecting both English and Chinese references on bioactive herbal extracts of TCM in biomaterial-based approaches was performed. This review provides an up-to-date overview of application of TCMs in the field of MTE, involving regulation of multiple signaling pathways in osteogenesis, angiogenesis, anti-inflammation, and chondrogenesis. Meanwhile, we highlight the potential advantages of TCM, opening the possibility of its extensive application in MTE. Overall, the superiority of traditional Chinese medicine turns it into an attractive candidate for coupling with advanced additive manufacturing technology.
Collapse
Affiliation(s)
- Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Qiujian Zheng, ; Yuanfeng Chen,
| |
Collapse
|
38
|
Wu Z, Meng Z, Wu Q, Zeng D, Guo Z, Yao J, Bian Y, Gu Y, Cheng S, Peng L, Zhao Y. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 2020; 11:2041731420967791. [PMID: 33294153 PMCID: PMC7705190 DOI: 10.1177/2041731420967791] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023] Open
Abstract
Artificial bioactive materials have received increasing attention worldwide in clinical orthopedics to repair bone defects that are caused by trauma, infections or tumors, especially dedicated to the multifunctional composite effect of materials. In this study, a weakly alkaline, biomimetic and osteogenic, three-dimensional composite scaffold (3DS) with hydroxyapatite (HAp) and nano magnesium oxide (MgO) embedded in fiber (F) of silkworm cocoon and silk fibroin (SF) is evaluated comprehensively for its bone repair potential in vivo and in vitro experiments, particularly focusing on the combined effect between HAp and MgO. Magnesium ions (Mg2+) has long been proven to promote bone tissue regeneration, and HAp is provided with osteoconductive properties. Interestingly, the weak alkaline microenvironment from MgO may also be crucial to promote Sprague-Dawley (SD) rat bone mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation and alkaline phosphatase (ALP) activities. This SF/F/HAp/nano MgO (SFFHM) 3DS with superior biocompatibility and biodegradability has better mechanical properties, BMSCs proliferation ability, osteogenic activity and differentiation potential compared with the scaffolds adding HAp or MgO alone or neither. Similarly, corresponding meaningful results are also demonstrated in a model of distal lateral femoral defect in SD rat. Therefore, we provide a promising 3D composite scaffold for promoting bone regeneration applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ziquan Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhulong Meng
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| | - Qianjin Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Delu Zeng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhengdong Guo
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiangling Yao
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yangyang Bian
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuntao Gu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shaowen Cheng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Peng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Hainan Medical University, Ministry of Education, Haikou, Hainan, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
da Silva Brum I, Frigo L, Lana Devita R, da Silva Pires JL, Hugo Vieira de Oliveira V, Rosa Nascimento AL, de Carvalho JJ. Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size Bone Defect in Rat Calvaria. MATERIALS 2020; 13:ma13204598. [PMID: 33076561 PMCID: PMC7602735 DOI: 10.3390/ma13204598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson’s trichrome and periodic acid–Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
- Correspondence: ; Tel.: +55-21-988-244-976
| | - Lucio Frigo
- Periodontology Department, Universidade Guarulhos, Guarulhos 07023-070, São Paulo, Brazil;
| | - Renan Lana Devita
- Orthodontics Department, State University Barcelona, 08193 Barcelona, Spain;
| | | | - Victor Hugo Vieira de Oliveira
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Ana Lucia Rosa Nascimento
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Jorge José de Carvalho
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| |
Collapse
|
40
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
41
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
42
|
Wan T, Jiao Z, Guo M, Wang Z, Wan Y, Lin K, Liu Q, Zhang P. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater 2020; 5:1004-1017. [PMID: 32671294 PMCID: PMC7339002 DOI: 10.1016/j.bioactmat.2020.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 10/25/2022] Open
Abstract
Fabricating a desired porous structure on the surface of biomedical polyetheretherketone (PEEK) implants for enhancing biological functions is crucial and difficult due to its inherent chemical inertness. In this study, a porous surface of PEEK implants was fabricated by controllable sulfonation using gaseous sulfur trioxide (SO3) for different time (5, 15, 30, 60 and 90 min). Micro-topological structure was generated on the surface of sulfonated PEEK implants preserving original mechanical properties. The protein absorption capacity and apatite forming ability was thus improved by the morphological and elemental change with higher degree of sulfonation. In combination of the appropriate micromorphology and bioactive sulfonate components, the cell adhesion, migration, proliferation and extracellular matrix secretion were obviously enhanced by the SPEEK-15 samples which were sulfonated for 15 min. Finding from this study revealed that controllable sulfonation by gaseous SO3 would be an extraordinarily strategy for improving osseointegration of PEEK implants by adjusting the microstructure and chemical composition while maintaining excellent mechanical properties.
Collapse
Affiliation(s)
- Teng Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Corresponding author.
| | - Yizao Wan
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
- Corresponding author.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Corresponding author. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
43
|
Chen W, Xu Y, Li H, Dai Y, Zhou G, Zhou Z, Xia H, Liu H. Tanshinone IIA Delivery Silk Fibroin Scaffolds Significantly Enhance Articular Cartilage Defect Repairing via Promoting Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21470-21480. [PMID: 32314911 DOI: 10.1021/acsami.0c03822] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cartilage tissue engineering is a promising approach for repairing articular cartilage defects and requires proper scaffolds and necessary growth factors. Herein, tanshinone IIA (TAN) delivery silk fibroin scaffolds were prepared for efficient cartilage defect repair by bioactivities of TAN. By incubating with the TAN delivery silk fibroin scaffold, the transcription of the chondrocytic activity-related genes was enhanced in chondrocytes, and it also can inhibit cell apoptosis and reduce the oxidative stress by regulating the transcription of related genes, indicating that these scaffolds may promote cartilage regeneration. TAN10 delivery silk fibroin scaffolds, in which the concentration of TAN is 10 μg/mL, significantly promotes chondrocytes to generate the cartilage-specific extracellular matrix and tissue both in vitro and in vivo, compared with silk fibroin scaffolds. By treating rabbit articular cartilage defects with TAN10 delivery silk fibroin scaffolds, cartilage defects were filled with hyaline-cartilage-like tissue that integrated with the surrounding cartilage perfectly and displayed strong mechanical properties and higher extracellular matrix content. Hence, TAN facilitates cartilage regeneration, and TAN delivery silk fibroin scaffolds can be potentially applied in the clinics treating cartilage defects in the future.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hao Li
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261041, Shandong, China
| | - Yao Dai
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Tissue Engineering Center of China, Shanghai 200041, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Huitang Xia
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261041, Shandong, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082, China
| |
Collapse
|
44
|
Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020; 5:584-601. [PMID: 32405574 PMCID: PMC7210379 DOI: 10.1016/j.bioactmat.2020.04.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice. Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis. The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed. Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management. The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Corresponding author.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
45
|
Ding Z, Lu G, Cheng W, Xu G, Zuo B, Lu Q, Kaplan DL. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomater Sci Eng 2020; 6:2357-2367. [PMID: 33455344 DOI: 10.1021/acsbiomaterials.0c00143] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple physical cues such as hierarchical microstructures, topography, and stiffness influence cell fate during tissue regeneration. Yet, introducing multiple physical cues to the same biomaterial remains a challenge. Here, a synergistic cross-linking strategy was developed to fabricate protein hydrogels with multiple physical cues based on combinations of two types of silk nanofibers. β-sheet-rich silk nanofibers (BSNFs) were blended with amorphous silk nanofibers (ASNFs) to form composite nanofiber systems. The composites were transformed into tough hydrogels through horseradish peroxidase (HRP) cross-linking in an electric field, where ASNFs were cross-linked with HRP, while BSNFs were aligned by the electrical field. Anisotropic morphologies and higher stiffness of 120 kPa were achieved. These anisotropic hydrogels induced osteogenic differentiation and the aligned aggregation of stem cells in vitro while also exhibiting osteoinductive capacity in vivo. Improved tissue outcomes with the hydrogels suggest promising applications in bone tissue engineering, as the processing strategy described here provides options to form hydrogels with multiple physical cues.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Gang Xu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
46
|
Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, Zhang Y, Xiao J. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics 2020; 10:725-740. [PMID: 31903147 PMCID: PMC6929983 DOI: 10.7150/thno.39167] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022] Open
Abstract
Chitin-derived hydrogels are commonly used in bone regeneration because of their high cell compatibility; however, their poor mechanical properties and little knowledge of the interaction between the materials and host cells have limited their practical application. Methods: To evaluate osteoinductivity and enhance the mechanical properties of a newly synthesized thermosensitive hydroxypropyl chitin hydrogel (HPCH), a mesenchymal stem cell (MSC)-encapsulated HPCH was infused into a three-dimensional-printed poly (ε-caprolactone) (PCL)/ nano-hydroxyapatite (nHA) scaffold to form a hybrid scaffold. The mechanical properties and cell compatibility of the scaffold were tested. The interaction between macrophages and scaffold for angiogenesis and osteogenesis were explored in vitro and in vivo. Results: The hybrid scaffold showed improved mechanical properties and high cell viability. When MSCs were encapsulated in HPCH, osteo-differentiation was promoted properly via endochondral ossification. The co-culture experiments showed that the hybrid scaffold facilitated growth factor secretion from macrophages, thus promoting vascularization and osteoinduction. The Transwell culture proved that MSCs modulated the inflammatory response of HPCH. Additionally, subcutaneous implantation of MSC-encapsulated HPCH confirmed M2 activation. In situ evaluation of calvarial defects confirmed that the repair was optimal in the MSC-loaded HPCH + PCL/nHA group. Conclusions: PCL/nHA + HPCH hybrid scaffolds effectively promoted vascularization and osteoinduction via osteogenesis promotion and immunomodulation, which suggests promising applications for bone regeneration.
Collapse
Affiliation(s)
- Xiongfa Ji
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Ma
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Bo Bi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zehua Lei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbin Liu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - HongXu Pu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiawei Jiang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
47
|
Guo JL, Kim YS, Mikos AG. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules 2019; 20:2904-2912. [PMID: 31282658 DOI: 10.1021/acs.biomac.9b00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biomacromolecules used for tissue engineering must possess either inherent biochemical cues for tissue regeneration or be chemically modified to incorporate bioactive, tissue-specific moieties. To this end, many strategies have emerged recently in the field to both utilize novel bioinspired macromolecules for tissue engineering and apply bioconjugation strategies for the functionalization of biomacromolecules with tissue-specific cues and other biological properties of interest. Furthermore, biomacromolecules have been processed into more highly biomimetic and clinically deliverable scaffold and hydrogel systems using 3D printing and the fabrication of in situ forming hydrogels, respectively. To support these advances, tissue engineers have also pursued greater spatiotemporal control over macromolecular bioactivity and the modulation of scaffold and hydrogel properties in response to both physiological and external stimuli. This Perspective thus highlights a few notable advances and techniques in the usage of biomacromolecules for tissue engineering applications, including new bioinspired macromolecules, advanced hydrogel and scaffold fabrication techniques, and spatiotemporal control over biomacromolecule constructs.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Yu Seon Kim
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Antonios G Mikos
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| |
Collapse
|
48
|
Sun X, Zhang J, Wang Z, Liu B, Zhu S, Zhu L, Peng B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Am J Cancer Res 2019; 9:5183-5199. [PMID: 31410209 PMCID: PMC6691588 DOI: 10.7150/thno.33376] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are extensively used in bone tissue regeneration and local drug delivery. However, the effects of MSNs alone on osteoclast formation and function, as well as the utilization of MSNs to deliver natural molecules against bone resorption, remain unexplored. Here, we report the development of licorice-derived bioactive flavonoid isoliquiritigenin (ISL)-encapsulated MSNs (MSNs-ISL) as a potent bone-bioresponsive nanoencapsulation system for prevention of osteoclast-mediated bone loss in vitro and in vivo. Methods: We synthesized MSNs-ISL and then investigated the drug loading and release characteristics of the resulting nanoparticles. In vitro experiments on osteoclast differentiation and bone resorption were performed using mouse primary bone marrow-derived macrophages (BMMs). In vivo animal experiments were conducted using a lipopolysaccharide (LPS)-mediated calvarial bone erosion model. Results: The resulting MSNs-ISL were spherical and highly monodispersed; they possessed a large specific surface area and superior biocompatibility, and allowed acid-sensitive sustained drug release. Compared with free ISL and MSNs alone, MSNs-ISL significantly and additively inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast generation, decreased the size and quantity of sealing zones, and reduced the osteolytic capacity of osteoclasts in vitro. MSNs-ISL treatment also downregulated RANKL-stimulated mRNA expression of osteoclast-associated genes and transcription factors. Mechanistically, MSNs-ISL remarkably attenuated the RANKL-initiated expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of mitogen-activated protein kinases (MAPKs), and phosphorylation and degradation of inhibitor of κBα (IκBα), together with the nuclear translocation of nuclear factor-κB (NF-κB) p65 and the activator protein (AP)-1 component c-Fos. Moreover, MSNs-ISL almost completely restrained the expression of nuclear factor of activated T cells (NFATc1). Consistent with the in vitro results, MSNs-ISL could block osteoclast activity; relieve inflammation-related calvarial bone destruction in vivo; and suppress c-Fos, NFATc1, and cathepsin K expression levels. Conclusion: Licorice ISL-encapsulated MSNs exhibit notable anti-osteoclastogenetic effects and protect against inflammatory bone destruction. Our findings reveal the feasibility of applying MSNs-ISL as an effective natural product-based bone-bioresponsive nanoencapsulation system to prevent osteoclast-mediated bone loss.
Collapse
|
49
|
Chen Y, Wu T, Huang S, Suen CWW, Cheng X, Li J, Hou H, She G, Zhang H, Wang H, Zheng X, Zha Z. Sustained Release SDF-1α/TGF-β1-Loaded Silk Fibroin-Porous Gelatin Scaffold Promotes Cartilage Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14608-14618. [PMID: 30938503 DOI: 10.1021/acsami.9b01532] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Continuous delivery of growth factors to the injury site is crucial to creating a favorable microenvironment for cartilage injury repair. In the present study, we fabricated a novel sustained-release scaffold, stromal-derived factor-1α (SDF-1α)/transforming growth factor-β1 (TGF-β1)-loaded silk fibroin-porous gelatin scaffold (GSTS). GSTS persistently releases SDF-1α and TGF-β1, which enhance cartilage repair by facilitating cell homing and chondrogenic differentiation. Scanning electron microscopy showed that GSTS is a porous microstructure and the protein release assay demonstrated the sustainable release of SDF-1α and TGF-β1 from GSTS. Bone marrow-derived mesenchymal stem cells (MSCs) maintain high in vitro cell activity and excellent cell distribution and phenotype after seeding into GSTS. Furthermore, MSCs acquired enhanced chondrogenic differentiation capability in the TGF-β1-loaded scaffolds (GSTS or GST: loading TGF-β1 only) and the conditioned medium from SDF-1α-loaded scaffolds (GSTS or GSS: loading SDF-1α only) effectively promoted MSCs migration. GSTS was transplanted into the osteochondral defects in the knee joint of rats, and it could promote cartilage regeneration and repair the cartilage defects at 12 weeks after transplantation. Our study shows that GSTS can facilitate in vitro MSCs homing, migration, chondrogenic differentiation and SDF-1α and TGF-β1 have a synergistic effect on the promotion of in vivo cartilage forming. This SDF-1α and TGF-β1 releasing GSTS have promising therapeutic potential in cartilage repair.
Collapse
Affiliation(s)
- Yuanfeng Chen
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Shusen Huang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Chun-Wai Wade Suen
- Department of Genetics , University of Cambridge , Cambridge CB2 3EH , United Kingdom
| | - Xin Cheng
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College , Jinan University , Guangzhou 510632 , Guangdong , P. R. China
| | - Jieruo Li
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huige Hou
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Guorong She
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huantian Zhang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Huajun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital , Jinan University , Guangzhou 510630 , P. R. China
| |
Collapse
|
50
|
Liu S, Zhou H, Liu H, Ji H, Fei W, Luo E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif 2019; 52:e12613. [PMID: 30968984 PMCID: PMC6536412 DOI: 10.1111/cpr.12613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Fluorine, an organic trace element, has been shown to unfavourably effect osteoclasts function at a low dose. Use of hydroxyapatite (HA) has been effective in exploring its roles in promoting bone repair. In this study, we used HA modified with fluorine to investigate whether it could influence osteoclastic activity in vitro and ovariectomy‐induced osteoclasts hyperfunction in vivo. Materials and methods Fluorohydroxyapatite (FHA) was obtained and characterized by scanning electron microscope (SEM). Osteoclasts proliferation and apoptosis treated with FHA were assessed by MTT and TUNEL assay. SEM, F‐actin, TRAP activity and bone resorption experiment were performed to determine the influence of FHA on osteoclasts differentiation and function. Moreover, HA and FHA were implanted into ovariectomized osteoporotic and sham surgery rats. Histology and Micro‐CT were examined for further verification. Results Fluorine released from FHA slowly and sustainably. FHA hampered osteoclasts proliferation, promoted osteoclasts apoptosis, suppressed osteoclasts differentiation and function. Experiments in vivo validated that FHA participation brought about an inhibitory effect on osteoclasts hyperfunction and less bone absorption. Conclusion The results indicated that FHA served as an efficient regulator to attenuate osteoclasts formation and function and was proposed as a candidature for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shibo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Zhou
- Department of Stomotology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huanzhong Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Fei
- Department of Stomotology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|