1
|
Yang Y, Chu X, Li Y, Meng H, Qin L. Alkali-extracted rhamnogalactoarabinan from Chaetomorpha linum: Characterisation and anti-type 2 diabetic effect. Carbohydr Polym 2025; 356:123388. [PMID: 40049967 DOI: 10.1016/j.carbpol.2025.123388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Sulphated galactoarabinans, extracted from members belonging to the Cladophoraceae (Chlorophyceae) family, have been reported to have potential as novel anti-diabetic agents. However, relatively few studies have investigated this research topic. In the present study, a water-soluble polysaccharide designated CBS2 was obtained from Chaetomorpha linum using dilute alkaline solution, preparative anion exchange, and size-exclusion chromatography. Chemical and high-performance liquid chromatography analyses revealed that CBS2 is a sulphated rhamnogalactoarabinan. Gas chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that the backbone of CBS2 was primarily made up of 4-linked β-L-arabinopyranose, which was sulphated at C-2/C-3. The branches were primarily composed of 4-linked-β-d-galactopyranose and positioned at C-3 of 4-linked β-L-arabinopyranose. Transmission electron microscopy and thioflavin T fluorescence experiments showed that CBS2 successfully suppressed human islet amyloid polypeptide (hIAPP) aggregation in vitro. In NIT-1 cells, CBS2 reduced hIAPP-induced cytotoxicity. CBS2 markedly lowered the production of intracellular reactive oxygen species and oxidative stress induced by hIAPP aggregation in NIT-1 cells. In addition, CBS2 co-localised with mitochondria and protected mitochondrial function from hIAPP aggregation-induced damage by stabilising the mitochondrial membrane potential. These data suggest that CBS2 may potentially serve as an anti-diabetic agent for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yajing Yang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Xiao Chu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Yan Li
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Haining Meng
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China.
| | - Ling Qin
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China.
| |
Collapse
|
2
|
Manchanda A, Goyal B. Inhibitory mechanism of lithospermic acid on the fibrillation of type 2 diabetes associated islet amyloid polypeptide. J Mol Graph Model 2025; 136:108972. [PMID: 39919485 DOI: 10.1016/j.jmgm.2025.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
The abnormal fibrillation of a 37-residue peptide hormone human islet amyloid polypeptide (hIAPP) is linked with type 2 diabetes (T2D). Pang et al. depicted a prominent role of lithospermic acid (LA) in blocking hIAPP fibrillation and alleviating the hIAPP aggregates-induced cytotoxicity. LA is a polyphenolic compound present in extra virgin olive oil with therapeutic properties. Despite its notable inhibitory effect on hIAPP fibrillation, the inhibition mechanism remains unclear. Here, molecular dynamics (MD) simulations have been utilized to shed light on the putative binding mechanism and inhibitory mechanism of LA against hIAPP fibrillation. The molecular docking predicted favourable binding (-7.1 kcal/mol) of LA with hIAPP. Interestingly, LA increases the helix content in hIAPP and blocks the conformational transition to the aggregation-competent conformations. The conformational clustering and hydrogen bond analyses depicted that LA formed hydrogen bonds with Asn21 of hIAPP, which play an important role in hIAPP aggregation. LA binds favourably to hIAPP (ΔGbinding = -49.62 ± 3.34 kcal/mol) with a major contribution from the van der Waals interactions. The MD simulations highlighted that LA dramatically interfered with the intrapeptide interactions and inhibited sampling of aggregation-competent β-sheet conformations in hIAPP via hydrogen bonds through its hydroxyl groups, van der Waals interactions with hIAPP residues, thus blocking hIAPP aggregation to β-sheet rich cytotoxic fibrillar aggregates. The MD simulations illuminated specific interactions between hIAPP and LA, which will benefit in developing new chemical entities against hIAPP fibrillation.
Collapse
Affiliation(s)
- Anisha Manchanda
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
3
|
Song Y, Chen Y, Cai H, Zhu G, Zeng Y, Abuduxukuer Z, Chen K, Wang J, Ye L, Jin M. Lentinan attenuates allergic airway inflammation and epithelial barrier dysfunction in asthma via inhibition of the PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155965. [PMID: 39214015 DOI: 10.1016/j.phymed.2024.155965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergic asthma has been regarded as an inflammatory disease mediated by type 2 immunity. The treatment of progressive forms of asthma remains unsatisfactory despite substantial progress in drug development. Lentinan (LTN), a specific polysaccharide derived from Lentinus edodes, exhibits anti-inflammatory and immunomodulatory functions. Nevertheless, the effect and underlying mechanisms of Lentinan on asthma remain unclear. PURPOSE This research investigated the regulatory role of Lentinan on allergic airway inflammation and epithelial barrier dysfunction in HDM (house dust mite)-induced asthma. STUDY DESIGN HDM-induced C57BL/6 mice received different dosages of Lentinan through intraperitoneal injections, to observe the effect of Lentinan against allergic airway inflammation and epithelial barrier dysfunction in asthma. METHODS Mice were intranasally administered HDM extract solution on days 0, 1, 2 and on days 8 to 12, establishing the allergic asthma model. On days 8 to 12, mice were intraperitoneally administered varying doses of Lentinan (5/10/20mg/kg) 1h before HDM challenge. On day 14, samples were harvested for analysis. Cell counting, flow cytometry, ELISA, HE and PAS staining, IF staining, western blotting, RT-PCR, and bioinformatic analysis were conducted to delve into the underlying functions and mechanisms of Lentinan in asthma. RESULTS Our study revealed that the treatment of Lentinan significantly ameliorated allergic airway inflammation and improved epithelial barrier dysfunction in experimental mice. Following Lentinan treatment, there was a significant reduction in eosinophil counts, accompanied by a diminished presence of type 2 cytokines. Reversal of epithelial barrier dysfunction after treatment was also observed. The therapeutic mechanism involved suppression of the PI3K/AKT/ NF-κB pathway. CONCLUSION Our research illuminated the protective role of Lentinan in allergic airway inflammation and impaired epithelial barrier, suggesting LTN could be an innovative and promising candidate for asthma treatment.
Collapse
Affiliation(s)
- Yansha Song
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Cai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiping Zhu
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Zeng
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilinuer Abuduxukuer
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Chen
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Wang Y, Huo Y, Wang S, Zheng T, Du W. β-Carboline Alkaloids Resist the Aggregation and Cytotoxicity of Human Islet Amyloid Polypeptide. Chembiochem 2023; 24:e202300395. [PMID: 37485551 DOI: 10.1002/cbic.202300395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
β-Carboline alkaloids have a variety of pharmacological activities, such as antitumor, antibiosis and antidiabetes. Harmine and harmol are two structurally similar β-carbolines that occur in many medicinal plants. In this work, we chose harmine and harmol to impede the amyloid fibril formation of human islet amyloid polypeptide (hIAPP) associated with type 2 diabetes mellitus (T2DM), by a series of physicochemical and biochemical methods. The results indicate that harmine and harmol effectively prevent peptide fibril formation and alleviate toxic oligomer species. In addition, both small molecules exhibit strong binding affinities with hIAPP mainly through hydrophobic and hydrogen bonding interactions, thus reducing the cytotoxicity induced by hIAPP. Their distinct binding pattern with hIAPP is closely linked to the molecular configuration of the two small molecules, affecting their ability to impede peptide aggregation. The study is of great significance for the application and development of β-carboline alkaloids against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| |
Collapse
|
6
|
Kaur A, Goyal B. In silico design and identification of new peptides for mitigating hIAPP aggregation in type 2 diabetes. J Biomol Struct Dyn 2023; 42:10006-10021. [PMID: 37691445 DOI: 10.1080/07391102.2023.2254411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
The aberrant misfolding and self-aggregation of human islet amyloid polypeptide (hIAPP or amylin) into cytotoxic aggregates are implicated in the pathogenesis of type 2 diabetes (T2D). Among various inhibitors, short peptides derived from the amyloidogenic regions of hIAPP have been employed as hIAPP aggregation inhibitors due to their low immunogenicity, biocompatibility, and high chemical diversity. Recently, hIAPP fragment HSSNN18-22 was identified as an amyloidogenic sequence and displayed higher antiproliferative activity to RIN-5F cells. Various hIAPP aggregation inhibitors have been designed by chemical modifications of the highly amyloidogenic sequence (NFGAIL) of hIAPP. In this work, a library of pentapeptides based on fragment HSSNN18-22 was designed and assessed for their efficacy in blocking hIAPP aggregation using an integrated computational screening approach. The binding free energy calculations by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method identified HSSQN and HSSNQ that bind to hIAPP monomer with a binding affinity of -21.25 ± 4.90 and -19.73 ± 3.10 kcal/mol, respectively, which is notably higher as compared to HSSNN (-11.90 ± 4.12 kcal/mol). The sampling of the non aggregation-prone helical conformation was notably increased from 23.5 ± 3.0 in the hIAPP monomer to 38.1 ± 3.6, and 33.8 ± 3.0% on the incorporation of HSSQN, and HSSNQ, respectively, which indicate reduced aggregation propensity of hIAPP monomer. The pentapeptides, HSSQN and HSSNQ, identified as hIAPP aggregation inhibitors in this work can be further conjugated with various metal chelating peptides to yield more efficacious and clinically relevant multifunctional modulators for targeting various pathological hallmarks of T2D.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
7
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
9
|
Qin L, Yang Y, Hao J, He X, Liu S, Chu X, Mao W. Antidiabetic-activity sulfated polysaccharide from Chaetomorpha linum: Characteristics of its structure and effects on oxidative stress and mitochondrial function. Int J Biol Macromol 2022; 207:333-345. [PMID: 35227705 DOI: 10.1016/j.ijbiomac.2022.02.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/05/2023]
Abstract
A water-soluble polysaccharide from the green alga Chaetomorpha linum, designated CHS2, was obtained by water extraction, preparative anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that CHS2 was a sulfated rhamnogalactoarabinan, and its backbone was mainly constituted by 4-linked and 3,4-linked β-l-arabinopyranose with sulfate groups at C-2/C-3 of 4-linked β-l-arabinopyranose. The branching contained 4-linked, 6-linked β-d-galactopyranose and terminal rhamnose residues. Based on the inhibition of human islet amyloid polypeptide (hIAPP) aggregation and morphology change of hIAPP aggregates in in vitro tests, it was proved that CHS2 effectively inhibited the hIAPP aggregation and possessed strong antidiabetic activity. CHS2 was nearly no toxicity in NIT-1 cells and could attenuate hIAPP-induced cytotoxicity. CHS2 may significantly reduce the generation of intracellular reactive oxygen species and hIAPP aggregation-induced oxidative stress in NIT-1 cells. CHS2 was co-localized with mitochondria, and largely protected mitochondria function from hIAPP aggregation-induced damage through stabilizing mitochondrial membrane potential and enhancing the mitochondrial complex I, II or III activity and ATP level. The data demonstrated that CHS2 could have potential prospect to become an antidiabetic drug for type 2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
10
|
Gao G, Zhang T, Zhang W, Luo Z, Zhang Z, Gu Z, Yu L, Mu Q, Sun T. High efficiency and related mechanism of Au(RC) nanoclusters on disaggregating Aβ fibrils. J Colloid Interface Sci 2022; 621:67-76. [PMID: 35452930 DOI: 10.1016/j.jcis.2022.04.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
Revealing the disaggregating mechanism of amyloids fibrils under nanomaterials action is a key issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. Herein a gold nanocluster stabilized by Arg-Cys dipeptide (Au(RC)NCs) was synthesized to investigate its disaggregation activity toward Aβ fibrils by using Thioflavin-T (ThT) fluorescence assay and atomic force microscopy. It was demonstrated that Au(RC)NCs is very effective in disaggregating preformed Aβ fibrils, and characterized by the ultra-low apparent completely disaggregation concentration at the dose of 10 μg·mL-1. A possible disaggregation mechanism based on Au(RC)NCs triggering the disassembly of Aβ fibrils into a dynamic equilibrium was proposed. The introduction of Au(RC)NCs with appropriate dose (5 μg·mL-1) can trigger the disassemble process of mature Aβ fibrils into a critical state, at this very moment, if there is no more nano-disassembler, destruction of old Aβ fibrils and formation of new Aβ fibrils are thus in permanent dynamic equilibrium; in contrast, if there is more nano-disassembler (>10 μg·mL-1), the dynamic equilibrium prefer to shift to the direction of Aβ further disassembly. Moreover, Au(RC)NCs with dosage over 10 μg·mL-1 exhibited superb protection effect against Aβ-induced cytotoxicity in cell experiments. This study not only proposed a possible disassembly mechanism of amyloids fibrils under nanomaterials action, but also provide Au(RC)NCs as a promising high-effective nano-disassembler to disassemble unwanted amyloid aggregates.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Ting Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Wenkang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhuoying Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zijun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Liangchong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qinxue Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
11
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
12
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Tang Y, Zhang D, Liu Y, Zhang Y, Zhou Y, Chang Y, Zheng B, Xu A, Zheng J. A new strategy to reconcile amyloid cross-seeding and amyloid prevention in a binary system of α-synuclein fragmental peptide and hIAPP. Protein Sci 2022; 31:485-497. [PMID: 34850985 PMCID: PMC8820123 DOI: 10.1002/pro.4247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Amyloid cross-seeding and amyloid inhibition are two different research subjects being studied separately for different pathological purposes, in which amyloid cross-seeding targets to study the co-aggregation of different amyloid proteins and potential molecular links between different neurodegenerative diseases, while amyloid inhibition aims to design different molecules for preventing amyloid aggregation. While both amyloid cross-seeding and amyloid inhibition are critical for better understanding the pathological causes of different neurodegenerative diseases including Parkinson disease (PD) and Type 2 diabetes (T2D), less efforts have been made to reconcile the two phenomena. Herein, we proposed a new preventive strategy to demonstrate (a) the cross-seeding of octapeptide TKEQVTNV from α-synuclein (associated with PD) with hIAPP (associated with T2D) and (b) the cross-seeding-promoted hIAPP fibrillization and cross-seeding-reduced hIAPP toxicity. Collective results confirmed that TKEQVTNV can indeed cross-seed with hIAPP monomers and oligomers, not protofibrils, to form β-structure-rich fibrils and to accelerate hIAPP fibrillization. Moreover, such cross-seeding-induced promotion effect by TKEQVTNV also rescued the pancreatic cells from hIAPP-induced cytotoxicity by increasing cell viability and reducing cell apoptosis simultaneously. This work provides a new angle to discover amyloid fragments and use them as amyloid modulators (inhibitors or promotors) to interfere with amyloid aggregation of other amyloid proteins, as well as sequence/structure basis to explore the amyloid cross-seeding between different amyloid proteins that may help explain a potential molecular talk between different neurodegenerative diseases.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yifan Zhou
- Department of Polymer ScienceThe University of AkronAkronOhioUSA
| | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| | | | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| |
Collapse
|
14
|
Xin Y, Wang S, Liu H, Ke H, Tian S, Cao Y, Huang Y, Shang Y, Jia H, Su L, Yang X, Meng F, Luo L. Hierarchical Vitalization of Oligotyrosine in Mitigating Islet Amyloid Polypeptide Amyloidogenesis through Multivalent Macromolecules with Conformation-Restrained Nanobody Ligands. ACS NANO 2021; 15:13319-13328. [PMID: 34293858 DOI: 10.1021/acsnano.1c03083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huichuan Ke
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanda Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhu Shang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Wu T, Wang J, Zhang Y, Shao Y, Li X, Guo Y, Dong W, Wang L, Chen F, Han X. Lentinan protects against pancreatic β-cell failure in chronic ethanol consumption-induced diabetic mice via enhancing β-cell antioxidant capacity. J Cell Mol Med 2021; 25:6161-6173. [PMID: 33837638 PMCID: PMC8256364 DOI: 10.1111/jcmm.16529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic ethanol consumption is a well-established independent risk factor for type 2 diabetes mellitus (T2DM). Recently, increasing studies have confirmed that excessive heavy ethanol exerts direct harmful effect on pancreatic β-cell mass and function, which may be a mechanism of pancreatic β-cell failure in T2DM. In this study, we evaluated the effect of Lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β-cell apoptosis and dysfunction caused by ethanol and the possible mechanisms implicated. Functional studies reveal that LNT attenuates chronic ethanol consumption-induced impaired glucose metabolism in vivo. In addition, LNT ameliorates chronic ethanol consumption-induced β-cell dysfunction, which is characterized by reduced insulin synthesis, defected insulin secretion and increased cell apoptosis. Furthermore, mechanistic assays suggest that LNT enhances β-cell antioxidant capacity and ameliorates ethanol-induced oxidative stress by activating Nrf-2 antioxidant pathway. Our results demonstrated that LNT prevents ethanol-induced pancreatic β-cell dysfunction and apoptosis, and therefore may be a potential pharmacological agent for preventing pancreatic β-cell failure associated with T2DM and stress-induced diabetes.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yaru Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Yuqing Guo
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Wenyu Dong
- Key Laboratory of Oral Diseases of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
- Institute of StomatologyNanjing Medical UniversityNanjingChina
| | - Lin Wang
- Key Laboratory of Oral Diseases of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
- Institute of StomatologyNanjing Medical UniversityNanjingChina
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| |
Collapse
|
16
|
Tang Y, Liu Y, Zhang Y, Zhang D, Gong X, Zheng J. Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chem Neurosci 2021; 12:1419-1427. [PMID: 33780229 DOI: 10.1021/acschemneuro.1c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence have shown a strong pathological correlation between cardiovascular disease (CVD) and Type II diabetes (T2D), both of which share many common risk factors (e.g., hyperglycemia, hypertension, hypercoagulability, and dyslipidemia) and mutually contribute to each other. Driven by such strong CVD-T2D correlation and marginal benefits from drug development for T2D, here we proposed to repurpose a CVD drug of cloridarol as human islet amyloid peptide (hIAPP) inhibitor against its abnormal misfolding and aggregation, which is considered as a common and critical pathological event in T2D. To this end, we investigated the inhibition activity of cloridarol on the aggregation and toxicity of hIAPP1-37 using combined experimental and computational approaches. Collective experimental data from ThT, AFM, and CD demonstrated the inhibition ability of cloridarol to prevent hIAPP aggregation from its monomeric and oligomeric states, leading to the overall reduction of hIAPP fibrils up to 57% at optimal conditions. MTT and LDH cell assays also showed that cloridarol can also effectively increase cell viability by 15% and decrease cell apoptosis by 28%, confirming its protection of islet β-cells from hIAPP-induced cell toxicity. Furthermore, comparative molecular dynamics simulations revealed that cloridarol was preferentially bound to the C-terminal β-sheet region of hIAPP oligomers through a combination of hydrophobic interactions, π-π stacking, and hydrogen bonding. Such multiple site bindings allowed cloridarol to disturb hIAPP structures, reduce β-sheet content, and block the lateral association pathway of hIAPP aggregates, thus explaining experimental findings. Different from other single-target hIAPP inhibitors, cloridarol is unique in that it works as both a CVD drug and hIAPP inhibitor, which can be used as a viable structural template (especially for benzofuran) for the further development of cloridarol-based or benzofuran-based inhibitors of amyloid proteins.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | | | | | - Xiong Gong
- Department of Polymer Engineering The University of Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Cao Y, He Z, Gao Y, Xin Y, Luo L, Meng F. Boosting the Photodynamic Degradation of Islet Amyloid Polypeptide Aggregates Via a "Bait-Hook-Devastate" Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14911-14919. [PMID: 33764749 DOI: 10.1021/acsami.1c00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photosensitizers that can generate reactive oxygen species (ROS) upon irradiation have emerged as promising agents for photodynamic degradation of toxic amyloid aggregates that are linked to many amyloidogenic diseases. However, due to the ultrastable β-sheet structure in amyloid aggregates and inefficient utilization of the generated ROS, it usually requires high stoichiometric concentration of the photosensitizer and/or intensive light irradiation to fully dissociate aggregates. In this work, we have developed a "bait-hook-devastate" strategy to boost the efficiency of the photodynamic degradation of amyloid aggregates. This strategy employs anionic polyacrylic acid as a bait to accumulate cationic human islet amyloid polypeptide (IAPP) aggregates and positively charged photosensitizer TPCI in a confined area through electronic interactions. Multiple characterization studies proved that the utilization rate of ROS generated by TPCI was remarkably improved via this strategy, which amplified the ability of TPCI to dissociate IAPP aggregates. Rapid and complete degradation of IAPP aggregates could be achieved by irradiating the system under very mild conditions for less than 30 min, and the IAPP-mediated cytotoxicity was also largely alleviated, providing a new paradigm to accelerate photodynamic degradation of amyloid aggregates for further practical applications.
Collapse
Affiliation(s)
- Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
19
|
Kaur A, Goyal B. Deciphering the Inhibitory Mechanism of hIAPP‐Derived Fragment Peptide Against hIAPP Aggregation in Type 2 Diabetes**. ChemistrySelect 2020. [DOI: 10.1002/slct.202003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala- 147004 Punjab India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry Thapar Institute of Engineering & Technology Patiala- 147004 Punjab India
| |
Collapse
|
20
|
Saini RK, Goyal D, Goyal B. Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chem Res Toxicol 2020; 33:2719-2738. [PMID: 33124419 DOI: 10.1021/acs.chemrestox.0c00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease characterized by insulin resistance and a progressive loss of pancreatic islet β-cell mass, which leads to insufficient secretion of insulin and hyperglycemia. Emerging evidence suggests that toxic oligomers and fibrils of human islet amyloid polypeptide (hIAPP) contribute to the death of β-cells and lead to T2D pathogenesis. These observations have opened new avenues for the development of islet amyloid therapies for the treatment of T2D. The peptide-based inhibitors are of great value as therapeutic agents against hIAPP aggregation in T2D owing to their biocompatibility, feasibility of synthesis and modification, high specificity, low toxicity, proteolytic stability (modified peptides), and weak immunogenicity as well as the large size of involved interfaces during self-aggregation of hIAPP. An understanding of what has been done and achieved will provide key insights into T2D pathology and assist in the discovery of more potent drug candidates for the treatment of T2D. In this article, we review various peptide-based inhibitors of hIAPP aggregation, including those derived from the hIAPP sequence and those not based on the sequence, consisting of both natural as well as unnatural amino acids and their derivatives. The present review will be beneficial in advancing the field of peptide medicine for the treatment of T2D.
Collapse
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab India
| |
Collapse
|
21
|
Zhang P, Zeng L, Gao W, Li H, Gao Z. Peroxynitrite scavenger FeTPPS effectively inhibits hIAPP aggregation and protects against amyloid induced cytotoxicity. Int J Biol Macromol 2020; 161:336-344. [DOI: 10.1016/j.ijbiomac.2020.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
22
|
Tang X, Gao G, Zhang T, Li J, Yu M, He M, Sun T. Charge effects at nano-bio interfaces: a model of charged gold nanoclusters on amylin fibrillation. NANOSCALE 2020; 12:18834-18843. [PMID: 32895690 DOI: 10.1039/d0nr03877f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The misfolding and abnormal amyloid fibrillation of proteins/peptides are associated with more than 20 human diseases. Although dozens of nanoparticles have been investigated for the inhibition effect on the misfolding and fibrillation of pathogenesis-related proteins/peptides, there are few reports on charge effects of nano inhibitors on amyloid fibrillation. Herein, same-sized gold nanoclusters modified with 2-aminoethanethiol hydrochloride (CSH-AuNCs, positively charged in pH 7.4) or 3-mercaptopropionic acid (MPA-AuNCs, negatively charged in pH 7.4) were synthesized and adopted as models to explore the charge effect of nano inhibitors on amylin fibrillation at the nano-bio interface. ThT fluorescence kinetics analysis, AFM images and circular dichroism (CD) spectra showed that electropositive CSH-AuNCs inhibited the misfolding and fibrillation of amylin in a dosage-dependent manner, but electronegative MPA-AuNCs accelerated the misfolding and fibrillation of amylin in a dosage-dependent manner. Moreover, the theoretical and experimental results revealed the interaction mechanism between amylin and ligands of AuNCs at the nano-bio interfaces. Electropositive CSH-AuNCs could be bound to the main nucleating region of amylin via hydrogen bonding and endowed the nanocomplex with more positive net charges (amylin monomer with a positive +26.23 ± 0.80 mV zeta potential), which would inhibit the misfolding and aggregation of amylin via electrostatic repulsion and steric hindrance. In contrast, electronegative MPA-AuNCs could absorb electropositive amylin via strong electrostatic attractions, which accelerated the fibrillation process of amylin via enhancing local concentrations. Moreover, cell experiments showed that both the charged AuNCs had good biocompatibility and electronegetive MPA-AuNCs showed a better protective effect in the amylin-induced cell model than electropositive CSH-AuNCs. These results provide an insight into structure-based nanodrug design for protein conformational diseases.
Collapse
Affiliation(s)
- Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu F, Zhao W, Zhao F, Dong Q, Wang Y, Wei W, Jia L, Li L, Lu F. Dual Effect of the Acidic Polysaccharose Ulvan on the Inhibition of Amyloid-β Protein Fibrillation and Disintegration of Mature Fibrils. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41167-41176. [PMID: 32818379 DOI: 10.1021/acsami.0c14292] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal folding and aggregation of amyloid-β protein (Aβ) is the main reason for the occurrence and development of Alzheimer's disease (AD). The discovery of novel inhibitors against Aβ aggregation is still the current research focus. Herein, we report the inhibitory effect of ulvan, an acidic polysaccharide from green algae of the genus Ulva, against Aβ fibrillation using thioflavin T (ThT) fluorescence and atomic force microscopy (AFM) assays. It is shown that ulvan effectively inhibits Aβ fibrillogenesis in a concentration-dependent manner and actively inhibits the formation of A11-reactive Aβ oligomers, the most toxic Aβ species. The circular dichroism spectrum reveals that ulvan blocks the conformational transition of Aβ40 from the initial random coil to a β-sheet structure, but it only delays the conformational transition of Aβ42. It is also found that ulvan greatly reduces Aβ-induced cytotoxicity by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, ulvan effectively downregulates intracellular reactive oxygen species production and protects PC12 cells from the damage caused by Aβ fibrillation. Moreover, ulvan disaggregates preformed mature fibrils into off-pathway oligomers and greatly decreases their associated cytotoxicity, as revealed using ThT fluorescence, AFM, MTT, and dot-blotting assays. The above results not only fully describe the inhibitory effect of ulvan on Aβ fibrillation and its related cytotoxicity but also provide novel ideas for the development of functional food ingredients from seaweed to treat AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Qinchen Dong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
24
|
Liu F, Zhao F, Wang W, Sang J, Jia L, Li L, Lu F. Cyanidin-3-O-glucoside inhibits Aβ40 fibrillogenesis, disintegrates preformed fibrils, and reduces amyloid cytotoxicity. Food Funct 2020; 11:2573-2587. [PMID: 32154523 DOI: 10.1039/c9fo00316a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is mainly caused by the fibrillogenesis of amyloid-β protein (Aβ). Therefore, the development of effective inhibitors against Aβ fibrillogenesis offers great hope for the treatment of AD. Cyanidin-3-O-glucoside (Cy-3G) is a commonly found anthocyanin that is mainly present in fruits, with established neuroprotective effects in situ. However, it remains unknown if Cy-3G can prevent Aβ fibrillogenesis and alleviate the corresponding cytotoxicity. In this study, extensive biochemical, biophysical, biological and computational experiments were combined to address this issue. It was found that Cy-3G significantly inhibits Aβ40 fibrillogenesis and disintegrates mature Aβ fibrils, and its inhibitory capacity is dependent on the Cy-3G concentration. The circular dichroism results showed that Cy-3G and Aβ40 at a molar ratio of 3 : 1 slightly prevents the structural transformation of Aβ40 from its initial random coil to the β-sheet-rich structure. Co-incubation of Aβ40 with Cy-3G significantly reduced the production of intracellular reactive oxygen species induced by Aβ40 fibrillogenesis and thus reduced Aβ40-induced cytotoxicity. Molecular dynamics simulations revealed that Cy-3G disrupted the β-sheet structure of the Aβ40 trimer. Cy-3G was found to mainly interact with the N-terminal region, the central hydrophobic cluster and the β-sheet region II via hydrophobic and electrostatic interactions. The ten hot spot residues D7, Y10, E11, F19, F20, E22, I31, I32, M35 and V40 were also identified. These findings not only enable a comprehensive understanding of the inhibitory effect of Cy-3G on Aβ40 fibrillogenesis, but also allow the identification of a valuable dietary ingredient that possesses great potential to be developed into functional foods to alleviate AD.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin, 300457, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang BB, Wang YY, Zhang XY, Xu ZQ, Jiang P, Jiang FL, Liu Y. Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int J Biol Macromol 2020; 147:453-462. [PMID: 31923519 DOI: 10.1016/j.ijbiomac.2019.12.267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Due to the favorable stability, water solubility and good biocompatibility, carbon dots have attracted much attention. Herein, a novel nitrogen-doping bifunctional carbon dots (N-BCDs) with ultra-highly quantum yield (QYabs = 70.4%) is prepared through microwave-assisted method. 50 μg/mL of N-BCDs emit intense fluorescence in HeLa and GES-1 cells with negligible cytotoxicity. In addition, effective inhibition of N-BCDs to human insulin (HI) fibrillation is observed even at 10:1 (mass ratio of HI: N-BCDs) by ThT fluorescence, CD assay and TEM. N-BCDs prevent HI from fibrillation with prolonged lag time and reduced fluorescent intensity at equilibrium, regardless of the addition time of N-BCDs (HI: N-BCDs = 1:1, mass ratio), which has been rarely reported before. Furthermore, the morphology of final HI fibrils is shorter and thinner in the presence of N-BCDs. Mechanism studies reveal that the enhanced hydrogen bond between HI monomers and N-BCDs inhibits nucleation during the lag stage (Ka: 1.54 × 104 L·mol-1, 298 K), while the accumulation of N-BCDs blocks the growth of profibrils in the elongation stage. To the best of our knowledge, it's the first time to observe the accumulation of N-BCDs around HI profibrils with TEM. Our study provides a new strategy for developing efficient nanoparticle inhibitors for protein fibrillation.
Collapse
Affiliation(s)
- Bei-Bei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Ying Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Yang Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zi-Qiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Peng Jiang
- Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Feng-Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
26
|
Liu Q, Yang D, Shang T, Guo L, Yang B, Xu X. Chain conformation transition induced host–guest assembly between triple helical curdlan and β-CD for drug delivery. Biomater Sci 2020; 8:1638-1648. [PMID: 31970339 DOI: 10.1039/c9bm01439j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel kind of supramolecular micelle consisting of the triplex curdlan and β-CDs was firstly developed via the conformation transition induced host–guest interaction.
Collapse
Affiliation(s)
- Qingye Liu
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
- College of Chemistry and Molecular Sciences
| | - Du Yang
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
| | - Tongyi Shang
- The Sixth Affiliated Hospital of Guangzhou Medical University; Department of Biomedical Engineering
- School of Basic Medical Sciences
- Guangzhou Medical University
- Guangzhou 511436
- China
| | - Lixiao Guo
- School of Chemical Engineering and Technology
- North University of China
- Taiyuan 030051
- China
| | - Bin Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University; Department of Biomedical Engineering
- School of Basic Medical Sciences
- Guangzhou Medical University
- Guangzhou 511436
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
27
|
Effects of lithospermic acid on hIAPP aggregation and amyloid-induced cytotoxicity by multiple analytical methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140283. [DOI: 10.1016/j.bbapap.2019.140283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
|
28
|
Xuan Q, He J, Li M, Chai R, Wang C, Wang Y, Wang P. Monomer-targeting affinity peptide inhibitors of amyloid with no self-fibrillation and low cytotoxicity. Chem Commun (Camb) 2020; 56:1633-1636. [DOI: 10.1039/c9cc08671d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monomer-targeting strategy based on solution-phase biopanning to obtain peptide inhibitors increases the suppression efficiency and reduces the cytotoxicity of amylin.
Collapse
Affiliation(s)
- Qize Xuan
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- School of Biotechnology
- East China University of Science and Technology
| | - Jiaxin He
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- School of Biotechnology
- East China University of Science and Technology
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ruoshi Chai
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- School of Biotechnology
- East China University of Science and Technology
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology
- Institute of Basic Medical Sciences
- Chinese Academy of Medical Sciences
- Department of Biophysics and Structural Biology
- Peking Union Medical College
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- School of Biotechnology
- East China University of Science and Technology
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering
- University of Minnesota
- St Paul
- USA
| |
Collapse
|
29
|
Zhang W, Gao G, Ma Z, Luo Z, He M, Sun T. Au 23(CR) 14 nanocluster restores fibril Aβ's unfolded state with abolished cytotoxicity and dissolves endogenous Aβ plaques. Natl Sci Rev 2019; 7:763-774. [PMID: 34692095 PMCID: PMC8289031 DOI: 10.1093/nsr/nwz215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
The misfolding of amyloid-β (Aβ) peptides from the natural unfolded state to β-sheet structure is a critical step, leading to abnormal fibrillation and formation of endogenous Aβ plaques in Alzheimer's disease (AD). Previous studies have reported inhibition of Aβ fibrillation or disassembly of exogenous Aβ fibrils in vitro. However, soluble Aβ oligomers have been reported with increased cytotoxicity; this might partly explain why current clinical trials targeting disassembly of Aβ fibrils by anti-Aβ antibodies have failed so far. Here we show that Au23(CR)14 (a new Au nanocluster modified by Cys-Arg (CR) dipeptide) is able to completely dissolve exogenous mature Aβ fibrils into monomers and restore the natural unfolded state of Aβ peptides from misfolded β-sheets. Furthermore, the cytotoxicity of Aβ40 fibrils when dissolved by Au23(CR)14 is fully abolished. More importantly, Au23(CR)14 is able to completely dissolve endogenous Aβ plaques in brain slices from transgenic AD model mice. In addition, Au23(CR)14 has good biocompatibility and infiltration ability across the blood-brain barrier. Taken together, this work presents a promising therapeutics candidate for AD treatment, and manifests the potential of nanotechnological approaches in the development of nanomedicines.
Collapse
Affiliation(s)
- Wenkang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongjie Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhuoying Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
30
|
Abstract
Fungal bioactive polysaccharides are well known and have been widely used in Asia as a part of the traditional diet and medicine. In fact, some biopolymers (mainly β-glucans or glycoconjugate) have already made their way to the market as antitumor or immunostimulating drugs. In the last decades, the relationship between structure and activity of polysaccharides and their detailed mode of action have been the core of intense research to understand and utilize their medicinal properties. Most of the antitumor polysaccharides belong to conserved β-glucans, with a linear β-(1→3)-glucan backbone and attached β-(1→6) branch. Structurally different β-glucans appear to have different affinities toward their receptors and thus generate markedly different host responses. However, their antitumor activities are mainly influenced by molecular mass, degree of branching, conformation, and structure modification of the polysaccharides. β-Glucans act on several immune receptors including Dectin-1, complement receptor (CR3) and TLR-2/6, then trigger both innate and adaptive response and enhance opsonic and nonopsonic phagocytosis. Various receptor interactions explain the possible mode of actions of polysaccharides.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
31
|
Huang Q, Wang H, Gao H, Cheng P, Zhu L, Wang C, Yang Y. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy. J Phys Chem Lett 2019; 10:214-222. [PMID: 30543438 DOI: 10.1021/acs.jpclett.8b03143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloidogenic proteins are key components in various amyloid diseases. The aggregation process and the local structural changes of the toxic species from toxic oligomers to protofibrils and subsequently to mature fibrils are crucial for understanding the molecular mechanism of the amyloidgenic process and also for developing a treatment strategy. Exploration on amyloid aggregation dynamics in situ under real liquid condition is feasible for reflection of the whole process with biological correlations. Herein we report the in situ dynamic study and structure exploration of Amylin1-37 aggregation by FastScan atomic force microscopy. Amylin1-37 nucleation process was observed in which smaller oligomers or monomers were assimilated by the surrounding big oligomers. Amylin1-37 protofibril aggregation was positively correlated with monomer concentration, whereas no direct relationship was observed between fibril elongation and monomer concentration. Growing end and passivated end were found during Amylin1-37 fibrillation. In the assembly process, the growing end kept its structure, and its stiffness was lower than the aggregate body, whereas the passivated end might experience rearrangements of β-structures, which eventually enabled fibril growth from this end. This work is beneficial to the insights of amyloid fibrillation and may shed light on the development of drugs targeting the specific phase of amyloid aggregation.
Collapse
Affiliation(s)
- Qunxing Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
32
|
Zhao L, Xin Y, Li Y, Yang X, Luo L, Meng F. Ultraeffective Inhibition of Amyloid Fibril Assembly by Nanobody–Gold Nanoparticle Conjugates. Bioconjug Chem 2018; 30:29-33. [DOI: 10.1021/acs.bioconjchem.8b00797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Xin Y, Zhang H, Hu Q, Tian S, Wang C, Luo L, Meng F. Oligotyrosines Inhibit Amyloid Formation of Human Islet Amyloid Polypeptide in a Tyrosine-Number-Dependent Manner. ACS Biomater Sci Eng 2018; 5:1092-1099. [DOI: 10.1021/acsbiomaterials.8b01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huazhi Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenhui Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|