1
|
Yin W, Sun S, Yao H, Li W, Cui Y, Peng C. Black Phosphorus Nanosheet-Based Composite Biomaterials for the Enhanced Repair of Infectious Bone Defects. ACS Biomater Sci Eng 2025; 11:1317-1337. [PMID: 39924732 DOI: 10.1021/acsbiomaterials.4c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Infectious bone defects pose significant challenges in orthopedic practice, marked by persistent bacterial infection and ongoing inflammatory responses. Recent advancements in bone tissue engineering have led to the development of biomaterials with both antibacterial properties and the ability to promote bone regeneration, offering new solutions to these complex issues. Black phosphorus nanosheets (BPNS), a unique two-dimensional material, demonstrate exceptional biocompatibility, bioactivity, and antibacterial properties. Their combination of osteogenic, antibacterial, and anti-inflammatory effects positions BPNS as an ideal candidate for addressing bone defects complicated by infection. This Review explores the potential of BPNS-based composite biomaterials in repairing infectious bone defects, discussing their molecular mechanisms for antibacterial activity, including intrinsic antibacterial properties, photothermal therapy (PTT), photodynamic therapy (PDT), and drug delivery. The application of BPNS in treating infectious bone defects, through hydrogels, scaffolds, coatings, and fibers, is also discussed. The Review emphasizes the transformative role of BPNS in bone tissue engineering and advocates for continued research and development in this promising field.
Collapse
Affiliation(s)
- Wen Yin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hongyuan Yao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Wenbo Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
2
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
3
|
Smith LS, Haidari H, Amsalu A, Howarth GS, Bryant SJ, Walia S, Elbourne A, Kopecki Z. Black Phosphorus Nanoflakes: An Emerging Nanomaterial for Clinical Wound Management and Biomedical Applications. Int J Mol Sci 2024; 25:12824. [PMID: 39684534 PMCID: PMC11641609 DOI: 10.3390/ijms252312824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Black phosphorus (BP), a two-dimensional material, has gathered significant attention over the last decade, primarily due to its unique physiochemical properties and potential role in various biomedical applications. This review provides an in-depth overview of the synthesis, nanomaterial properties, interactions, and biomedical uses of BP, with a particular focus on wound management. The structure, synthesis methods, and stability of BP are discussed, highlighting the high degree of nanomaterial biocompatibility and cytotoxicity. The antimicrobial properties of BP, including mechanisms of action and preclinical studies to date, are examined, emphasizing the effectiveness of BP against various clinical pathogens relevant to wound management. Additionally, the versatility of BP in biomedical implementations is highlighted through utilization in drug delivery, imaging, and photothermal therapy, with a focus on scalability and reproducibility with outlined future perspectives. Despite identified challenges for translation in clinical uses, BP nanomaterial has significant potential as a versatile platform in biomedical applications, especially in wound management.
Collapse
Affiliation(s)
- Luke S. Smith
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Anteneh Amsalu
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (H.H.); (A.A.)
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Saffron J. Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Sumeet Walia
- Centre for Opto-Electronic Materials and Sensors, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia;
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; (S.J.B.); (A.E.)
| | - Zlatko Kopecki
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (L.S.S.); (G.S.H.)
| |
Collapse
|
4
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
6
|
Ma X, Lin L, Luo H, Zheng Q, Wang H, Li X, Wang Z, Feng Y, Chen Y. Construction and Performance Study of a Dual-Network Hydrogel Dressing Mimicking Skin Pore Drainage for Photothermal Exudate Removal and On-Demand Dissolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403362. [PMID: 39073303 PMCID: PMC11423237 DOI: 10.1002/advs.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Indexed: 07/30/2024]
Abstract
In recent years, negative pressure wound dressings have garnered widespread attentions. However, it is challenging to drain the accumulated fluid under negative pressures for hydrogel dressings. To address this issue, this study prepared a chemical/physical duel-network PEG-CMCS/AG/MXene hydrogel composed by chemical disulfide crosslinked network of four-arm polyethylene glycol/carboxymethyl chitosan (4-Arm-PEG-SH/CMCS), and the physical network of hydrogen bond of agar (AG). Under near-infrared light (NIR) irradiation, the PEG-CMCS/AG/MXene hydrogel undergoes photothermal heating due to integrate of MXene, which destructs the hydrogen bond network and allows the removal of exudate through a mechanism mimicking the sweat gland-like effect of skin pores. The photothermal heating effect also enables the antimicrobial activity to prevent wound infections. The excellent electrical conductivity of PEG-CMCS/AG/MXene can promote cell proliferation under the external electrical stimulation (ES) in vitro. The animal experiments of full-thickness skin defect model further demonstrate its ability to accelerate wound healing. The conversion between thioester and thiol achieved with L-cysteine methyl ester hydrochloride (L-CME) can provides the on-demand dissolution of the dressing in situ. This study holds promises to provide a novel solution to the issue of fluid accumulations under hydrogel dressings and offers new approaches to alleviating or avoiding the significant secondary injuries caused by frequent dressing changes.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Lizhi Lin
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hang Luo
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Qianqian Zheng
- Department of Polymer Science and EngineeringZhejiang UniversityZhejiang310027China
| | - Hui Wang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Xiaoyan Li
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zhenfei Wang
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Yongqiang Feng
- Plastic Surgery Hospital of Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100144China
| | - Yu Chen
- School of Medical TechnologyBeijing Institute of TechnologyBeijing100081China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
7
|
Zhao J, Li T, Yue Y, Li X, Xie Z, Zhang H, Tian X. Advancements in employing two-dimensional nanomaterials for enhancing skin wound healing: a review of current practice. J Nanobiotechnology 2024; 22:520. [PMID: 39210430 PMCID: PMC11363430 DOI: 10.1186/s12951-024-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The two-dimensional nanomaterials are characterized by their ultra-thin structure, diverse chemical functional groups, and remarkable anisotropic properties. Since its discovery in 2004, graphene has attracted significant scientific interest due to its potential applications in various fields, including electronics, energy systems, and biomedicine. In medicine, graphene is used for designing smart drug delivery systems, especially for antibiotics, and biosensing. Skin trauma is a prevalent dermatological condition that increasingly contributes to morbidities and mortalities, thus representing a significant health burden. During tissue damage, rapid skin repair is crucial to prevent blood loss and infection. Therefore, drugs used for skin trauma must possess antimicrobial and anti-inflammatory properties. Two-dimensional (2D) nanomaterials possess remarkable physical, chemical, optical, and biological characteristics due to their uniform shape, increased surface area, and surface charge. Graphene and its derivatives, transition-metal dichalcogenides (TMDs), black phosphorous (BP), hexagonal boron nitride (h-BN), MXene, and metal-organic frameworks (MOFs) are among the commonly used 2D nanomaterials. Moreover, they exhibit antibacterial and anti-inflammatory properties. This review presents a comprehensive discussion of the clinical approaches employed for wound healing treatment and explores the applications of commonly used 2D nanomaterials to enhance wound healing outcomes.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xina Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Zhongjian Xie
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518000, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
8
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
9
|
Li T, Zhao J, Yue Y, Han B, Wang W, Zhang H, Liu Z, Chen Z, Tian X. Preparation of nano-silver containing black phosphorus based on quaternized chitosan hydrogel and evaluating its effect on skin wound healing. Int J Biol Macromol 2024; 268:131950. [PMID: 38685547 DOI: 10.1016/j.ijbiomac.2024.131950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Hydrogels with favorable biocompatibility and antibacterial properties are essential in postoperative wound hemorrhage care, facilitating rapid wound healing. The present investigation employed electrostatic adsorption of black phosphorus nanosheets (BPNPs) and nano‑silver (AgNPs) to cross-link the protonated amino group NH3+ of quaternized chitosan (QCS) with the hydroxyl group of hyaluronic acid (HA). The electrostatic interaction between the two groups resulted in the formation of a three-dimensional gel network structure. Additionally, the hydrogel containing AgNPs deposited onto BPNPs was assessed for its antibacterial properties and effects on wound healing. Hydrogel demonstrated an outstanding drug-loading capacity and could be employed for wound closure. AgNPs loaded on the BPNPs released silver ions and exhibited potent antibacterial properties when exposed to 808 nm near-infrared (NIR) radiation. The ability of the hydrogel to promote wound healing in an acute wound model was further evaluated. The BPNPs were combined with HA and QCS in the aforementioned hydrogel system to improve adhesion, combine the photothermal and antibacterial properties of the BPNPs, and promote wound healing. Therefore, the reported hydrogels displayed excellent biocompatibility and hold significant potential for application in the field of tissue engineering for skin wound treatment.
Collapse
Affiliation(s)
- Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Wenjuan Wang
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyong Liu
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zhenyang Chen
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China; Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China.
| |
Collapse
|
10
|
Alunni Cardinali M, Ceccarini MR, Chiesa I, Bittolo Bon S, Rondini T, Serrano-Ruiz M, Caporali M, Tacchi S, Verdini A, Petrillo C, De Maria C, Beccari T, Sassi P, Valentini L. Mechanical Transfer of Black Phosphorus on a Silk Fibroin Substrate: A Viable Method for Photoresponsive and Printable Biomaterials. ACS OMEGA 2024; 9:17977-17988. [PMID: 38680339 PMCID: PMC11044148 DOI: 10.1021/acsomega.3c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Silvia Bittolo Bon
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Tommaso Rondini
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Manuel Serrano-Ruiz
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Silvia Tacchi
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alberto Verdini
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, 05100 Terni, Italy
| |
Collapse
|
11
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
12
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
13
|
Zhang L, You J, Lv H, Liu M, Quni S, Liu X, Zhou Y. Black Phosphorus - A Rising Star in the Antibacterial Materials. Int J Nanomedicine 2023; 18:6563-6584. [PMID: 38026531 PMCID: PMC10644884 DOI: 10.2147/ijn.s438448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.
Collapse
Affiliation(s)
- Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
14
|
Virgo EP, Haidari H, Shaw ZL, Huang LZY, Kennewell TL, Smith L, Ahmed T, Bryant SJ, Howarth GS, Walia S, Cowin AJ, Elbourne A, Kopecki Z. Layered Black Phosphorus Nanoflakes Reduce Bacterial Burden and Enhance Healing of Murine Infected Wounds. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 02/09/2025]
Abstract
AbstractCurrent treatment modalities of cutaneous wound infections are largely ineffective, attributed to the increasing burden of antimicrobial resistance. S. aureus, a commonly wound‐associated pathogen continues to pose a clinical challenge, suggesting that new alternative therapeutic materials are urgently required to provide optimal treatment. A layered allotrope of phosphorus termed Black Phosphorus nanoflakes (BPNFs) has emerged as a potential alternative antibacterial material. However, wider deployment of this material requires extensive biological validation using the latest pre‐clinical models to understand its role in wound management. Here, the antibacterial potential of BPNFs against wound pathogens demonstrates over 99% killing efficiency at ambient conditions, while remaining non‐toxic to mammalian skin cells. In addition, in vivo validation of BPNFs using a preclinical model of S. aureus acute wound infection demonstrates that daily topical application significantly reduces infection (3‐log reduction) comparable to ciprofloxacin antibiotic control. Furthermore, the application of BPNFs also accelerates wound closure, increases wound re‐epithelization, and reduces tissue inflammation compared to controls, suggesting a potential role in alleviating the current challenges of infected cutaneous wounds. For the first time, this study demonstrates the potential role of BPNFs in ambient light conditions for clearing a clinically relevant wound infection with favorable wound healing properties.
Collapse
Affiliation(s)
- Emmeline P. Virgo
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Hanif Haidari
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Zo L. Shaw
- School of Engineering STEM College RMIT University Melbourne VIC 3001 Australia
| | - Louisa Z. Y. Huang
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Tahlia L. Kennewell
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Luke Smith
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Taimur Ahmed
- Pak‐Austria Fachhochschule Institute of Applied Sciences and Technology Haripur 22620 Pakistan
| | - Saffron J. Bryant
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
| | - Sumeet Walia
- School of Engineering STEM College RMIT University Melbourne VIC 3001 Australia
| | - Allison J. Cowin
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Aaron Elbourne
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Zlatko Kopecki
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| |
Collapse
|
15
|
Jiang J, Li X, Li H, Lv X, Xu Y, Hu Y, Song Y, Shao J, Li S, Yang D. Recent progress in nanozymes for the treatment of diabetic wounds. J Mater Chem B 2023; 11:6746-6761. [PMID: 37350323 DOI: 10.1039/d3tb00803g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The slow healing of diabetic wounds has seriously affected human health. Meanwhile, the open wounds are susceptible to bacterial infection. Clinical therapeutic methods such as antibiotic therapy, insulin treatment, and surgical debridement have made great achievements in the treatment of diabetic wounds. However, drug-resistant bacteria will develop after long-term use of antibiotics, resulting in decreased efficacy. To improve the therapeutic effect, increasing drug concentration is a common strategy in clinical practice, but it also brings serious side effects. In addition, hyperglycemia control or surgical debridement can easily bring negative effects to patients, such as hypoglycemia or damage of normal tissue. Therefore, it is essential to develop novel therapeutic strategies to effectively promote diabetic wound healing. In recent years, nanozyme-based diabetic wound therapeutic systems have received extensive attention because they possess the advantages of nanomaterials and natural enzymes. For example, nanozymes have the advantages of a small size and a high surface area to volume ratio, which can enhance the tissue penetration of nanozymes and increase the reactive active sites. Moreover, compared with natural enzymes, nanozymes have more stable catalytic activity, lower production cost, and stronger operability. In this review, we first reviewed the basic characteristics of diabetic wounds and then elaborated on the catalytic mechanism and action principle of different types of nanozymes in diabetic wounds from three aspects: controlling bacterial infection, controlling hyperglycemia, and relieving inflammation. Finally, the challenges, prospects and future implementation of nanozymes for diabetic wound healing are outlined.
Collapse
Affiliation(s)
- Jingai Jiang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hui Li
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xinyi Lv
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yan Xu
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing 210048, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanni Song
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Jinjun Shao
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
16
|
Chen X, Xu J, Ji B, Fang X, Jin K, Qian J. The role of nanotechnology-based approaches for clinical infectious diseases and public health. Front Bioeng Biotechnol 2023; 11:1146252. [PMID: 37077227 PMCID: PMC10106617 DOI: 10.3389/fbioe.2023.1146252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Given the high incidence of infection and the growing resistance of bacterial and viral infections to the traditional antiseptic, the need for novel antiseptics is critical. Therefore, novel approaches are urgently required to reduce the activity of bacterial and viral infections. Nanotechnology is increasingly being exploited for medical purposes and is of significant interest in eliminating or limiting the activity of various pathogens. Due to the increased surface-to-volume ratio of a given mass of particles, the antimicrobial properties of some naturally occurring antibacterial materials, such as zinc and silver, increase as particle size decreases into the nanometer regime. However, the physical structure of a nanoparticle and the way it interacts with and penetrates the bacteria also appear to provide unique bactericidal mechanisms. To measure the efficacy of nanoparticles (diameter 100 nm) as antimicrobial agents, it is necessary to comprehend the range of approaches for evaluating the viability of bacteria; each of them has its advantages and disadvantages. The nanotechnology-based disinfectants and sensors for SARS-CoV-2 provide a roadmap for creating more effective sensors and disinfectants for detecting and preventing coronaviruses and other infections. Moreover, there is an increasing role of nanotechnology-based approaches in various infections, including wound healing and related infection, nosocomial infections, and various bacterial infections. To meet the demand for patient care, nanotechnology-based disinfectants need to be further advanced with optimum approaches. Herein, we review the current burden of infectious diseases with a focus on SARS-CoV-2 and bacterial infection that significantly burdens developed healthcare systems and small healthcare communities. We then highlight how nanotechnology could aid in improving existing treatment modalities and diagnosis of those infectious agents. Finally, we conclude the current development and future perspective of nanotechnology for combating infectious diseases. The overall goal is to update healthcare providers on the existing role and future of nanotechnology in tackling those common infectious diseases.
Collapse
|
17
|
Asghari Dilmani S, Koç S, Çakır D, Gümüşderelioğlu M. Organomodified nanoclay with boron compounds is improving structural and antibacterial properties of nanofibrous matrices. Eur J Pharm Biopharm 2023; 184:125-138. [PMID: 36708972 DOI: 10.1016/j.ejpb.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
In this study, nanofibrous polymeric matrices were successfully developed with nanoclay, montmorillonite (MMT) and various boron (B) compounds, which were known to have positive effects on the wound healing with elevated antibacterial properties. For this purpose, MMT was modified with quaternary ammonium salt, trimethyl octadecyl ammonium bromide (TMOD), and boron compounds, boron nitride (BN), zinc borate (ZB), or phenylboronic acid (PBA) were adsorbed on organomodified MMT (OMMT). Then, poly (lactic acid) (PLA) based nanofibrous PLA-OMMT/B composites were fabricated via electrospinning. Modification of MMT nanoparticles with TMOD occurred through ion-exchange reaction and led to better homogenous fibrous structures which exhibited dramatic inhibition for gram-positive bacteria. Moreover, composites with ZB and PBA demonstrated both bacteriostatic and bactericidal effects for gram-positive and gram-negative bacteria. The chemical structures of the matrices were evaluated through ATR-FTIR and supported the intercalated composite formation. The thermal and mechanical stabilities of PLA matrices were also enhanced after OMMT and B incorporation. The lowest breaking strain value was recorded for PLA-OMMT/PBA composite compared to other B composites. The 100% and 50% extracts of the PLA-OMMT matrices showed modest cytotoxic effect on the human dermal fibroblasts (NHDF) on the second day culture that probably originated from TMOD. These results demonstrated that PLA-OMMT/B matrices, especially PBA including matrices, can be used as replaceable wound dressings that have limited interaction with cells but exhibit antibacterial activity and support the early stages of wound healing both morphologically and chemically.
Collapse
Affiliation(s)
- Sara Asghari Dilmani
- Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey; Bioengineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Sena Koç
- Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Demet Çakır
- Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department, Hacettepe University, Beytepe, Ankara, Turkey; Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey.
| |
Collapse
|
18
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
19
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
20
|
Lukhey MS, Shende P. Advancement in wound healing treatment using functional nanocarriers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mihir S. Lukhey
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| |
Collapse
|
21
|
Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer. Molecules 2022; 27:molecules27144563. [PMID: 35889436 PMCID: PMC9317578 DOI: 10.3390/molecules27144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm2) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer.
Collapse
|
22
|
Chen J, Liu Y, Cheng G, Guo J, Du S, Qiu J, Wang C, Li C, Yang X, Chen T, Chen Z. Tailored Hydrogel Delivering Niobium Carbide Boosts ROS-Scavenging and Antimicrobial Activities for Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201300. [PMID: 35678523 DOI: 10.1002/smll.202201300] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The treatment of diabetic wounds remains challenging due to the excess levels of oxidative stress, vulnerability to bacterial infection, and persistent inflammation response during healing. The development of hydrogel wound dressings with ideal anti-inflammation, antioxidant, and anti-infective properties is an urgent clinical requirement. In the present study, an injectable thermosensitive niobium carbide (Nb2 C)-based hydrogel (Nb2 C@Gel) with antioxidative and antimicrobial activity is developed to promote diabetic wound healing. The Nb2 C@Gel system is composed of Nb2 C and a PLGA-PEG-PLGA triblock copolymer. The fabricated Nb2 C nanosheets (NSs) show good biocompatibility during in vitro cytotoxicity and hemocompatibility assays and in vivo toxicity assays. In vitro experiments show that Nb2 C NSs can efficiently eliminate reactive oxygen species (ROS), thus protecting cells in the wound from oxidative stress damage. Meanwhile, Nb2 C NSs also exhibit good near-infrared (NIR) photothermal antimicrobial activity against both Staphylococcus aureus and Escherichia coli. In vivo results demonstrate that Nb2 C@Gel promotes wound healing by attenuating ROS levels, reducing oxidative damage, eradicating bacterial infection under NIR irradiation, and accelerating angiogenesis. To summarize, the Nb2 C@Gel system, with its ROS-scavenging, photothermal antimicrobial and hemostatic activities, can be a promising and effective strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
23
|
Zheng H, Li H, Deng H, Fang W, Huang X, Qiao J, Tong Y. Near infrared light-responsive and drug-loaded black phosphorus nanosheets for antibacterial applications. Colloids Surf B Biointerfaces 2022; 214:112433. [PMID: 35278858 DOI: 10.1016/j.colsurfb.2022.112433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
The management of wound infection remain a major global challenge, effectively ablation of bacteria is of significant in fighting wound infectious diseases. Herein, black phosphorus nanosheets (BPNSs) were successfully prepared by liquid phase exfoliation technology, and composite nanosheets (BPNSs@phy) were formed by loading antimicrobial physcion(Phy)via hydrophobic interaction. Studies have shown that BPNSs@phy has good stability and low cytotoxicity under physiological conditions. In addition, BPNSs@phy has excellent photothermal conversion ability. After the irradiation of 808 nm near-infrared light, the light energy is converted into heat to promote the release of physcion. Under the synergistic effect of photothermal therapy (PTT) and antibacterial agents, BPNSs@phy has an excellent bactericidal effect against S.aureus (99.7%) and P.aeruginosa (99.9%). This study is expected to provide a new strategy for the development of BPNSs based antibacterial materials.
Collapse
Affiliation(s)
- Huan Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Huanhuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hongxian Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wenlan Fang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiting Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiuquan Qiao
- School of Physical Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yan Tong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
24
|
Lyu Z, Ding S, Du D, Qiu K, Liu J, Hayashi K, Zhang X, Lin Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv Drug Deliv Rev 2022; 185:114269. [PMID: 35398244 DOI: 10.1016/j.addr.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Significant progress has been made in developing two-dimensional (2D) nanomaterials owing to their ultra-thin structure, high specific surface area, and many other advantages. Recently, 2D nanomaterials with enzyme-like properties, especially peroxidase (POD)-like activity, are highly desirable for many biomedical applications. In this review, we first classify the types of 2D POD-like nanomaterials and then summarize various strategies for endowing 2D nanomaterials with POD-like properties. Representative examples of biomedical applications are reviewed, emphasizing in antibacterial, biosensing, and cancer therapy. Last, the future challenges and prospects of 2D POD-like nanomaterials are discussed. This review is expected to provide an in-depth understanding of 2D POD-like materials for biomedical applications.
Collapse
|
25
|
Fu J, Liu T, Feng X, Zhou Y, Chen M, Wang W, Zhao Y, Lu C, Quan G, Cai J, Pan X, Wu C. A Perfect Pair: Stabilized Black Phosphorous Nanosheets Engineering with Antimicrobial Peptides for Robust Multidrug Resistant Bacteria Eradication. Adv Healthc Mater 2022; 11:e2101846. [PMID: 35114076 DOI: 10.1002/adhm.202101846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/27/2021] [Indexed: 11/11/2022]
Abstract
Black phosphorus (BP) nanosheets emerged as promising 2D nanomaterial that have been applied to eradicate antibiotic-resistant bacteria. However, their applications are limited by intrinsic ambient instability. Here, the ε-poly-l-lysine (ε-PL)-engineered BP nanosheets are constructed via simple electrostatic interaction to cater the demand for passivating BP with amplified antibacterial activity. The dual drug-delivery complex named BP@ε-PL can closely anchor onto the surface of bacteria, leading to membrane disintegration. Subsequently, in situ hyperthermia generated by BP under near-infrared (NIR) irradiation can precisely eradicate pathogenic bacteria. In vitro antibacterial studies verify the rapid disinfection ability of BP@ε-PL against Methicillin-resistant Staphylococcus aureus (MRSA) within 15 min. Moreover, ε-PL can serve as an effective protector to avoid chemical degradation of bare BP. The in vivo antibacterial study shows that a 99.4% antibacterial rate in a MRSA skin infection model is achieved, which is accompanied by negligible toxicity. In conclusion, this work not merely provides a new conjecture for protecting the BP, but also opens a novel window for synergistic antibiotic-resistant bacteria therapy based on antimicrobial peptides and 2D photothermal nanomaterial.
Collapse
Affiliation(s)
- Jintao Fu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Ting Liu
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Yixian Zhou
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Minglong Chen
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Wenhao Wang
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Yiting Zhao
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Chao Lu
- College of Pharmacy Jinan University Guangzhou 510632 China
| | - Guilan Quan
- College of Pharmacy Jinan University Guangzhou 510632 China
| | - Jianfeng Cai
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Pan
- School of Pharmaceutical Sciences Sun Yat‐sen University Guangzhou 510006 China
| | - Chuanbin Wu
- College of Pharmacy Jinan University Guangzhou 510632 China
| |
Collapse
|
26
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
27
|
Qian J, Ji L, Xu W, Hou G, Wang J, Wang Y, Wang T. Copper-Hydrazide Coordinated Multifunctional Hyaluronan Hydrogels for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16018-16031. [PMID: 35353495 DOI: 10.1021/acsami.2c01254] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection and delayed healing are two major obstacles in cutaneous wound management, and developing multifunctional hydrogels with antibacterial and prohealing capabilities presents a promising strategy to dress wounds. However, the simple and facile fabrication of such hydrogel dressings remains challenging. Herein, we report the first observation on hydrazide-metal coordination crosslinking that is utilized to successfully construct a series of hyaluronan (HA)-metal hydrogels by mixing hydrazided HA and metal ion solutions. Considering the antibacterial, prohealing, and proangiogenic properties of HA and Cu(II), as a proof of principle, a HA-Cu hydrogel was systematically investigated as a wound dressing. Surprisingly, the hydrazide-Cu(II) coordination was dynamic in nature and imparted the HA-Cu hydrogel with physicochemical multifunctions, including spontaneous self-healing, shear-thinning injectability, reversible pH/redox/ion pair triple responsiveness, etc. Moreover, the HA-Cu hydrogel exhibited a robust broad-spectrum antibacterial activity and could significantly accelerate infectious wound healing. Impressively, glutathione-triggered hydroxyl radical generation further potentiated wound healing, providing a paradigm for on-demand antibacterial activity enhancement. Hence, the HA-Cu hydrogel is a clinically applicable "smart" dressing for multi-scenario wound healing. We envision that the simple and versatile coordination approach opens up a new avenue to develop multifunctional hydrogels and shows great potential in frontier fields, such as biomedicine, wearable devices, and soft robots.
Collapse
Affiliation(s)
- Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lijie Ji
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Taibing Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
28
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
29
|
Liu L, Wang W, Hong W, Jin Y, Wang L, Liu S, Wang A, Liu X. Photothermal 2D Nanosheets Combined With Astragaloside IV for Antibacterial Properties and Promoting Angiogenesis to Treat Infected Wounds. Front Bioeng Biotechnol 2022; 9:826011. [PMID: 35223823 PMCID: PMC8864217 DOI: 10.3389/fbioe.2021.826011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection, inflammatory disorder, and poor angiogenesis of tissue in chronic wounds are the main reasons why wounds are difficult to heal. In this study, a novel MSN-PEG@AS/BP nano-spray was designed to solve these issues. Astragaloside IV (AS) was loaded in mesoporous silica nanoparticles (MSN) to enhance angiogenesis and regulate inflammation, and the two-dimensional (2D) nanosheet black phosphorus (BP) was used to kill bacteria through a photothermal effect. Under thermal decomposition, the covalent bond of polyethylene glycol (PEG) was broken, releasing AS to promote the proliferation of fibroblasts, the formation of blood vessels, and the resolution of inflammation. AS can promote the polarization of the anti-inflammatory (M2) macrophage phenotype to enhance the deposition of extracellular matrix and the formation of blood vessels. Besides, BP showed a significant photothermal effect and nearly 99.58% of Escherichia coli and 99.13% of Staphylococcus aureus were killed in an antibacterial study. This nano-spray would be a novel therapeutic agent for infected wound treatment.
Collapse
Affiliation(s)
- Lichang Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Wenfeng Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Weihong Hong
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Yuyan Jin
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Lichun Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Sujun Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Ailin Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Xusheng Liu,
| |
Collapse
|
30
|
Shaw ZL, Cheeseman S, Huang LZY, Penman R, Ahmed T, Bryant SJ, Bryant G, Christofferson AJ, Orrell-Trigg R, Dekiwadia C, Truong VK, Vongsvivut JP, Walia S, Elbourne A. Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. J Mater Chem B 2022; 10:7527-7539. [PMID: 35024716 DOI: 10.1039/d1tb02575a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Samuel Cheeseman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Louisa Z Y Huang
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Rowan Penman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Taimur Ahmed
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia. .,Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, 22620, Pakistan
| | - Saffron J Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Gary Bryant
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Andrew J Christofferson
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Rebecca Orrell-Trigg
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| | - Jitraporn Pimm Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Sumeet Walia
- School of Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia. .,Functional Materials and Microsystems Research Group and MicroNano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne Victoria 3001, Australia.
| |
Collapse
|
31
|
Preparation of NIR-responsive, ROS-generating and antibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats. Acta Biomater 2022; 137:199-217. [PMID: 34644613 DOI: 10.1016/j.actbio.2021.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant (MDR) bacteria-induced infection is becoming a huge challenge for clinical treatment, especially for non-healing diabetic wound infections, which increase patient mortality. MRSA infections and delayed wound healing (methicillin-resistant Staphylococcus aureus) accounted for a higher proportion. Although surgical debridement and continuous use of antibiotics are still the main clinical treatments, new multifunctional therapeutic nanoplatform are attractive for MIDW. Thus, in the present study, black phosphorus quantum dots (BPQDs) encapsulated in hydrogel (BPQDs@NH) were utilized as nanoplatforms for MIDW treatment to achieve the multifunctional properties of NIR (near infrared) responsiveness, ROS (reactive oxygen species) generation and antibacterial activity. Upon NIR irradiation, the temperature of the BPQDs@NH-treated MIDW area rapidly increased up to 55 °C for sterilization. In vitro experiments showed that BPQDs@NH exerted a synergistic effect on inhibiting MRSA by producing of ROS, lipid peroxidation, glutathione, adenosine triphosphate accumulation and bacterial membrane destruction upon NIR irradiation. The resulting BPQDs@NH achieved an effective sterilization rate of approximately 90% for MRSA. Furthermore, animal experiments revealed that BPQDs@NH achieved an effective closure rate of 95% for MIDW after 12 days by reducing the inflammatory response and regulating the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Meanwhile, intravenous circulation experiments showed good biocompatibility of BPQDs, and no obvious damage to rat major organs was observed. The obtained results indicated that BPQDs@NH achieved the synergistic functions of NIR-responsiveness, ROS generation, and antibacterial activity and promoted wound healing, suggesting that they are promising multifunctional nanoplatforms for MIDW healing. STATEMENT OF SIGNIFICANCE: 1. NIR-triggered ROS-generating and antibacterial nanoplatforms are attractive in the wound healing field. 2. In this work, black phosphorus quantum dots encapsulated in a hydrogel were used as a nanoplatform for treating MRSA infected wounds. 3. The obtained materials have achieved an effective sterilization rate for MRSA and effective wound closure rate.
Collapse
|
32
|
Yu R, Zhang H, Guo B. Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering. NANO-MICRO LETTERS 2021; 14:1. [PMID: 34859323 PMCID: PMC8639891 DOI: 10.1007/s40820-021-00751-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/06/2023]
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Collapse
Affiliation(s)
- Rui Yu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
33
|
Wang X, Han X, Li C, Chen Z, Huang H, Chen J, Wu C, Fan T, Li T, Huang W, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zheng F, Al-Sehemi AG, Wang G, Xie Z, Zhang H. 2D materials for bone therapy. Adv Drug Deliv Rev 2021; 178:113970. [PMID: 34509576 DOI: 10.1016/j.addr.2021.113970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Due to their prominent physicochemical properties, 2D materials are broadly applied in biomedicine. Currently, 2D materials have achieved great success in treating many diseases such as cancer and tissue engineering as well as bone therapy. Based on their different characteristics, 2D materials could function in various ways in different bone diseases. Herein, the application of 2D materials in bone tissue engineering, joint lubrication, infection of orthopedic implants, bone tumors, and osteoarthritis are firstly reviewed comprehensively together. Meanwhile, different mechanisms by which 2D materials function in each disease reviewed below are also reviewed in detail, which in turn reveals the versatile functions and application of 2D materials. At last, the outlook on how to further broaden applications of 2D materials in bone therapies based on their excellent properties is also discussed.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Xianjing Han
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jindong Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Chenshuo Wu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianzhong Li
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fei Zheng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Abdullah G Al-Sehemi
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, PR China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
34
|
Zhu Y, Xie Z, Li J, Liu Y, Li C, Liang W, Huang W, Kang J, Cheng F, Kang L, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Xu J, Li D, Zhang H. From phosphorus to phosphorene: Applications in disease theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
36
|
Wang G, Qian G, Yao J, Cai W, Peng S, Shuai C. Polydopamine-decorated black phosphorous to enhance stability in polymer scaffold. NANOTECHNOLOGY 2021; 32:455701. [PMID: 34330108 DOI: 10.1088/1361-6528/ac1977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Black phosphorous (BP) is recognized as an effective reinforcement for polymer scaffold because of its excellent mechanical property and biocompatibility. Nevertheless, its poor stability in physiological environment limits its application in bone repair. In this work, BP was modified with dopamine by self-polymerization approach (donated as BP@PDA) to improve its stability, and then was introduced into poly-L-lactic acid (PLLA) scaffold fabricated by selective laser sintering technology. Results showed the compressive and tensile strength of PLLA/BP@PDA scaffold were improved by 105% and 50%, respectively. The enhanced strength was ascribed to the increased stability of BP and the improved compatibility of BP@PDA with PLLA matrix after modifying with polydopamine. Simultaneously, the bioactivity of PLLA scaffold was significantly improved. It was attributed to that BP@PDA provided the sustained source ofPO43-ions which could capture Ca2+ions from physiological medium to facilitatein situbiomineralization, thereby promoting cell adhesion, proliferation and differentiation. This study demonstrated the great potential of BP@PDA in bone repair.
Collapse
Affiliation(s)
- Guoyong Wang
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Guowen Qian
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Jia Yao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Weiliang Cai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, 410078 Hunan People's Republic of China
- School of energy and mechanical engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- Shenzhen Institute of Information Technology, Shenzhen 518172, People's Republic of China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
37
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
38
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Choe R, Balhaddad AA, Fisher JP, Melo MAS, Huang HC. Photodynamic Therapy for Biomodulation and Disinfection in Implant Dentistry: Is It Feasible and Effective? Photochem Photobiol 2021; 97:916-929. [PMID: 33876438 DOI: 10.1111/php.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Dental implants are the most common rehabilitation and restorative treatment used to replace missing teeth. Biofilms adhere to implant surfaces to trigger implant-associated infection and inflammatory response. Clinically, the biofilm induces a local host response with the infiltration of phagocytic immune cells. The pro-inflammatory surroundings set off osteoclastogenesis, which leads to the septic loosening of the implant. The standard of dental care for implant-associated infection relies on a combination of surgery and antimicrobial therapy. Antimicrobial photodynamic therapy is a noninvasive and photochemistry-based approach capable of reducing bacterial load and modulating inflammatory responses. In this review, we explore the photobiomodulation and disinfection outcomes promoted by photodynamic therapy for implant infections, highlighting the quality of evidence on the most up-to-date studies, and discuss the major challenges on the advance of these therapeutic strategies.
Collapse
Affiliation(s)
- Robert Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
| | - Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Zheng Y, Hong X, Wang J, Feng L, Fan T, Guo R, Zhang H. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Adv Healthc Mater 2021; 10:e2001743. [PMID: 33511775 DOI: 10.1002/adhm.202001743] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Regenerative medicine has become one of the hottest research topics in medical science that provides a promising way for repairing tissue defects in the human body. Due to their excellent physicochemical properties, the application of 2D nanomaterials in regenerative medicine has gradually developed and has been attracting a wide range of research interests in recent years. In particular, graphene and its derivatives, black phosphorus, and transition metal dichalcogenides are applied in all the aspects of tissue engineering to replace or restore tissues. This review focuses on the latest advances in the application of 2D-nanomaterial-based hydrogels, nanosheets, or scaffolds that are engineered to repair skin, bone, and cartilage tissues. Reviews on other applications, including cardiac muscle regeneration, skeletal muscle repair, nerve regeneration, brain disease treatment, and spinal cord healing are also provided. The challenges and prospects of applications of 2D nanomaterials in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Xiangqian Hong
- Shenzhen Eye Institute Shenzhen Eye Hospital Affiliated to Jinan University School of Optometry Shenzhen University Shenzhen 518040 P. R. China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jiantao Wang
- Shenzhen Eye Institute Shenzhen Eye Hospital Affiliated to Jinan University School of Optometry Shenzhen University Shenzhen 518040 P. R. China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
41
|
Xue C, Sutrisno L, Li M, Zhu W, Fei Y, Liu C, Wang X, Cai K, Hu Y, Luo Z. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound healing. Biomaterials 2020; 269:120623. [PMID: 33388689 DOI: 10.1016/j.biomaterials.2020.120623] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Surgery is the mainstream treatment for melanoma, but its clinical implementation suffers from some major drawbacks including residual infiltrating melanoma cells at resection margins and severe tissue injury. In this study, a nanocomposite scaffold is developed for in-situ therapy after melanoma surgery as well as wound healing, which is fabricated by embedding photothermal-capable black phosphorus nanosheets (BPNSs) into bioresorbable Gelatin-PCL (GP) nanofibrous scaffold. GP scaffold is a clinically-tested biomaterial with temperature sensitivity and tissue-healing effect, while the BPNSs are loaded with the anticancer antibiotic of doxorubicin (DOX) and conjugated with NH2-PEG-FA for tumor-targeted delivery. The GP scaffold could undergo a sol-gel transition upon NIR irritation and release the BPNSs in situ. During this process, most of the BP-based nanoformulations were selectively internalized by the melanoma cells for the cooperative photothermal therapy and heat-triggerable DOX therapy, while some of the loaded DOX was released into the wound tissue to create a tumor-suppressive microenvironment. Moreover, BPNSs could be gradually degraded to phosphates/phosphonates and thus enhance tissue repair by activating the ERK1/2 and PI3K/Akt pathway. Meanwhile, the detached DOX molecules would also enter the wound tissues for continuous melanoma inhibition. Considering the anti-melanoma and wound healing effect of this composite scaffold, it may offer a facile strategy for the wound treatment after melanoma surgery.
Collapse
Affiliation(s)
- Chencheng Xue
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Linawati Sutrisno
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Wei Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Changhuang Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
42
|
Pandey A, Nikam AN, Fernandes G, Kulkarni S, Padya BS, Prassl R, Das S, Joseph A, Deshmukh PK, Patil PO, Mutalik S. Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E13. [PMID: 33374716 PMCID: PMC7822462 DOI: 10.3390/nano11010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus is one of the emerging members of two-dimensional (2D) materials which has recently entered the biomedical field. Its anisotropic properties and infrared bandgap have enabled researchers to discover its applicability in several fields including optoelectronics, 3D printing, bioimaging, and others. Characterization techniques such as Raman spectroscopy have revealed the structural information of Black phosphorus (BP) along with its fundamental properties, such as the behavior of its photons and electrons. The present review provides an overview of synthetic approaches and properties of BP, in addition to a detailed discussion about various types of surface modifications available for overcoming the stability-related drawbacks and for imparting targeting ability to synthesized nanoplatforms. The review further gives an overview of multiple characterization techniques such as spectroscopic, thermal, optical, and electron microscopic techniques for providing an insight into its fundamental properties. These characterization techniques are not only important for the analysis of the synthesized BP but also play a vital role in assessing the doping as well as the structural integrity of BP-based nanocomposites. The potential role of BP and BP-based nanocomposites for biomedical applications specifically, in the fields of drug delivery, 3D printing, and wound dressing, have been discussed in detail to provide an insight into the multifunctional role of BP-based nanoplatforms for the management of various diseases, including cancer therapy. The review further sheds light on the role of BP-based 2D platforms such as BP nanosheets along with BP-based 0D platforms-i.e., BP quantum dots in the field of therapy and bioimaging of cancer using techniques such as photoacoustic imaging and fluorescence imaging. Although the review inculcates the multimodal therapeutic as well as imaging role of BP, there is still research going on in this field which will help in the development of BP-based theranostic platforms not only for cancer therapy, but various other diseases.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ajinkya N. Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria;
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Prashant K. Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, Maharashtra, India;
| | - Pravin O. Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist Dhule 425405, Maharashtra, India;
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| |
Collapse
|
43
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
44
|
Chakraborty PK, Azadmanjiri J, Pavithra CLP, Wang X, Masood SH, Dey SR, Wang J. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004900. [PMID: 33185035 DOI: 10.1002/smll.202004900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Indexed: 06/11/2023]
Abstract
2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.
Collapse
Affiliation(s)
- Pritam K Chakraborty
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Chokkakula L P Pavithra
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Xiaojian Wang
- Centre for 3D Printing Materials and Additive Manufacturing Technology, Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Syed H Masood
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - James Wang
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| |
Collapse
|
45
|
Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164:1960-1972. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
46
|
Zhao J, Huang S, Ravisankar P, Zhu H. Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS APPLIED BIO MATERIALS 2020; 3:8188-8210. [DOI: 10.1021/acsabm.0c00950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhao
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Shuyi Huang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming Guangdong, 525000, P. R. China
| |
Collapse
|
47
|
Li H, Cheng F, Wei X, Yi X, Tang S, Wang Z, Zhang YS, He J, Huang Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111324. [PMID: 33254961 DOI: 10.1016/j.msec.2020.111324] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Biodegradable and injectable hydrogels derived from natural polysaccharides have attracted extensive attention in biomedical applications due to their minimal invasiveness and ability to accommodate the irregular wound surfaces. In this work, we report the development of an in-situ-injectable, self-healing, antibacterial, hemostatic, and biocompatible hydrogel derived from the hybrid of N,O-carboxymethyl chitosan (N,O-CMC) and oxidized chondroitin sulfate (OCS), which did not require any chemical crosslinking. The N,O-CMC/OCS hydrogel could be readily produced under physiological conditions by varying the N,O-CMC-to-OCS ratio, relying on the Schiff base reaction between the -NH- functional groups of N,O-CMC and the -CHO functional groups of OCS. The results showed that the N,O-CMC2/OCS1 hydrogel had relatively long gelation time (133 s) and stable performances. The viability of NIH/3T3 cells and endothelial cells cultured with the N,O-CMC2/OCS1 hydrogel extract was roughly 85%, which demonstrated its low cell toxicity. Besides, the N,O-CMC2/OCS1 hydrogel revealed excellent antibacterial properties due to the inherent antibacterial ability of N,O-CMC. Importantly, the hydrogel tightly adhered to the biological tissue and demonstrated excellent in vivo hemostatic performance. Our work describing an injectable, self-healing, antibacterial, and hemostatic hydrogel derived from polysaccharides will likely hold good potential in serving as an enabling wound dressing material.
Collapse
Affiliation(s)
- Hongbin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xinjing Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaotong Yi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shize Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongyan Wang
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
48
|
Zhong Y, Xiao H, Seidi F, Jin Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020; 21:2983-3006. [PMID: 32672446 DOI: 10.1021/acs.biomac.0c00760] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wound healing is usually accompanied by bacterial infection. The excessive use of synthetic antibiotics leads to drug resistance, posing a significant threat to human health. Hydrogel-based wound dressings aimed at mitigating bacterial infections have emerged as an effective wound treatment. The review presented herein particularly focuses on the hydrogels originating from natural polymers. To further enhance the performance of wound dressings, various strategies and approaches have been developed to endow the hydrogels with excellent broad-spectrum antibacterial activity. Those that are summarized in the current review are the hydrogels with intrinsic or stimuli-triggered bactericidal properties and others that serve as vehicles for loading antibacterial agents without synthetic antibiotics. Specific attention is paid to antimicrobial mechanisms and the antibacterial performance of hydrogels. Practical antibacterial applications to accelerate the wound healing employing these antibiotic-free hydrogels are also introduced along with the discussion on the current challenges and perspectives leading to new technologies.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
49
|
Naskar A, Kim KS. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020; 12:499. [PMID: 32486142 PMCID: PMC7356512 DOI: 10.3390/pharmaceutics12060499] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
50
|
Heichel DL, Burke KA. Enhancing the Carboxylation Efficiency of Silk Fibroin through the Disruption of Noncovalent Interactions. Bioconjug Chem 2020; 31:1307-1312. [PMID: 32378886 DOI: 10.1021/acs.bioconjchem.0c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Silk fibroin is a semicrystalline protein used as a renewable polymer source and as a biomaterial platform, but existing methods to synthetically modify fibroin suffer from low efficiencies that can limit the protein's utility. This work reports on a mild synthesis that results in a 2-fold increase in carboxylation through the disruption of noncovalent interactions during the reaction. Importantly, silk fibroin maintains its ability to form β-sheets that are critical for tailoring mechanical and degradation properties, as well as for rendering solid constructs (e.g., films and scaffolds) insoluble in water. Increasing carboxyl functionalization affords control over protein charge, which permits tailoring the loading and release of small molecules using electrostatic interactions. Disruption of noncovalent interactions during aqueous carbodiimide coupling also significantly enhances conjugation efficiency of molecules containing primary amine groups, thus enabling high degrees of functionalization with biological molecules, such as proteins and peptides, for biomaterial applications.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|