1
|
Obaid Saleh R, Saleh EAM, Moharam MM, Uthirapathy S, Ballal S, Singh A, Nanda A, Ray S, Nasir AK, Kaurshead RS. Recent trends and advances in single-atom nanozymes for the electrochemical and optical sensing of pesticide residues in food and water. RSC Adv 2025; 15:15919-15939. [PMID: 40370855 PMCID: PMC12076139 DOI: 10.1039/d5ra00474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/20/2025] [Indexed: 05/16/2025] Open
Abstract
Nowadays, single-atom nanozymes (SAzymes) and single-atom catalysts (SACs) have flourished in the field of catalysis owing to their high catalytic performance and exceptional atom utilization efficiency, thereby enhancing biosensing capabilities. In comparison to natural enzymes, SAzymes offer several advantages, including cost-effectiveness, ease of production, and robust catalytic activity, making them highly promising for biosensing applications. Notably, SAzymes demonstrate superior catalytic efficiency and selectivity compared with traditional nanozymes. In this context, this review delineates the enzyme-like characteristics of SAzymes aimed at enhancing food safety, with a focus on the primary factors that influence their catalytic efficacy. The discussion has been expanded to include the use of SAzymes for screening various pesticide residues, particularly organophosphate pesticides (OPPs), carbamates, acetamiprid, pyrethroids, and other pesticide types, which are present in agricultural food products. These applications are realized because of the exceptional properties of single-atom structures, including enhanced reaction kinetics, high active site density, and tunable electronic properties. The integration of SAzymes into sensing platforms holds great potential for the development of cost-effective, sensitive, and reliable tools for the real-time monitoring of pesticide residues. Finally, this paper highlights the current challenges and outlines potential opportunities for the advancement of SAzyme-based biosensing technologies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif Al Anbar 31001 Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - M M Moharam
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemical and Electrochemical Processing Department, Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87, Helwan 11421 Egypt
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | | | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Subhashree Ray
- Department of Biochemistry IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha-751003 India
| | - Abdul Kareem Nasir
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Rzaq Shailaan Kaurshead
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University 51001 Babylon Iraq
| |
Collapse
|
2
|
Wu L, Lin H, Cao X, Tong Q, Yang F, Miao Y, Ye D, Fan Q. Bioorthogonal Cu Single-Atom Nanozyme for Synergistic Nanocatalytic Therapy, Photothermal Therapy, Cuproptosis and Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202405937. [PMID: 38654446 DOI: 10.1002/anie.202405937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Single-atom nanozymes (SAzymes) with atomically dispersed active sites are potential substitutes for natural enzymes. A systematic study of its multiple functions can in-depth understand SAzymes's nature, which remains elusive. Here, we develop a novel ultrafast synthesis of sputtered SAzymes by in situ bombarding-embedding technique. Using this method, sputtered copper (Cu) SAzymes (CuSA) is developed with unreported unique planar Cu-C3 coordinated configuration. To enhance the tumor-specific targeting, we employ a bioorthogonal approach to engineer CuSA, denoted as CuSACO. CuSACO not only exhibits minimal off-target toxicity but also possesses exceptional ultrahigh catalase-, oxidase-, peroxidase-like multienzyme activities, resulting in reactive oxygen species (ROS) storm generation for effective tumor destruction. Surprisingly, CuSACO can release Cu ions in the presence of glutathione (GSH) to induce cuproptosis, enhancing the tumor treatment efficacy. Notably, CuSACO's remarkable photothermal properties enables precise photothermal therapy (PTT) on tumors. This, combined with nanozyme catalytic activities, cuproptosis and immunotherapy, efficiently inhibiting the growth of orthotopic breast tumors and gliomas, and lung metastasis. Our research highlights the potential of CuSACO as an innovative strategy to utilize multiple mechanism to enhance tumor therapeutic efficacy, broadening the exploration and development of enzyme-like behavior and physiological mechanism of action of SAzymes.
Collapse
Affiliation(s)
- Luyan Wu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Huihui Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| | - Xiang Cao
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qiang Tong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Fangqi Yang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
3
|
Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like activity: A review. CHEMOSPHERE 2024; 346:140557. [PMID: 38303399 DOI: 10.1016/j.chemosphere.2023.140557] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Single-atom nanozymes (SANs) are nanomaterials-based nanozymes with atomically dispersed enzyme-like active sites. SANs offer improved as well as tunable catalytic activity. The creation of extremely effective SANs and their potential uses have piqued researchers' curiosity due to their advantages of cheap cost, variable catalytic activity, high stability, and large-scale production. Furthermore, SANs with uniformly distributed active centers and definite coordination structures offer a distinctive opportunity to investigate the structure-activity correlation and control the geometric and electrical features of metal centers. SANs have been extensively explored in photo-, thermal-, and electro-catalysis. However, SANs suffer from the following disadvantages, such as efficiency, non-mimicking of the 3-D complexity of natural enzymes, limited and narrow range of artificial SANs, and biosafety aspects. Among a quite limited range of artificial SANs, the peroxidase action of SANs has attracted significant research attention in the last five years with the aim of producing reactive oxygen species for use in cancer therapy, and water treatment among many other applications. In this review, we explore the recent progress of different SANs as peroxidase mimics, the role of the metal center in enzymatic activity, possible prospects, and underlying limitations in real-time applications.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Varun Rai
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. NANOSCALE 2023; 15:12137-12156. [PMID: 37377098 DOI: 10.1039/d3nr01722b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozymes are nanomaterials with catalytic properties similar to those of natural enzymes, and they have recently been collectively identified as a class of innovative artificial enzymes. Nanozymes are widely used in various fields, such as biomedicine, due to their high catalytic activity and stability. Nanozymes can trigger changes in reactive oxygen species (ROS) levels in cells and the activation of inflammasomes, leading to the programmed cell death (PCD), including the pyroptosis, ferroptosis, and autophagy, of tumor cells. In addition, some nanozymes consume glucose, starving cancer cells and thus accelerating tumor cell death. In addition, the electric charge of the structure and the catalytic activity of nanozymes are sensitive to external factors such as light and electric and magnetic fields. Therefore, nanozymes can be used with different therapeutic methods, such as chemodynamic therapy (CDT), photodynamic therapy (PDT) and sonodynamic therapy (SDT), to achieve highly efficient antitumor effects. Many cancer therapies induce tumor cell death via the pyroptosis, ferroptosis, and autophagy of tumor cells mediated by nanozymes. We review the mechanisms of pyroptosis, ferroptosis, and autophagy in tumor development, as well as the potential application of nanozymes to regulate pyroptosis, ferroptosis, and autophagy in tumor cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
5
|
Fu R, Ma Z, Zhao H, Jin H, Tang Y, He T, Ding Y, Zhang J, Ye D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal Chem 2023. [PMID: 37438259 DOI: 10.1021/acs.analchem.3c01005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.
Collapse
Affiliation(s)
- Ruixue Fu
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zijian Ma
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Huan Jin
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ting He
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
6
|
Zhu C, Zhou Z, Gao XJ, Tao Y, Cao X, Xu Y, Shen Y, Liu S, Zhang Y. Cascade nanozymatic network mimicking cells with selective and linear perception of H 2O 2. Chem Sci 2023; 14:6780-6791. [PMID: 37350812 PMCID: PMC10284138 DOI: 10.1039/d3sc01714a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
A single stimulus leading to multiple responses is an essential function of many biological networks, which enable complex life activities. However, it is challenging to duplicate a similar chemical reaction network (CRN) using non-living chemicals, aiming at the disclosure of the origin of life. Herein, we report a nanozyme-based CRN with feedback and feedforward functions for the first time. It demonstrates multiple responses at different modes and intensities upon a single H2O2 stimulus. In the two-electron cascade oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the endogenous product H2O2 competitively inhibited substrates in the first one-electron oxidation reaction on a single-atom nanozyme (Co-N-CNTs) and strikingly accelerated the second one-electron oxidation reaction under a micellar nanozyme. As a proof-of-concept, we further confined the nanozymatic network to a microfluidic chip as a simplified artificial cell. It exhibited remarkable selectivity and linearity in the perception of H2O2 stimulus against more than 20 interferences in a wide range of concentrations (0.01-100 mM) and offered an instructive platform for studying primordial life-like processes.
Collapse
Affiliation(s)
- Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Yanhong Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 China
| | - Xuwen Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University Nanjing 211189 China
| |
Collapse
|
7
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Gu Y, Cao Z, Zhao M, Xu Y, Lu N. Single-Atom Fe Nanozyme with Enhanced Oxidase-like Activity for the Colorimetric Detection of Ascorbic Acid and Glutathione. BIOSENSORS 2023; 13:bios13040487. [PMID: 37185562 PMCID: PMC10137000 DOI: 10.3390/bios13040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Single-atom nanozymes (SAzymes) have drawn ever-increasing attention due to their maximum atom utilization efficiency and enhanced enzyme-like activity. Herein, a facile pyrolysis strategy is reported for the synthesis of the iron-nitrogen-carbon (Fe-N-C) SAzyme using ferrocene trapped within porous zeolitic imidazolate framework-8 (ZIF-8@Fc) as a precursor. The as-prepared Fe-N-C SAzyme exhibited exceptional oxidase-mimicking activity, catalytically oxidizing 3,3',5,5'-tetramethylbenzidine (TMB) with high affinity (Km) and fast reaction rate (Vmax). Taking advantage of this property, we designed two colorimetric sensing assays based on different interaction modes between small molecules and Fe active sites. Firstly, utilizing the reduction activity of ascorbic acid (AA) toward oxidized TMB (TMBox), a colorimetric bioassay for AA detection was established, which exhibited a good linear range of detection from 0.1 to 2 μM and a detection limit as low as 0.1 μM. Additionally, based on the inhibition of nanozyme activity by the thiols of glutathione (GSH), a colorimetric biosensor for GSH detection was constructed, showing a linear response over a concentration range of 1-10 μM, with a detection limit of 1.3 μM. This work provides a promising strategy for rationally designing oxidase-like SAzymes and broadening their application in biosensing.
Collapse
Affiliation(s)
- Yue Gu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhongxu Cao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengde Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yanan Xu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
9
|
Wang J, Xie T, Liu X, Wu D, Li Y, Wang Z, Fan X, Zhang F, Peng W. Enhanced redox cycle of Fe 3+/Fe 2+ on Fe@NC by boron: Fast electron transfer and long-term stability for Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130605. [PMID: 37056016 DOI: 10.1016/j.jhazmat.2022.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
In this work, Fe@NC/B material is successfully synthesized and in-situ supported on the surface of amorphous boron (B) using a simple pyrolysis method. The interface between Fe species and B is improved by introducing N-doped carbon (NC) layers as intermediate, fast electron transfer from B to Fe@NC can therefore be achieved, thus could promote the fast redox cycle of Fe3+/Fe2+. The obtained material can therefore activate peroxymonosulfate (PMS) effectively to degrade Bisphenol A (BPA), a fast degradation rate and a very long lifetime in a continous tubular reactor are realized. Moreover, experiments and DFT calculation indicate that Fe2+ containing species are the dominated active sites, while the exposed B atoms and structure defect of B can also activate PMS directly to produce SO4•- and 1O2 species for BPA degradation. In addition, boric acid is the oxidation product of B, which can be dissolved into the aqueous solution and expose fresh B species again for PMS activation. The combination of B with Fe@NC provide novel materials for long term PMS activation, thus could promote the real application of persulfates on an industrial scale.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Tianzhu Xie
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China.
| |
Collapse
|
10
|
Xu Y, Zhou Z, Deng N, Fu K, Zhu C, Hong Q, Shen Y, Liu S, Zhang Y. Molecular insights of nanozymes from design to catalytic mechanism. Sci China Chem 2023; 66:1318-1335. [PMID: 36817323 PMCID: PMC9923663 DOI: 10.1007/s11426-022-1529-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Emerging as cost-effective potential alternatives to natural enzymes, nanozymes have attracted increasing interest in broad fields. To exploit the in-depth potential of nanozymes, rational structural engineering and explicit catalytic mechanisms at the molecular scale are required. Recently, impressive progress has been made in mimicking the characteristics of natural enzymes by constructing metal active sites, binding pockets, scaffolds, and delicate allosteric regulation. Ingenious in-depth studies have been conducted with advances in structural characterization and theoretical calculations, unveiling the "black box" of nanozyme-catalytic mechanisms. This review introduces the state-of-art synthesis strategies by learning from the natural enzyme counterparts and summarizes the general overview of the nanozyme mechanism with a particular emphasis on the adsorbed intermediates and descriptors that predict the nanozyme activity The emerging activity assessment methodology that illustrates the relationship between electrochemical oxygen reduction and enzymatic oxygen reduction is discussed with up-to-date advances Future opportunities and challenges are presented in the end to spark more profound work and attract more researchers from various backgrounds to the flourishing field of nanozymes.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Nankai Deng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Kangchun Fu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189 China
| |
Collapse
|
11
|
Chen X, Liao J, Lin Y, Zhang J, Zheng C. Nanozyme's catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04525-w. [PMID: 36633622 DOI: 10.1007/s00216-023-04525-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Nanozymes exhibit their great potential as alternatives to natural enzymes. In addition to catalytic activity, nanozymes also need to have biologically relevant catalytic reactions at physiological pH to fit in the definition of an enzyme and to achieve efficient analytical applications. Previous reviews in the nanozyme field mainly focused on the catalytic mechanisms, activity regulation, and types of catalytic reactions. In this paper, we discuss efforts made on the substrate-dependent catalytic activity of nanozymes at neutral pH. First, the discrepant catalytic activities for different substrates are compared, where the key differences are the characteristics of substrates and the adsorption of substrates by nanozymes at different pH. We then reviewed efforts to enhance reaction activity for model chromogenic substrates and strategies to engineer nanomaterials to accelerate reaction rates for other substrates at physiological pH. Finally, we also discussed methods to achieve efficient sensing applications at neutral pH using nanozymes. We believe that the nanozyme is catching up with enzymes rapidly in terms of reaction rates and reaction conditions. Designing nanozymes with specific catalysis for efficient sensing remains a challenge.
Collapse
Affiliation(s)
- Xueshan Chen
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Liao
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
12
|
Liu Q, Wei H, Du Y. Microfluidic bioanalysis based on nanozymes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
14
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Lu X, Gao S, Lin H, Tian H, Xu D, Shi J. Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. Natl Sci Rev 2022; 9:nwac022. [PMID: 36415318 PMCID: PMC9671664 DOI: 10.1093/nsr/nwac022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 10/27/2023] Open
Abstract
Nanocatalysts with enzyme-like catalytic activities, such as oxidase mimics, are extensively used in biomedicine and environmental treatment. Searching for enzyme-like nanomaterials, clarifying the origins of catalytic activity and developing activity assessment methodologies are therefore of great significance. Here, we report that oxidase catalysis and oxygen reduction reaction (ORR) electrocatalysis can be well bridged based on their identical activity origins, which makes facile electrocatalytic ORR activity measurements intrinsically applicable to oxidase-like activity evaluations. Inspired by natural heme-copper oxidases, Cu/Fe-doped single-atom catalysts (SACs) were first synthesized and used as model catalysts. Chromogenic reactions, electrochemical voltammetric measurements and density functional theory calculations further verified the linear relationship between the oxidase-like and ORR catalytic activities of the catalysts; thus, an effective descriptor ([Formula: see text]) is proposed for rapid enzymatic catalyst evaluation. Evidence suggests that the enhanced tumour therapeutic efficacy of SACs is a result of their oxidase-like/ORR activities, which proves that numerous ORR electrocatalysts are promising candidates for oxidase mimics and tumour therapy. The synergistic catalytic effect of the biomimetic heterobinuclear Cu-Fe centres has also been thoroughly probed.
Collapse
Affiliation(s)
- Xiangyu Lu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shanshan Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Han Tian
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deliang Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy. J Colloid Interface Sci 2022; 628:419-434. [PMID: 35998465 DOI: 10.1016/j.jcis.2022.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022]
Abstract
As an emerging technology, nanocatalytic medicine attracts much attention, especially the ones according to the enzymatic reaction by using excess H2O2 in the tumor. Among various candidates, single-atom catalyst (SAC) revealed unique and outstanding redox reaction performance, since the active sites consisting of single metal atoms may achieve the maximum utilization of metal atoms and emerge obviously amplified reaction rate. Here we developed an M-Nx (M = Mn, Zn) center-based SAC with a hollow structure by calcination of Mn2+-doped zeolitic imidazolate frameworks (ZIF-8), and PEGylation was applied to improve the hydrophilicity. According to the enzymatic reaction, the M-Nx (M = Mn, Zn) centers have an inherent peroxidase-like activity to catalyze over-expressed H2O2 in the weak acidic tumor microenvironment and generate a large amount of toxic reactive oxygen species (ROS) like hydroxyl radicals for therapy. To keep efficient therapeutic output, we integrated the hollow SAC with Au which could expend the glucose in tumor and supply H2O2 as the substrate of peroxidase-like activity. Better yet, Au may boost the photothermal effect of SAC and offer another non-invasive photothermal therapy (PTT) to promote the effect of tumor removal. This platform provided a new idea for the construction of more efficient peroxidase-like activity in tumor therapy.
Collapse
|
17
|
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-Based Artificial Organelles: An Emerging Direction for Artificial Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202294. [PMID: 35869033 DOI: 10.1002/smll.202202294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Artificial organelles are compartmentalized nanoreactors, in which enzymes or enzyme-mimic catalysts exhibit cascade catalytic activities to mimic the functions of natural organelles. Importantly, research on artificial organelles paves the way for the bottom-up design of synthetic cells. Due to the separation effect of microcompartments, the catalytic reactions of enzymes are performed without the influence of the surrounding medium. The current techniques for synthesizing artificial organelles rely on the strategies of encapsulating enzymes into vesicle-structured materials or reconstituting enzymes onto the microcompartment materials. However, there are still some problems including limited functions, unregulated activities, and difficulty in targeting delivery that hamper the applications of artificial organelles. The emergence of nanozymes (nanomaterials with enzyme-like activities) provides novel ideas for the fabrication of artificial organelles. Compared with natural enzymes, nanozymes are featured with multiple enzymatic activities, higher stability, easier to synthesize, lower cost, and excellent recyclability. Herein, the most recent advances in nanozyme-based artificial organelles are summarized. Moreover, the benefits of compartmental structures for the applications of nanozymes, as well as the functional requirements of microcompartment materials are also introduced. Finally, the potential applications of nanozyme-based artificial organelles in biomedicine and the related challenges are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
18
|
Nakase K, Ichihara S, Matsumoto J, Koh S, Mizuno M, Okada T. Acceleration of the Dehydrogenation of d-Glucose to 2-Keto-d-gluconate in Aqueous Amino Acid via Hydrated Stacked Clay Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6076-6085. [PMID: 35507550 DOI: 10.1021/acs.langmuir.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assembly of discrete active species to form periodical nanostructures is essential in realizing low-cost artificial enzymes that mimic natural enzymatic functions in extraordinary bio(chemo)selective reactions. In this study, we developed artificial bifunctional glucose/gluconic acid dehydrogenase from naturally abundant resources: l-aspartic acid (Asp) and montmorillonite (a subgroup of smectite natural clay minerals). β-d-Glucose (Glc) was dehydrogenated to 2-keto-d-gluconate (2-KGA) at 25 and 30 °C in an aqueous acidic solution (pH = 3, 4, and 5). The reaction involved sequential steps that yielded d-gluconic acid (GA) as an intermediate. The second step of the dehydrogenation (GA to 2-KGA) occurred at a higher rate than the first (Glc to GA), which is comparable to the natural process. A negatively charged carboxylate in Asp was required for the dehydrogenation, which donates an electron pair (COO:-) to the hydroxyl group bonded to the C(1)-position of Glc. The acidic sites in clay served as coenzymatic sites (electron acceptor), promoting the Glc dehydrogenation as the Glc reduced by Asp approached the clay coenzymatic sites. The active coenzymatic structures were developed in 48 h (induction period) through the rearrangement of the adsorbed Asp and Glc molecules on montmorillonite in water (intermediate structure). The spontaneous assembling of the intermediate structures facilitated the one-pot dehydrogenation of Glc to 2-KGA via periodic "hydrated stacked layers" comprising clay nanosheets, Asp, and Glc. The facile synthetic route proposed here is inexpensive and would be beneficial without using both GDH and GADH enzymes bound to a cell membrane.
Collapse
Affiliation(s)
- Katsunori Nakase
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Shunta Ichihara
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Jumpei Matsumoto
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Sangho Koh
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Masahiro Mizuno
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
19
|
Wang S, Hu Z, Wei Q, Cui P, Zhang H, Tang W, Sun Y, Duan H, Dai Z, Liu Q, Zheng X. Precise Design of Atomically Dispersed Fe, Pt Dinuclear Catalysts and Their Synergistic Application for Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20669-20681. [PMID: 35471816 DOI: 10.1021/acsami.2c01683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, extending single-atom catalysts from mono- to binary sites has been proved to be a promising way to realize more efficient chemical catalytic processes. In this work, atomically dispersed Fe, Pt dinuclear catalysts ((Fe, Pt)SA-N-C) with an ca. 2.38 Å distance for Fe1 (Fe-N3) and Pt1 (Pt-N4) could be precisely controlled via a novel secondary-doping strategy. In response to tumor microenvironments, the Fe-N3/Pt-N4 moieties exhibited synergistic catalytic performance for tumor catalytic therapy. Due to its beneficial microstructure and abundant active sites, the Fe-N3 moiety effectively initiated the intratumoral Fenton-like reaction to release a large amount of toxic hydroxyl radicals (•OH), which further induced tumor cell apoptosis. Meanwhile, the bonded Pt-N4 moiety could also enhance the Fenton-like activity of the Fe-N3 moiety up to 128.8% by modulating the 3d electronic orbitals of isolated Fe-N3 sites. In addition, the existence of amorphous carbon revealed high photothermal conversion efficiency when exposed to an 808 nm laser, which synergistically achieved an effective oncotherapy outcome. Therefore, the as-obtained (Fe, Pt)SA-N-C-FA-PEG has promising potential in the bio-nanomedicine field for inhibiting tumor cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Qiulian Wei
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
- School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Ping Cui
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Huimin Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Weina Tang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Haiqiang Duan
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Qingyun Liu
- School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266510, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
20
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
21
|
Wang Z, Wu F. Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthc Mater 2022; 11:e2101682. [PMID: 34729955 DOI: 10.1002/adhm.202101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Single-atom catalysts (SACs) are a type of atomically dispersed nanozymes with the highest atom utilization, which employ low-coordinated single atoms as the catalytically active sites. SACs not only inherit the merits of traditional nanozymes, but also hold high catalytic activity and superb catalytic selectivity, which ensure their tremendous application potential in environmental remediation, energy storage and conversion, chemical industry, nanomedicine, etc. Nevertheless, undesired aggregation effect of single atoms during preactivation and reaction processes is significantly enhanced owing to the high surface free energy of single atoms. In this case, appropriate substrates are requisite to prevent the aggregation event through the powerful interactions between the single atoms and the substrates, thereby stabilizing the high catalytic activity of the catalysts. In this review, the synthetic methods and characterization approaches of SACs are first described. Then the application cases of SACs in nanomedicine are summarized. Finally, the current challenges and future opportunities of the SACs in nanomedicine are outlined. It is hoped that this review may have implications for furthering the development of new SACs with improved biophysicochemical properties and broadened biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) Ministry of Education 22 Shuangyong Road Nanning 530022 P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor 22 Shuangyong Road Nanning 530022 P. R. China
| |
Collapse
|
22
|
Tang M, Li J, Cai X, Sun T, Chen C. Single-atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chem Asian J 2022; 17:e202101422. [PMID: 35143111 DOI: 10.1002/asia.202101422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Indexed: 11/07/2022]
Abstract
Nanozymes have received extensive attention in the fields of sensing and detection, medical therapy, industry, and agriculture thanks to the combination of the catalytic properties of natural enzymes and the physicochemical properties of nanomaterials, coupled with superior stability and ease of preparation. Despite the promise of nanozymes, conventional nanozymes are constrained by their oversized size and low catalytic capacity in sophisticated practical application environments. single-atom nanozymes (SAzymes) were characterized as nanozymes with high catalytic efficiency by uniformly distributed single atoms as catalysis sites, thus effectively addressing the defects of conventional nanozymes. This paper reviews the activity improvement scheme and catalytic mechanism of SAzymes and highlights the latest research progress of SAzymes in the fields of biomedical sensing and therapy. Eventually, the challenges and future directions of SAzymes are discussed in this paper.
Collapse
Affiliation(s)
- Minglu Tang
- Northeast Forestry University, Department of chemistry, CHINA
| | - Jingqi Li
- Northeast Forestry University, Department of chemistry, CHINA
| | - Xinda Cai
- Northeast Forestry University, Department of chemistry, CHINA
| | - Tiedong Sun
- Northeast Forestry University, 26 Hexing road, Xiangfang district, Harbin city, Heilongjiang province, 150040, Harbin, CHINA
| | - Chunxia Chen
- Northeast Forestry University, Department of chemistry, CHINA
| |
Collapse
|
23
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
24
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device. Angew Chem Int Ed Engl 2022; 61:e202112453. [PMID: 34750950 DOI: 10.1002/anie.202112453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Surpassing natural enzymes in cost, stability and mass production, nanozymes have attracted wide attention in fields from disease diagnosis to tumor therapy. However, nanozymes intrinsically have low reaction selectivity, which significantly restricts their applications. A general method is reported to address this challenge by following a biomimetic operation principle of substrates channeling and screening. Two oxidase- and peroxidase-like nanozymes (i.e., emerging N-doped carbon nanocages and Prussian blue nanoparticles), were cascaded as a proof of concept to improve the reaction selectivity in transforming the substrate into the targeted product by more than 2000 times. The cascaded nanozymes were also adopted to a spatially confined microfluidic device, leading to more than 100-fold enhancement of the reaction efficiency due to signal amplification.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
25
|
Xu Z, Wang T, Li J, Zhang F, Lou H, Zhang J, Zhang W, Zhang W, Zhou B. Nanosized porous artificial enzyme as a pH-sensitive doxorubicin delivery system for joint enzymatic and chemotherapy towards tumor treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous spherical artificial nanozyme (HF-900) prepared via pyrolysis of a porous organic polymer was used as drug carrier for efficient loading and highly selective pH-responsive delivery of doxorubicin (DOX) for the tumor joint nanotherapy.
Collapse
Affiliation(s)
- Zhilu Xu
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Ting Wang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jing Li
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Fang Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Han Lou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jian Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenhua Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weifen Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Baolong Zhou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
26
|
Goshtasbi H, Pakchin PS, Movafeghi A, Barar J, Castejon AM, Omidian H, Omidi Y. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease. Neurochem Int 2021; 153:105268. [PMID: 34954260 DOI: 10.1016/j.neuint.2021.105268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The brain shows a high sensitivity to oxidative stress (OS). Thus, the maintenance of homeostasis of the brain regarding the reduction-oxidation (redox) situation is crucial for the regular function of the central nervous systems (CNS). The imbalance between the reactive oxygen species (ROS) and the cellular mechanism might lead to the emergence of OS, causing profound cell death as well as tissue damages and initiating neurodegenerative disorders (NDDs). Characterized by the cytoplasmic growth of neurofibrillary tangles and extracellular β-amyloid plaques, Alzheimer's disease (AD) is a complex NDD that causes dementia in adult life with severe manifestations. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor that regulates the functional expression of OS-related genes and the functionality of endogenous antioxidants. In the case of oxidative damage, NRF2 is transferred to the nucleus and attached to the antioxidant response element (ARE) that enhances the sequence to initiate transcription of the cell-protecting genes. This review articulates various mechanisms engaged with the generation of active and reactive species of endogenous and exogenous oxidants and focuses on the antioxidants as a body defense system regarding the NRF2-ARE signaling path in the CNS.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana M Castejon
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
27
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
28
|
Ren G, Dong F, Zhao Z, Li K, Lin Y. Structure Defect Tuning of Metal-Organic Frameworks as a Nanozyme Regulatory Strategy for Selective Online Electrochemical Analysis of Uric Acid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52987-52997. [PMID: 34723454 DOI: 10.1021/acsami.1c17974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes have been designed to address the limitations of high cost and poor stability involving natural enzymes in analytical applications. However, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the selectivity and stability requirements of accurate biomolecule analysis. Here, we presented structure defects of metal-organic frameworks (MOFs) as a tuning strategy to regulate the catalytic efficiency of artificial nanozymes and investigated the roles of defects on the catalytic activity of oxidase-like MOFs. Structural defects were introduced into a novel Co-containing zeolitic imidazolate framework with gradually loosened morphology (ZIF-L-Co) by doping cysteine (Cys). It was found that with the increase in defect degree, the properties of materials such as ascorbate oxidase-like, glutathione oxidase-like, and laccase-like were obviously enhanced by over 5, 2, and 3 times, respectively. In-depth structural investigations indicate that the doping of sulfur inducing structural defects which may destroy the equilibrium state between cobalt and nitrogen in 2-methylimidazole and distort the crystal lattice, thereby enhancing the adsorption of oxygen and thus promoting the oxidase-like activity. The ZIF-L-Co-10 mg with enhanced ascorbate oxidase- and laccase-like activity was loaded into a microreactor and integrated into an online electrochemical system (OECS) in the upstream of the detector. This nanozyme-based microreactor can completely remove ascorbic acid, dopamine, and 3,4-dihydroxyphenylacetic acid which are the main interference toward uric acid (UA) electrochemical measurement, and the ZIF-L-Co-10 mg Cys-based OECS system is capable of continuously capturing UA change in rat brain following ischemia-reperfusion injury. Structure defect tuning of ZIF-L-Co not only provides a new regulatory strategy for artificial nanozyme activity but also provides a critical chemical platform for the investigation of UA-related brain function and brain diseases.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Fangdi Dong
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
29
|
Xu Q, Hua Y, Zhang Y, Lv M, Wang H, Pi Y, Xie J, Wang C, Yong Y. A Biofilm Microenvironment-Activated Single-Atom Iron Nanozyme with NIR-Controllable Nanocatalytic Activities for Synergetic Bacteria-Infected Wound Therapy. Adv Healthc Mater 2021; 10:e2101374. [PMID: 34617410 DOI: 10.1002/adhm.202101374] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/04/2021] [Indexed: 01/02/2023]
Abstract
Biofilm microenvironment (BME)-activated antimicrobial agents display great potential for improved biofilm-related infection therapy because of their superior specificities and sensitivities, effective eliminations, and minimal side effects. Herein, BME-activated Fe-doped polydiaminopyridine nanofusiform-mediated single-atom nanozyme (FePN SAzyme) is presented for photothermal/chemodynamic synergetic bacteria-infected wound therapy. The photothermal therapy (PTT) function of SAzyme can be specifically initiated by the high level of H2 O2 and further accelerated through mild acid within the inflammatory environment through "two-step rocket launching-like" process. Additionally, the enhanced chemodynamic therapy (CDT) for the FePN SAzyme can also be endowed by producing hydroxyl radicals through reacting with H2 O2 and consuming glutathione (GSH) of the BME, thereby contributing to more efficient synergistic therapeutic effect. Meanwhile, FePN SAzyme could catalyze biofilm-overexpressed H2 O2 decomposing into O2 and overcome the hypoxia of biofilm, which significantly enhances the susceptibility of biofilm and increases the synergistic efficacy. Most importantly, the synergistic therapy of bacterial-induced infection diseases can be switched on by the internal and external stimuli simultaneously, resulting in minimal nonspecific damage to healthy tissue. These remarkable characteristics of FePN SAzyme not only develop an innovative strategy for the BME-activated combination therapy but also open a new avenue to explore other nanozyme-involved nanoplatforms for bacterial biofilm infections.
Collapse
Affiliation(s)
- Qiqi Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Yusheng Hua
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Yuetong Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Mingzhu Lv
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Huan Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Yang Pi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Jiani Xie
- College of Pharmacy and Biological Engineering Chengdu University Chengdu 610106 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100040 China
| | - Yuan Yong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai‐Tibet Plateau of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| |
Collapse
|
30
|
Liao Y, Wang Y, Liu J, Tang Y, Wu C, Chen Y. Ordered Mesoporous Carbon Confined Highly Dispersed PtCo Alloy for the Oxygen Reduction Reaction: The Effect of Structure and Composition on Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yiyun Tang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
31
|
Wang R, Yang L, Wang X, Sun Z, Guo Y, Lou M, Shi H, Wen P, Hu X. Dicyanamide Anion-Based Ionic Liquid-Functionalized Graphene-Supported Pt Catalysts for Boosting Methanol Electrooxidation. Inorg Chem 2021; 60:13736-13747. [PMID: 34436878 DOI: 10.1021/acs.inorgchem.1c02111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an environmentally friendly energy technology, direct methanol fuel cells (DMFCs) meet the needs of sustainable development. Herein, novel dicyanamide anion-based (N(CN)2-) ionic liquid (IL)-functionalized reduced graphene oxide (rGO)-supported Pt catalysts are synthesized via a facile one-pot room temperature reduction method, which show a boost in methanol oxidation performance compared with Pt/rGO. The mass activities of the as-prepared Pt/emimN(CN)2/rGO (863.6 mA mg-1Pt) and Pt/epyN(CN)2/rGO (524.9 mA mg-1Pt) are about five and three times higher than that of Pt/rGO (178.6 mA mg-1Pt), and about six and four times higher than that of Pt/C (140.2 mA mg-1Pt), respectively. The participation of ILs significantly improves the CO poisoning resistance, stability, and activity for methanol oxidation of catalysts. The relationship between the structures and conductivities of diverse ILs and the performance of Pt catalysts are studied systematically. These findings may offer a promising prospect of ILs in DMFCs.
Collapse
Affiliation(s)
- Ruiying Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Lili Yang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xingchao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Zhipeng Sun
- Materials and Energy School, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yong Guo
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Mengran Lou
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Hongli Shi
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Pengtao Wen
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| | - Xiaoqin Hu
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, P. R. China
| |
Collapse
|
32
|
Chen X, Zhao L, Wu K, Yang H, Zhou Q, Xu Y, Zheng Y, Shen Y, Liu S, Zhang Y. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chem Sci 2021; 12:8865-8871. [PMID: 34257887 PMCID: PMC8246298 DOI: 10.1039/d1sc02170b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in nanoscience have stimulated the wide exploration of nanozymes as alternatives to enzymes. Nonetheless, nanozymes often catalyze multiple reactions and are not specialized to a specific substrate, restricting their broad application. Here, we report that the substrate selectivity of the peroxidase-mimic M-N-C can be significantly altered via forming bound intermediates with variable interactions with substrates according to the type of metal. Taking two essential reactions in chemical sensing as an example, Fe-N-C and Co-N-C showed opposite catalytic selectivity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and 3-aminophthalhydrazide (luminol), respectively, by factors of up to 200-fold. It was revealed that specific transition metal-N coordination was the origin of the selective activation of H2O2 forming critically bound oxygen intermediates (M[double bond, length as m-dash]O) for oxygen-atom transfer and the consequent oxidization of substrates. Notably, owing to the embedded ligands in the rigid graphitic framework, surprisingly, the selectivity of M-N-C was even superior to that of commonly used horseradish peroxidase (HRP).
Collapse
Affiliation(s)
- Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Lufang Zhao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Medical School, Southeast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Southeast University Nanjing 210009 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
33
|
|
34
|
Sun C, Duan X, Song J, Zhang M, Jin Y, Zhang M, Song L, Cao H. Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER. RSC Adv 2021; 11:13906-13911. [PMID: 35423952 PMCID: PMC8697751 DOI: 10.1039/d1ra00484k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Durable and efficient electrocatalysts toward the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are crucial to the development of sustainable energy conversion. In this article, we report a highly active bifunctional electrocatalyst derived from ZIF-8 through simple heat-treatment activation. The resultant catalyst is enriched with Rh nanoparticles in the carbon matrix, showing excellent ORR performance with a half-wave potential (E 1/2) of 0.803 V in alkaline electrolytes; it is simultaneously active for catalyzing the HER with an overpotential of 89 mV to reach a current density of 10 mA cm2 in acidic electrolytes. The prepared RhNC-900 catalyst (1.47 wt% Rh) is comparable to the commercial Pt/C catalyst (20 wt% Pt) in terms of the ORR in alkaline media and might inspire new ideas for the development of fuel cells and water splitting.
Collapse
Affiliation(s)
- Can Sun
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Xinde Duan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210044 P. R. China
| | - Jiajun Song
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Mengxian Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Yachao Jin
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Mingdao Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Li Song
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Hui Cao
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| |
Collapse
|
35
|
Lu X, Gao S, Lin H, Shi J. Single-Atom Catalysts for Nanocatalytic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004467. [PMID: 33448133 DOI: 10.1002/smll.202004467] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Recently, single-atom catalysts (SACs) have been receiving increasing attention in various catalytic fields, and meanwhile, emerging nanocatalytic medicine provides a novel tumor chemotherapy modality without using toxic chemodrugs. The distinct properties of SACs, such as well-defined and precisely located metal centers, identical coordination environment, tailorable composition and structure, and versatile functionality, make them promising candidates for catalytic tumor therapy. Herein, the most recent advances in nanocatalytic tumor therapy by using various types of SACs, especially their remarkable achievements in several nanocatalytic tumor therapy-based modalities, such as chemodynamic therapy by tumor microenvironment-responsive catalytic reactions, photodynamic therapy by photocatalytic reactions, sonodynamic therapy by sonocatalytic reactions, and parallel catalytic therapy by parallel catalytic reactions, are reviewed by focusing on the catalytic nanoplatform construction and catalytic mechanism. A concise but concentrated summary and outlook are provided finally to outline the perspectives and the remaining challenges for the future design and engineering of SACs for tumor therapy.
Collapse
Affiliation(s)
- Xiangyu Lu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanshan Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Han Lin
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
36
|
Mirhosseyni MS, Nemati F. Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction. Int J Biol Macromol 2021; 175:432-442. [PMID: 33549670 DOI: 10.1016/j.ijbiomac.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
Iron and nitrogen-doped carbon substances with abundant active sites that related to dispersion of heteroatom species (Fe and N) on the surface of carbonous structure, are promising choice for eco-friendly catalytic reactions. Herein, cellulose-based ionic liquid (IL) derivative not only employed as the both nitrogen and iron heteroatom precursors, but also has been used as the green and biodegradable substrate. The non-noble Fe-NC@550, was successfully fabricated by convenient carbonization of cellulose-based IL. Further, the FeCl4- anion was used as the iron precursor and also it has been applied to elevate the SSA (specific surface area) of catalyst (from 40.96 to 160.42 m2/g) due to the presence of chlorine. On the basis of several pertinent physicochemical and experimental outcomes, the structure of the catalyst was successfully proved in different synthetic steps. As expected, the Fe-NC@550 exhibited the substantial efficiency toward hydrogenation of nitroarenes with high TOF value and also remarkable reusability.
Collapse
Affiliation(s)
| | - Firouzeh Nemati
- Department of Chemistry, Semnan University, Semnan 35131-19111, Iran.
| |
Collapse
|
37
|
Magnetite/graphite carbon nitride composite for peroxymonosulfate non-radical activation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
He F, Xia N, Zheng Y, Fan H, Ma D, Hu X. Boosting Oxygen Electroreduction over Strained Silver. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57134-57140. [PMID: 33300776 DOI: 10.1021/acsami.0c17973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manipulating the strain effect of Ag without any foreign metals to boost its intrinsic oxygen reduction reaction (ORR) activity is intriguing, but it remains a challenge. Herein, we developed a class of Ag-based electrocatalysts with tunable strain structures for efficient ORR via ligand-assisted competitive decomposition of Ag-organic complexes (AgOCs). Benefiting from the superior coordination capability, 4,4'-bipyridine as a ligand triggered a stronger competition with NaBH4 for Ag ions during reduction-induced decomposition of AgOCs in comparison with the counterparts of the pyrazine ligand and the NO3- anion, which moderately modulated the compressive strain structure to upshift the d-band center of the catalyst and increase the electron density of Ag. Accordingly, the O2 adsorption was obviously improved, and the stronger repulsion effect between the Ag sites and the 4e ORR product, i.e., the electron-rich OH-, was generated to promote the desorption of OH- via the Ag-OH bond cleavage, which enabled more Ag sites to be regenerated after ORR. Both of these led to an enhancement to the intrinsic ORR activity of the Ag-based catalyst. This competitive decomposition of metal-organic complex strategy would provide a facile method to design other catalysts with the well-tuned strain structures for energy conversion and heterocatalysis.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nannan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yan Zheng
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huailin Fan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Delong Ma
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
39
|
Jiang S, Zhang C, Zou T. Single-Atom Catalysts for Biotherapy Applications: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2518. [PMID: 33333964 PMCID: PMC7765387 DOI: 10.3390/nano10122518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022]
Abstract
Single-atom catalysts (SACs), as atomically dispersed metal active sites anchored or coordinated on suitable supports, demonstrate large potential for use in therapeutic applications. SACs have structural features similar to those of natural enzyme, while exhibiting remarkable catalytic activity, desirable stability, and excellent selectivity. This systematic review aims to synthesize evidence on SACs' biotherapy applications. Three databases (PubMed/MEDLINE, ISI Web of Science, and ScienceDirect) were searched to identify the studies that investigated the therapeutic efficacy of SACs. A total of 12 studies that fulfilled the inclusion criteria were included and reviewed, and the key findings were qualitatively synthesized. Overall, various SACs were investigated for biotherapy applications, including anticancer, anti-infection (antibacterial), and anti-inflammatory applications; brain trauma therapies, and oxidative-stress cytoprotection applications. All of the included studies showed that the synthesized SACs demonstrated superior therapeutic effects compared with their respective controls. Among the 12 studies reviewed, 11 studies showed satisfied biocompatibility of the applied SACs, whereas minimal cytotoxicity was reported in 1 study. Collectively, the reviewed studies indicated that SACs exhibited considerable promise in the field of biotherapy. Additional studies are needed for a better understanding of the effect of SACs in the treatment of various diseases.
Collapse
Affiliation(s)
- Shan Jiang
- School of Stomatology, Shenzhen University Health Science Center, Shenzhen 518060, China;
| | - Chengfei Zhang
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Ting Zou
- Restorative Dental Science, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
40
|
“Super moiety”-phosphoramidate in task-specific ionic liquids for effcient thorium separation through hybrid interaction. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Wang X, Feng S, He D, Jiang P. Porous manganese-cobalt oxide microspheres with tunable oxidase mimicking activity for sulfide ion colorimetric detection. Chem Commun (Camb) 2020; 56:14098-14101. [PMID: 33107877 DOI: 10.1039/d0cc06209j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report the controllable synthesis of porous MnxCo1-xO microspheres and tunable catalytic activity in the oxidase mimicking reaction. Mn0.6Co0.4O possesses the best oxidase mimicking activity and can be used successfully in sulfide ion colorimetric detection with a low detection limit of 0.1 μM.
Collapse
Affiliation(s)
- Xue Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Shiya Feng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Daiping He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Ping Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
42
|
Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci 2020; 8:6428-6441. [PMID: 33141122 DOI: 10.1039/d0bm01447h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanozymes have been widely used as highly active and stable arterial enzymes due to their controllable electronic transfer and unique catalytic reaction route. However, the development of nanozymes is hindered by their ambiguous structure, insufficient activity and inadequate substrate selectivity. In comparison, single-atom nanozymes (SAzymes) hold superior catalytic activity 10-100 times higher than conventional nanozymes by maximizing the utilization of metal atom dispersion, and exhibit versatile catalytic selectivity through precisely adjusting the atom spatial configuration. In this review, we highlight several well-defined SAzymes, and discuss their accurate atom configuration, catalytic mechanisms, enzyme-like activity, and applications in cancer treatment, brain disease, and wound healing. It is of great significance to understand the advantages and properties of SAzymes for further medical development.
Collapse
Affiliation(s)
- Jiahui Pei
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | | | | | | | | | | |
Collapse
|
43
|
Zhang X, Li G, Chen G, Wu D, Zhou X, Wu Y. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213376] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Borkowski A, Kiciński W, Szala M, Topolska J, Działak P, Syczewski MD. Interactions of Fe-N-S Co-Doped Porous Carbons with Bacteria: Sorption Effect and Enzyme-Like Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3707. [PMID: 32825752 PMCID: PMC7503267 DOI: 10.3390/ma13173707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022]
Abstract
Carbon-based (nano)materials doped with transition metals, nitrogen and other heteroatoms are considered active heterogeneous catalysts in a wide range of chemical processes. Recently they have been scrutinized as artificial enzymes since they can catalyze proton-coupled electron transfer reactions vital for living organisms. Herein, interactions between Gram-positive and Gram-negative bacteria and either metal-free N and/or S doped or metal containing Fe-N-S co-doped porous carbons are studied. The Fe- and N-co-doped porous carbons (Fe-N-C) exhibit enhanced affinity toward bacteria as they show the highest adsorption capacity. Fe-N-C materials also show the strongest influence on the bacteria viability with visible toxic effect. Both types of bacteria studied reacted to the presence of Fe-doped carbons in a similar manner, showing a decrease in dehydrogenases activity in comparison to controls. The N-coordinated iron-doped carbons (Fe-N-C) may exhibit oxidase/peroxidase-like activity and activate O2 dissolved in the solution and/or oxygen-containing species released by the bacteria (e.g., H2O2) to yield highly bactericidal reactive oxygen species. As Fe/N/ and/or S-doped carbon materials efficiently adsorb bacteria exhibiting simultaneously antibacterial properties, they can be applied, inter alia, as microbiological filters with enhanced biofouling resistance.
Collapse
Affiliation(s)
- Andrzej Borkowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Wojciech Kiciński
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (M.S.)
| | - Mateusz Szala
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (W.K.); (M.S.)
| | - Justyna Topolska
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Paweł Działak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (J.T.); (P.D.)
| | - Marcin D. Syczewski
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland;
| |
Collapse
|
45
|
Wu W, Huang L, Wang E, Dong S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci 2020; 11:9741-9756. [PMID: 34094238 PMCID: PMC8162425 DOI: 10.1039/d0sc03522j] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.
Collapse
Affiliation(s)
- Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
46
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interactions. Angew Chem Int Ed Engl 2020; 59:14498-14503. [PMID: 32515070 DOI: 10.1002/anie.202003949] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Indexed: 11/10/2022]
Abstract
Emerging as a cost-effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme-like molecular structures. By re-visiting and engineering the well-known Fe-N-C electrocatalyst that has a heme-like Fe-Nx active sites, herein, it is reported that Fe-N-C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe-N-C may not be obligatory for a competitive CYP-like activity.
Collapse
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
47
|
Xu Y, Xue J, Zhou Q, Zheng Y, Chen X, Liu S, Shen Y, Zhang Y. The Fe‐N‐C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Jing Xue
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
48
|
Chen K, Xue J, Zhou Q, Zhang Y, Zhang M, Zhang Y, Zhang H, Shen Y. Coupling metal-organic framework nanosphere and nanobody for boosted photoelectrochemical immunoassay of Human Epididymis Protein 4. Anal Chim Acta 2020; 1107:145-154. [DOI: 10.1016/j.aca.2020.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
49
|
Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y. When Nanozymes Meet Single‐Atom Catalysis. Angew Chem Int Ed Engl 2020; 59:2565-2576. [DOI: 10.1002/anie.201905645] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of EducationInternational Joint Research Center for Intelligent Biosensing Technology and HealthCollege of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Dan Du
- School of Mechanical and Materials EngineeringWashington State University Pullman Washington 99164 USA
| | - Yuehe Lin
- School of Mechanical and Materials EngineeringWashington State University Pullman Washington 99164 USA
| |
Collapse
|
50
|
He F, Zheng Y, Fan H, Ma D, Chen Q, Wei T, Wu W, Wu D, Hu X. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4833-4842. [PMID: 31914316 DOI: 10.1021/acsami.9b20920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of low-cost and efficient (electro)catalysts with tunable 2e/4e oxygen reduction reaction (ORR) selectivity toward energy conversion, biomimetic catalysis, and biosensing has attracted growing interest. Herein, we reported that carbon nanohybrids with O- or N-coordinated Cu (Cu-OC or Cu-NC) showed superior activity for 2e and 4e electrocatalytic ORR with selectivities of 84.0% and 97.2%, respectively. Experimental evidence demonstrated that the strong electron-rich O-doped carbon in Cu-OC donated electrons to Cu2+, weakening the binding strength of H2O2 at Cu-O centers and facilitating the 2e ORR pathway for selective production of H2O2. However, the poor electron-donor ability of the N-doped carbon in Cu-NC made Cu-N sites more electron deficient due to the reduced electron transfer from N-doped carbon to Cu2+, promoting 4e ORR by enhancing adsorption of O2 and the ORR intermediates. The high 4e ORR activity of Cu-NC rendered its potential for application in a Zn-air battery and oxidase-mimicking activity for 3,3',5,5'-tetramethylbenzidine (TMB) and ascorbic acid (AA) oxidation. The maximal velocity (Vmax) of TMB and AA oxidation over Cu-NC was higher than some natural oxidases and noble-metal-based artificial enzymes. The lower activation energy for AA oxidation over Cu-NC resulted in a 263-fold higher oxidative rate than TMB, further prompting nonenzymatic sensing of AA by the competitive oxidation strategy.
Collapse
Affiliation(s)
- Fei He
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Yan Zheng
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Huailin Fan
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Delong Ma
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Qifeng Chen
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Tao Wei
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Weibing Wu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| | - Xun Hu
- School of Material Science and Engineering , University of Jinan , Jinan 250022 , People's Republic of China
| |
Collapse
|