1
|
Li Z, Zhang Z, Gao Y, Ge K, Yi H, Ji H, Li M, Feng H. Precision printing and control of total internal reflection structural colors: Applications in anti-counterfeiting and color blindness detection. J Colloid Interface Sci 2025; 695:137726. [PMID: 40319514 DOI: 10.1016/j.jcis.2025.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
HYPOTHESIS The fabrication and optical performance of structural colors are influenced by microstructure geometry and surface interactions. Total internal reflection (TIR)-based structural colors, formed by microspherical crown structures on hydrophobic substrates, are expected to exhibit tunable optical properties such as single-sided visibility and angle dependence. By precisely controlling droplet volume and substrate wettability, it should be possible to achieve customizable anti-counterfeiting features and color blindness detection applications. EXPERIMENTS Polyacrylic acid (PAA)-based inks were formulated with optimized molecular weight, solid content, and solvent composition to enable stable precision printing. Microspherical crown structures were printed on hydrophobic substrates under varying droplet volumes and contact angles. The printed patterns were characterized using scanning electron microscopy (SEM) and optical spectroscopy to analyze their morphology and color tunability. Environmental stability was tested under UV exposure, high temperatures, and freezing conditions. FINDINGS The printed TIR structural colors displayed single-sided visibility, angle-dependent reflectance, and high color saturation. Controlled variations in microstructure size and contact angle enabled fine-tuning of the optical response. The technique successfully produced transparent anti-counterfeiting labels and a single-sample diagnostic tool for distinguishing different types of color blindness. The structural colors remained stable under environmental stress, demonstrating their potential for practical applications in security features and biomedical diagnostics.
Collapse
Affiliation(s)
- Zhan Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhen Zhang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yamaguchi A, Yasunaga T, Namura K, Suzuki M, Fukuoka T. Print evaluation of inks with stealth nanobeacons. RSC Adv 2025; 15:4173-4186. [PMID: 39931394 PMCID: PMC11808358 DOI: 10.1039/d4ra08210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Plasmonic structures using noble metal nano-assemblies are created and printed or stamped with a seal for use as information tags that carry both authenticity and information. We created an ink that contains stealth nanobeacons and evaluated its printing characteristics. Stealth nanobeacons are composed of noble metal nano-assemblies, which are fabricated via a self-assembly process and have indefinite shapes. This plasmonic structure was made into simple ink by mixing it with pure water or existing inkjet printer inks. We discharged this adjusted ink on an inkjet printer to evaluate its surface-enhanced Raman scattering activity and other properties, and confirmed that the ink containing stealth nanobeacons can be printed successfully. The printable ink is expected to be developed into a "Nanotag" information tag and an authenticity tag.
Collapse
Affiliation(s)
- Akinobu Yamaguchi
- Department of Electrical, Electronic and Communications Engineering, Faculty of Science and Engineering, Toyo University 2100 Kujirai Kawagoe Saitama 350-8585 Japan
| | - Toshiya Yasunaga
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Kyoko Namura
- Department of Micro Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8540 Japan
| | - Motofumi Suzuki
- Department of Micro Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8540 Japan
| | - Takao Fukuoka
- Department of Micro Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8540 Japan
- Archilys Corporation, Advanced Science, Technology and Management Research Institute of Kyoto 8E09, 8F, 134 Chūdōji Minamimachi, Shimogyo-ku Kyoto 600-8813 Japan
| |
Collapse
|
3
|
Liu Y, Zhang M, Wang C, Meng X, Fang X, Zhang W, Ding T, Liu D, Lee GJ, Chen X. Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4124-4136. [PMID: 39743832 DOI: 10.1021/acsami.4c16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting. However, compactly integrating these photonic components poses significant challenges due to the difficulty of aligning and combining their optical behaviors within a limited space. In this study, we address these challenges by employing a template-guided assembly of organosilica nanodots (OSiNDs), which allows for the simultaneous control of solid-state fluorescence, rainbow holography, and PUF patterns. By precisely tuning the dewetting process, the OSiNDs assemble into nanoisland structures that provide enhanced fluorescence brightness and thermal stability while maintaining distinct holographic properties. Our system produces a 4096-bit key with 3228 bits of entropy, a storage density of 1 Gbit/in2, and a low false positive rate of 10-6. Additionally, it includes multilevel anticounterfeiting features that reveal distinct color patterns under different illumination angles, further boosting security. Comprehensive environmental stability and durability tests, including humidity, thermal, and mechanical abrasion resistance, confirm the robustness of the system, ensuring its functionality under real-world conditions. This multifunctional PUF design establishes a standard for secure, compact optical systems, combining high-performance authentication with practical applications in anticounterfeiting.
Collapse
Affiliation(s)
- Ying Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Manman Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Chiyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xianrui Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomin Fang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Wenkai Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Tao Ding
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Dun Liu
- Laser Group, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Xudong Chen
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
4
|
Li Y, Li Y, Zhao Z, Li Y, Song F, Huang W. Multilevel Stimuli-Responsive Smart "Sandwich" Label with Physical Unclonable Functions Bionic Wrinkles and Space-Selective Fluorescence Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405110. [PMID: 39478659 DOI: 10.1002/smll.202405110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/29/2024] [Indexed: 12/28/2024]
Abstract
With the increasing popularity of the internet, it brings convenience to lives while also increases security risks. Physical Unclonable Functions (PUFs) can generate random, unclonable, and unique identifiers using their inherent physical characteristics, which have broad prospects in anti-counterfeiting. Herein, inspired by the irregular tree bark fissures and random skin wrinkles found in nature, a method for creating complex micro-wrinkles with unclonable random patterns is proposed by simply stretching hydrogels. The random texture information contained in the micro-wrinkles is digitized into binary codes using an adaptive threshold algorithm. Additionally, a novel "sandwich" label with a multilevel intelligent anti-counterfeiting system is proposed. The first-level involves photoluminescence encryption with adjustable luminescence within visible light range and modulated luminescence at different excitation wavelengths; the second-level includes strain-related mechanical encryption, and the third-level consists of highly random and unclonable micro-wrinkles. The certification difficulty increases as the anti-counterfeiting grade increases, thereby enhancing label security. Furthermore, space-selective doping of rare earth metal-organic framework (RE-MOF) fluorescent materials in hydrogels is achieved through the use of screen-printing technology. The concept of novel multilevel smart anti-counterfeiting PUF labels will further enhance current levels of counterfeiting prevention.
Collapse
Affiliation(s)
- Yan Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zejia Zhao
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yanyan Li
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Feng Song
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wei Huang
- School of Physics & The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
5
|
Chen H, Li S, Xu L, Wang M, Li S. Robust two-color physically unclonable patterns from controlled aggregation of a single organic luminophore. Chem Commun (Camb) 2024; 60:9602-9605. [PMID: 39145726 DOI: 10.1039/d4cc03178d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This research presents a new approach to create two-color luminescent physically unclonable functions (PUFs) using an organic luminophore with tunable emission colors. These PUFs offer high security and stable performance, significantly enhancing anti-counterfeiting capabilities by exponentially increasing encoding capacity through dual-color integration and complex pattern formation.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China.
| | - Shaoju Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China.
| | - Lei Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China.
| | - Mingjun Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China.
| | - Shayu Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
6
|
Kofod N, Sørensen TJ. Step-wise changes in the excited state lifetime of [Eu(D 2O) 9] 3+ and [Eu(DOTA)(D 2O)] - as a function of the number of inner-sphere O-H oscillators. Dalton Trans 2024; 53:9741-9749. [PMID: 38780119 DOI: 10.1039/d4dt00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lanthanide luminescence is dominated by quenching by high-energy oscillators in the chemical environment. The rate of non-radiative energy transfer to a single H2O molecule coordinated to a Eu3+ ion exceeds the usual rates of emission by an order of magnitude. We know these rates, but the details of these energy transfer processes are yet to be established. In this work, we study the quenching rates of [Eu(D2O)9]3+ and [Eu(DOTA)(D2O)]- in H2O/D2O mixtures by sequentially exchanging the deuterons with protons. Flash freezing the solutions allows us to identify species with various D/H contents in solution and thus to quantify the energy transfer processes to individual OH-oscillators. This is not possible in solution due to fast exchange in the ensembles present at room temperature. We conclude that the energy transfer processes are accurately described, predicted, and simulated using a step-wise addition of the rates of quenching by each O-H oscillator. This documents the sequential increase in the rate of the energy transfer processes in the quenching of lanthanide luminescence, and further provides a methodology to identify isotopic impurities in deuterated lanthanide systems in solution.
Collapse
Affiliation(s)
- Nicolaj Kofod
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M9 13PL, UK.
| |
Collapse
|
7
|
Li Y, Li Y, Yang J, Chen Z, Feng M, Liu L, Song F, Huang W. Dual Challenge-Response Systems of a Three-Dimensional "Bionic" Fluorescent Physically Unclonable Function Label. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38703103 DOI: 10.1021/acsami.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Inspired by the light and dark variations observed in natural cloud clusters under sunlight, we propose a three-dimensional (3D) "bionic" fluorescent physically unclonable function (PUF) label. The minimalist preparation process eliminates the need for expensive traditional instruments, thus offering new insight into the widespread adoption of 3D PUF labels. The Eu(CCA)3(H2O)2 powder, which is the first to propose its secondary building unit, was chosen as the fluorescent material. Its 3D morphology is preserved in the resin to mimic cloud-like structures. Furthermore, the luminescent properties are elucidated through experimental tests and first-principles calculations. To overcome the coding capacity limitation of traditional two-dimensional (2D) fluorescent PUF labels, a dual challenge-response system model is proposed. The shallow and deep models provide anticounterfeiting information from macro and micro perspectives, respectively. This successfully increases the encoding capacity from 210×10 to 2100×10000 for a 10 × 10 pixel binary code. Therefore, 3D "bionic" fluorescent PUF labels strike a balance between the simple usage of PUF labels and enhanced label security.
Collapse
Affiliation(s)
- Yan Li
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Yang Li
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiaxin Yang
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Ziyu Chen
- School of Electronic Information, Huzhou College, Huzhou, Zhejiang 313000, People's Republic of China
| | - Ming Feng
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Lisa Liu
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
| | - Feng Song
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Wei Huang
- School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| |
Collapse
|
8
|
Han Y, Lee S, Lee EK, Yoo H, Jang BC. Strengthening Multi-Factor Authentication Through Physically Unclonable Functions in PVDF-HFP-Phase-Dependent a-IGZO Thin-Film Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309221. [PMID: 38454740 PMCID: PMC11095217 DOI: 10.1002/advs.202309221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Indexed: 03/09/2024]
Abstract
For enhanced security in hardware-based security devices, it is essential to extract various independent characteristics from a single device to generate multiple keys based on specific values. Additionally, the secure destruction of authentication information is crucial for the integrity of the data. Doped amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) using poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) induce a dipole doping effect through a phase-transition process, creating physically unclonable function (PUF) devices for secure user information protection. The PUF security key, generated at VGS = 20 V in a 20 × 10 grid, demonstrates uniformity of 42% and inter-Hamming distance (inter-HD) of 49.79% in the β-phase of PVDF-HFP. However, in the γ-phase, the uniformity drops to 22.5%, and inter-HD decreases to 35.74%, indicating potential security key destruction during the phase transition. To enhance security, a multi-factor authentication (MFA) system is integrated, utilizing five security keys extracted from various TFT parameters. The security keys from turn-on voltage (VON), VGS = 20 V, VGS = 30 V, mobility, and threshold voltage (Vth) exhibit near-ideal uniformities and inter-HDs, with the highest values of 58% and 51.68%, respectively. The dual security system, combining phase transition and MFA, establishes a robust protection mechanism for privacy-sensitive user information.
Collapse
Affiliation(s)
- Youngmin Han
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Subin Lee
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Eun Kwang Lee
- Department of Chemical EngineeringPukyong National UniversityBusan48513South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120South Korea
| | - Byung Chul Jang
- School of Electronics EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
- School of Electronics and Electrical EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
| |
Collapse
|
9
|
Gao Y, Ge K, Zhang Z, Li Z, Hu S, Ji H, Li M, Feng H. Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305876. [PMID: 38576190 PMCID: PMC11132029 DOI: 10.1002/advs.202305876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Robust anti-counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high-value items such as currency and passports. However, many existing anti-counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high-level encryption and easy authentication through conventional anti-counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet-printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next-generation anti-counterfeiting of currency and passports.
Collapse
Affiliation(s)
- Yifan Gao
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Kongyu Ge
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhen Zhang
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Zhan Li
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Shaowei Hu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen)Harbin Institute of Technology (Shenzhen)Shenzhen518000China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart MaterialsShenzhen Key Laboratory of Flexible Printed Electronics TechnologyHarbin Institute of Technology (Shenzhen)Shenzhen518000China
| |
Collapse
|
10
|
Kofod N, Henrichsen MJ, Sørensen TJ. Mapping the distribution of electronic states within the 5D 4 and 7F 6 levels of Tb 3+ complexes with optical spectroscopy. Dalton Trans 2024; 53:4461-4470. [PMID: 38372338 DOI: 10.1039/d3dt03657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Tb(III) ion has the most intense luminescence of the trivalent lanthanide(III) ions. In contrast to Eu(III), where the two levels only include a single state, the high number of electronic states in the ground (7F6) and emitting (5D4) levels makes detailed interpretations of the electronic structure-the crystal field-difficult. Here, luminescence emission and excitation spectra of Tb(III) complexes with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, [Tb(DOTA)(H2O)]-), ethylenediaminetetraacetic acid (EDTA, [Tb(EDTA)(H2O)3]-) and diethylenetriaminepentaacetic acid (DTPA, [Tb(DTPA)(H2O)]2-) as well as the Tb(III) aqua ion ([Tb(H2O)9]3+) were recorded at room temperature and in frozen solution. Using these data the electronic structure of the 5D4 multiplets of Tb(III) was mapped by considering the transitions to the singly degenerate 7F0 state. A detailed spectroscopic investigation was performed and it was found that the 5D4 multiplet could accurately be described as a single band for [Tb(H2O)9]3+, [Tb(DOTA)(H2O)]- and [Tb(EDTA)(H2O)3]-. In contrast, for [Tb(DTPA)(H2O)]2- two bands were needed. These results demonstrated the ability of describing the electronic structure of the emitting 5D4 multiplet using emission spectra. This offers an avenue for investigating the relationship between molecular structure and luminescent properties in detailed photophysical studies of Tb(III) ion complexes.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Margrete Juel Henrichsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
11
|
Nocentini S, Rührmair U, Barni M, Wiersma DS, Riboli F. All-optical multilevel physical unclonable functions. NATURE MATERIALS 2024; 23:369-376. [PMID: 38191630 DOI: 10.1038/s41563-023-01734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 01/10/2024]
Abstract
Disordered photonic structures are promising for the realization of physical unclonable functions-physical objects that can overcome the limitations of conventional digital security and can enable cryptographic protocols immune against attacks by future quantum computers. The physical configuration of traditional physical unclonable functions is either fixed or can only be permanently modified, allowing one token per device and limiting their practicality. Here we overcome this limitation by creating reconfigurable structures made by light-transformable polymers in which the physical structure of the unclonable function can be reconfigured reversibly. Our approach allows the simultaneous coexistence of multiple physical unclonable functions within one device. The physical transformation is done all-optically in a reversible and spatially controlled fashion, allowing the generation of more complex keys. At the same time, as a set of switchable individual physical unclonable functions, it enables the authentication of multiple clients and allows for the practical implementations of quantum secure authentication and nonlinear generators of cryptographic keys.
Collapse
Affiliation(s)
- Sara Nocentini
- Istituto Nazionale di Ricerca Metrologica, Turin, Italy.
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Tuscany, Italy.
| | - Ulrich Rührmair
- Electrical Engineering and Computer Science Department, TU Berlin, Berlin, Germany
- Electrical and Computer Engineering (ECE) Department, University of Connecticut, Storrs, CT, USA
| | - Mauro Barni
- Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Università di Siena, Siena, Italy
| | - Diederik S Wiersma
- Istituto Nazionale di Ricerca Metrologica, Turin, Italy
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Tuscany, Italy
- Dipartimento di Fisica, Università di Firenze, Sesto Fiorentino, Tuscany, Italy
| | - Francesco Riboli
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Tuscany, Italy.
- CNR-INO, Sesto Fiorentino, Tuscany, Italy.
| |
Collapse
|
12
|
Xu R, Feng M, Xie J, Sang X, Yang J, Wang J, Li Y, Khan A, Liu L, Song F. Physically Unclonable Holographic Encryption and Anticounterfeiting Based on the Light Propagation of Complex Medium and Fluorescent Labels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2888-2901. [PMID: 38165225 DOI: 10.1021/acsami.3c14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Physically unclonable function (PUF) methods have high security, but their wide application is limited by complex encoding, large database, advanced external characterization equipment, and complicated comparative authentication. Therefore, we creatively propose the physically unclonable holographic encryption and anticounterfeiting based on the light propagation of complex medium and fluorescent labels. As far as we know, this is the first holographic encryption and anticounterfeiting method with a fluorescence physically unclonable property. The proposed method reduces the above requirements of traditional PUF methods and significantly reduces the cost. The angle-multiplexed PUF fluorescent label is the physical secret key. The information is encrypted as computer-generated holograms (CGH). Many physical parameters in the system are used as the parameter secret keys. The Diffie-Hellman key exchange algorithm is improved to transfer parameter secret keys. A variety of complex medium hologram generation methods are proposed and compared. The effectiveness, security, and robustness of the method are studied and analyzed. Finally, a graphical user interface (GUI) is designed for the convenience of users. The advantages of this method include lower PUF encoding complexity, effective reduction of the database size, lower requirements for characterization equipment, and direct use of decrypted information without complicated comparative authentication to reduce misjudgment. It is believed that the method proposed in this paper will pave the way for the popularization and application of PUF-based anticounterfeiting and encryption methods.
Collapse
Affiliation(s)
- Rui Xu
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ming Feng
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jinyue Xie
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xu Sang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiaxin Yang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jingru Wang
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yan Li
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Adnan Khan
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Lisa Liu
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Feng Song
- School of Physics, The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
13
|
Gálico DA, Murugesu M. Dual-signalled magneto-optical barcodes with lanthanide-based molecular cluster-aggregates. NANOSCALE 2023; 15:18198-18202. [PMID: 37941426 DOI: 10.1039/d3nr03838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A proof-of-concept for magneto-optical barcodes is demonstrated for the first time. The dual-signalled spectrum observed via magnetic circular dichroism spectroscopy can be used to develop anti-counterfeiting materials with extra layers of security when compared with the widely studied luminescent barcodes.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
14
|
Akavaram V, Kumar K, Sriram S, Narra S, Kumawat A, Meena SK, Pushpavanam K. Self-Assembled Amino Acid Microstructures as Biocompatible Physically Unclonable Functions (BPUFs) for Authentication of Therapeutically Relevant Hydrogels. Macromol Biosci 2023; 23:e2300091. [PMID: 37357814 DOI: 10.1002/mabi.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Counterfeited biomedical products result in significant economic losses and pose a public health hazard for over a million people yearly. Hydrogels, a class of biomedical products, are being investigated as alternatives to conventional biomedical products and are equally susceptible to counterfeiting. Here, a biocompatible, physically unclonable function (BPUF) to verify the authenticity of therapeutically relevant hydrogels are developed. The principle of BPUF relies on the self-assembly of tyrosine into fibril-like structures which are incorporated into therapeutically relevant hydrogels resulting in their random dispersion. This unclonable arrangement leads to distinctive optical micrographs captured using an optical microscope. These optical micrographs are transformed into a unique security code through cryptographic techniques which are then used to authenticate the hydrogel. The temporal stability of the BPUFs are demonstrated and additionally, exploit the dissolution propensity of the structures upon exposure to an adulterant to identify the tampering of the hydrogel. Finally, a platform to demonstrate the translational potential of this technology in validating and detecting tampering of therapeutically relevant hydrogels is developed. The potential of BPUFs to combat hydrogel counterfeiting is exemplified by its simplicity in production, ease of use, biocompatibility, and cost-effectiveness.
Collapse
Affiliation(s)
- Vishwas Akavaram
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Kush Kumar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (N.C.L.), Dr. HomiBhabha Road, Pune, 411008, India
| | - Shreya Sriram
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Saisrinath Narra
- Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603110, India
| | - Akshant Kumawat
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Santosh Kumar Meena
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Karthik Pushpavanam
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
15
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
16
|
Esidir A, Kayaci N, Kiremitler NB, Kalay M, Sahin F, Sezer G, Kaya M, Onses MS. Food-Grade Physically Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41373-41384. [PMID: 37615185 PMCID: PMC10485800 DOI: 10.1021/acsami.3c09035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Counterfeit products in the pharmaceutical and food industries have posed an overwhelmingly increasing threat to the health of individuals and societies. An effective approach to prevent counterfeiting is the attachment of security labels directly on drugs and food products. This approach requires the development of security labels composed of safely digestible materials. In this study, we present the fabrication of security labels entirely based on the use of food-grade materials. The key idea proposed in this study is the exploitation of food-grade corn starch (CS) as an encoding material based on the microscopic dimensions, particulate structure, and adsorbent characteristics. The strong adsorption of a food colorant, erythrosine B (ErB), onto CS results in fluorescent CS@ErB microparticles. Randomly positioned CS@ErB particles can be obtained simply by spin-coating from aqueous solutions of tuned concentrations followed by transfer to an edible gelatin film. The optical and fluorescence microscopy images of randomly positioned particles are then used to construct keys for a physically unclonable function (PUF)-based security label. The performance of PUFs evaluated by uniformity, uniqueness, and randomness analysis demonstrates the strong promise of this platform. The biocompatibility of the fabricated PUFs is confirmed with assays using murine fibroblast cells. The extremely low-cost and sustainable security primitives fabricated from off-the-shelf food materials offer new routes in the fight against counterfeiting.
Collapse
Affiliation(s)
- Abidin Esidir
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| | - Nilgun Kayaci
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
| | - N. Burak Kiremitler
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| | - Mustafa Kalay
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Electricity and Energy, Kayseri University, Kayseri 38039, Turkey
| | - Furkan Sahin
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, İstanbul 34398, Turkey
| | - Gulay Sezer
- Department
of Pharmacology, Erciyes University, Faculty
of Medicine, Kayseri 38039, Turkey
| | - Murat Kaya
- Department
of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - M. Serdar Onses
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| |
Collapse
|
17
|
Sun N, Chen Z, Wang Y, Wang S, Xie Y, Liu Q. Random fractal-enabled physical unclonable functions with dynamic AI authentication. Nat Commun 2023; 14:2185. [PMID: 37069144 PMCID: PMC10110537 DOI: 10.1038/s41467-023-37588-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
A physical unclonable function (PUF) is a foundation of anti-counterfeiting processes due to its inherent uniqueness. However, the self-limitation of conventional graphical/spectral PUFs in materials often makes it difficult to have both high code flexibility and high environmental stability in practice. In this study, we propose a universal, fractal-guided film annealing strategy to realize the random Au network-based PUFs that can be designed on demand in complexity, enabling the tags' intrinsic uniqueness and stability. A dynamic deep learning-based authentication system with an expandable database is built to identify and trace the PUFs, achieving an efficient and reliable authentication with 0% "false positives". Based on the roughening-enabled plasmonic network platform, Raman-based chemical encoding is conceptionally demonstrated, showing the potential for improvements in security. The configurable tags in mass production can serve as competitive PUF carriers for high-level anti-counterfeiting and data encryption.
Collapse
Affiliation(s)
- Ningfei Sun
- School of Physics, Beihang University, Beijing, 100191, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyu Chen
- School of Physics, Beihang University, Beijing, 100191, China
| | - Yanke Wang
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, 76344, Germany
| | - Shu Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Xie
- School of Physics, Beihang University, Beijing, 100191, China.
- Key Laboratory of Intelligent Systems and Equipment Electromagnetic Environment Effect, School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.
| | - Qian Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
18
|
Spectral sensitivity near exceptional points as a resource for hardware encryption. Nat Commun 2023; 14:1145. [PMID: 36854673 PMCID: PMC9974995 DOI: 10.1038/s41467-023-36508-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The spectral sensitivity near exceptional points (EPs) has been recently explored as an avenue for building sensors with enhanced sensitivity. However, to date, it is not clear whether this class of sensors does indeed outperform traditional sensors in terms of signal-to-noise ratio. In this work, we investigate the spectral sensitivity associated with EPs under a different lens and propose to utilize it as a resource for hardware security. In particular, we introduce a physically unclonable function (PUF) based on analogue electronic circuits that benefit from the drastic eigenvalues bifurcation near a divergent exceptional point to enhance the stochastic entropy caused by inherent parameter fluctuations in electronic components. This in turn results in a perfect entropy source for the generation of encryption keys encoded in analog electrical signals. This lightweight and robust analog-PUF structure may lead to a variety of unforeseen securities and anti-counterfeiting applications in radio-frequency fingerprinting and wireless communications.
Collapse
|
19
|
Kim MS, Lee GJ. Visually Hidden, Self-Assembled Porous Polymers for Optical Physically Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4477-4486. [PMID: 36633500 DOI: 10.1021/acsami.2c18737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Owing to the advancement of security technologies, several encryption methods have been proposed. Despite such efforts, forging artifices is financially and somatically becoming a constraint for individuals and society (e.g., imprinting replicas of luxury goods or directly life-connected medicines). Physically unclonable functions (PUFs) are one of the promising solutions to address these personal and social issues. The unreplicability of PUFs is a crucial factor for high security levels. Here, this study proposes a visually hidden and self-assembled porous polymer (VSPP) as a tag for optical PUF systems. The VSPP has virtues in terms of wavelength dependency, lens-free compact PUF system, and simple/affordable fabrication processes (i.e., spin coating and annealing). The VSPP consists of an external saturated surface, which covers the inner structures, and an internally abundant porous layer, which triggers stochastic multiple Mie scattering with wavelength dependency. We theoretically and experimentally validate the unobservability of the VSPP and the uniqueness of optical responses by image sensors. Finally, we establish a wavelength-dependent PUF system by using the following three components: solid-state light sources, a VSPP tag, and an image sensor. The captured raw images by the sensor serve as "seed" for unique bit sequences. The robustness of our system is successfully confirmed in terms of bit uniformity (∼0.5), intra/interdevice Hamming distances (∼0.04/∼0.5), and randomness (using NIST test).
Collapse
Affiliation(s)
- Min Seong Kim
- Department of Electronics Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Gil Ju Lee
- Department of Electronics Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
20
|
Chen H, Hu H, Sun B, Zhao H, Qie Y, Luo Z, Pan Y, Chen W, Lin L, Yang K, Guo T, Li F. Dynamic Anti-Counterfeiting Labels with Enhanced Multi-Level Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2104-2111. [PMID: 36541836 DOI: 10.1021/acsami.2c17870] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Information encryption is an important means to improve the security of anti-counterfeiting labels. At present, it is still challenging to realize an anti-counterfeiting label with multi-function, high security factor, low production cost, and easy detection and identification. Herein, using inkjet and screen printing technology, we construct a multi-dimensional and multi-level dynamic optical anti-counterfeiting label based on instantaneously luminescent quantum dots and long afterglow phosphor, whose color and luminous intensity varied in response to time. Self-assembled quantum dot patterns with intrinsic fingerprint information endow the label with physical unclonable functions (PUFs), and the information encryption level of the label is significantly improved in view of the information variation in the temporal dimension. Furthermore, the convolutional residual neural networks are used to decode the massive information of PUFs, enabling fast and accurate identification of the anti-counterfeit labels.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Beichen Sun
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Haobing Zhao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Qie
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhiqi Luo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Youjiang Pan
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wei Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lihua Lin
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Kaiyu Yang
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| |
Collapse
|
21
|
Kofod N, Sørensen TJ. Tb 3+ Photophysics: Mapping Excited State Dynamics of [Tb(H 2O) 9] 3+ Using Molecular Photophysics. J Phys Chem Lett 2022; 13:11968-11973. [PMID: 36534789 DOI: 10.1021/acs.jpclett.2c03506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The study of optical transitions in lanthanide(III) ions has evolved separately from molecular photophysics, but the framework still applies to these forbidden transitions. In this study, a detailed photophysical characterization of the [Tb(H2O)9]3+ aqua ion was performed. The luminescence quantum yield (Φlum), excited state lifetime (τobs), radiative (kr ≡ A) and nonradiative (knr) rate constants, and oscillator strength (f) were determined for Tb(CF3SO3)3 in H2O/D2O mixtures in order to map the radiative and nonradiative transition probabilities. It was shown that the intense luminescence observed from Tb3+ compared to other Ln3+ ions is not due to a higher transition probability of emission but rather due to a lack of quenching, quantified by quenching to O-H oscillators in the aqua ion of kq(OH) = 2090 s-1 for terbium and kq(OH) = 8840 s-1 for europium. In addition, the Horrocks method of determining inner-sphere solvent molecules has been revisited, and it was concluded that the Tb3+ is 9-coordinated in aqueous solution.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK2100København Ø, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK2100København Ø, Denmark
| |
Collapse
|
22
|
Using intrinsic properties of quantum dots to provide additional security when uniquely identifying devices. Sci Rep 2022; 12:16919. [PMID: 36209282 PMCID: PMC9547896 DOI: 10.1038/s41598-022-20596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Unique identification of optical devices is important for anti-counterfeiting. Physical unclonable functions (PUFs), which use random physical characteristics for authentication, are advantageous over existing optical solutions, such as holograms, due to the inherent asymmetry in their fabrication and reproduction complexity. However, whilst unique, PUFs are potentially vulnerable to replication and simulation. Here we introduce an additional benefit of a small modification to an established model of nanoparticle PUFs by using a second measurement parameter to verify their authenticity. A randomly deposited array of quantum dots is encapsulated in a transparent polymer, forming a tag. Photoluminescence is measured as a function of excitation power to assess uniqueness as well as the intrinsic nonlinear response of the quantum material. This captures a fingerprint, which is non-trivial to clone or simulate. To demonstrate this concept practically, we show that these tags can be read using an unmodified smartphone, with its built-in flash for excitation. This development over constellation-style optical PUFs paves the way for more secure, facile authentication of devices without requiring complex fabrication or characterisation techniques.
Collapse
|
23
|
Jiang S, Kim SH, Park CS, Lee WB, Lee SS. Multilevel Anti-Counterfeiting Based on Covert Structural Features Embedded in Femtosecond-Laser-Treated Gold Nanocluster/Graphene Hybrid Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39240-39248. [PMID: 35993967 DOI: 10.1021/acsami.2c10212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conventional nanoscale anti-counterfeiting scheme, exhibiting limited encoding capacity, faces growing challenges of being falsified with the advent of advanced high-resolution equipment. In this study, we propose a multilevel anti-counterfeiting device based on a femtosecond laser (fs-laser) treated plasmonic gold nanocluster/graphene (AuNC/Gr) hybrid structure integrated with a resonant cavity. The covert structural features encoded in random colored patterns, optical reflection spectra, and Raman spectra constitute three classes of anti-counterfeiting signatures, which originate from the AuNC-covered Gr, which initiates plasmonic and thermal couplings. The attendant inverted thermal distribution is presumed to confine the structural features to the AuNC-Gr interface while leaving no detectable traces on the surface of AuNC/Gr even under advanced high-resolution equipment. Therefore, the proposed approach achieves multilevel anti-counterfeiting accomplishing physically unclonable functions in the form of random colored patterns, reflection spectra, and Raman spectra. As the first report for realizing remarkable optical modulation (i.e., random colored patterns) without any surface trace or damage via fs-laser-AuNC/Gr interaction, our study also discloses the outstanding performance of Gr in fs-laser-induced optothermoplasmonic lithography on near-percolation metal films. Simultaneously, the demonstrated fs-laser-processed plasmonic hybrid structure in conjunction with a resonant cavity is anticipated to expand the encoding capabilities for nanoscale anti-counterfeiting while avoiding the risk of being imitated because of the covert structural features.
Collapse
Affiliation(s)
- Shiru Jiang
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Su-Han Kim
- Nano Device Application Center, Kwangwoon University, Seoul 01897, South Korea
| | - Chul-Soon Park
- Nano Device Application Center, Kwangwoon University, Seoul 01897, South Korea
| | - Woo-Bin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Sang-Shin Lee
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| |
Collapse
|
24
|
Moglianetti M, Pedone D, Morerio P, Scarsi A, Donati P, Bustreo M, Del Bue A, Pompa PP. Nanocatalyst-Enabled Physically Unclonable Functions as Smart Anticounterfeiting Tags with AI-Aided Smartphone Authentication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25898-25906. [PMID: 35612325 DOI: 10.1021/acsami.2c02995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Counterfeiting is a worldwide issue affecting many industrial sectors, ranging from specialized technologies to retail market, such as fashion brands, pharmaceutical products, and consumer electronics. Counterfeiting is not only a huge economic burden (>$ 1 trillion losses/year), but it also represents a serious risk to human health, for example, due to the exponential increase of fake drugs and food products invading the market. Considering such a global problem, numerous anticounterfeit technologies have been recently proposed, mostly based on tags. The most advanced category, based on encryption and cryptography, is represented by physically unclonable functions (PUFs). A PUF tag is based on a unique physical object generated through chemical methods with virtually endless possible combinations, providing remarkable encoding capability. However, most methods adopted nowadays are based on expensive and complex technologies, relying on instrumental readouts, which make them not effective in real-world applications. To achieve a simple yet cryptography-based anticounterfeit method, herein we exploit a combination of nanotechnology, chemistry, and artificial intelligence (AI). Notably, we developed platinum nanocatalyst-enabled visual tags, exhibiting the properties of PUFs (encoding capability >10300) along with fast (1 min) ON/OFF readout and full reversibility, enabling multiple onsite authentication cycles. The development of an accurate AI-aided algorithm powers the system, allowing for smartphone-based PUF authentications.
Collapse
Affiliation(s)
- Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| | - Deborah Pedone
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| | - Pietro Morerio
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
| | - Anna Scarsi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Paolo Donati
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| | - Matteo Bustreo
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
| | - Alessio Del Bue
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova, Italy
| |
Collapse
|
25
|
Ferraro A, Bruno MDL, Papuzzo G, Varchera R, Forestiero A, De Santo MP, Caputo R, Barberi RC. Low Cost and Easy Validation Anticounterfeiting Plasmonic Tags Based on Thin Films of Metal and Dielectric. NANOMATERIALS 2022; 12:nano12081279. [PMID: 35457987 PMCID: PMC9026069 DOI: 10.3390/nano12081279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
Multilevel anticounterfeiting Physical Unclonable Function (PUF) tags based on thin film of silver (Ag), Zinc Oxide (ZnO) and PolyVinylPyrrolidone (PVP), are experimentally demonstrated and validated. We exploit the low adhesion of silver to glass and consequent degradation during ZnO deposition to induce morphological randomness. Several photographs of the tag surfaces have been collected with different illumination conditions and using two smartphones of diverse brand. The photos were analyzed using an image recognition algorithm revealing low common minutiae for different tags. Moreover, the optical response reveals peculiar spectra due to labels of plasmonic nature. The proposed systems can be easily fabricated on large areas and represent a cost-effective solution for practical protection of objects.
Collapse
Affiliation(s)
- Antonio Ferraro
- Physics Department, University of Calabria, 87036 Rende, Italy; (M.D.L.B.); (M.P.D.S.)
- Consiglio Nazionale delle Ricerche-Istituto di Nanotecnologia (CNR-Nanotec), 87036 Rende, Italy
- Correspondence: (A.F.); (A.F.); (R.C.); (R.C.B.)
| | - Mauro Daniel Luigi Bruno
- Physics Department, University of Calabria, 87036 Rende, Italy; (M.D.L.B.); (M.P.D.S.)
- Consiglio Nazionale delle Ricerche-Istituto di Nanotecnologia (CNR-Nanotec), 87036 Rende, Italy
| | - Giuseppe Papuzzo
- Consiglio Nazionale delle Ricerche-Institute for High Performance and Networking (CNR-ICAR), 87036 Rende, Italy;
| | | | - Agostino Forestiero
- Consiglio Nazionale delle Ricerche-Institute for High Performance and Networking (CNR-ICAR), 87036 Rende, Italy;
- Correspondence: (A.F.); (A.F.); (R.C.); (R.C.B.)
| | - Maria Penolope De Santo
- Physics Department, University of Calabria, 87036 Rende, Italy; (M.D.L.B.); (M.P.D.S.)
- Consiglio Nazionale delle Ricerche-Istituto di Nanotecnologia (CNR-Nanotec), 87036 Rende, Italy
| | - Roberto Caputo
- Physics Department, University of Calabria, 87036 Rende, Italy; (M.D.L.B.); (M.P.D.S.)
- Consiglio Nazionale delle Ricerche-Istituto di Nanotecnologia (CNR-Nanotec), 87036 Rende, Italy
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (A.F.); (A.F.); (R.C.); (R.C.B.)
| | - Riccardo Cristofaro Barberi
- Physics Department, University of Calabria, 87036 Rende, Italy; (M.D.L.B.); (M.P.D.S.)
- Consiglio Nazionale delle Ricerche-Istituto di Nanotecnologia (CNR-Nanotec), 87036 Rende, Italy
- Correspondence: (A.F.); (A.F.); (R.C.); (R.C.B.)
| |
Collapse
|
26
|
Wang C, Yan Z, Gong C, Xie H, Qiao Z, Yuan Z, Chen YC. Multicolor Light Mixing in Optofluidic Concave Interfaces for Anticounterfeiting with Deep Learning Authentication. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10927-10935. [PMID: 35172572 DOI: 10.1021/acsami.1c22466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anticounterfeiting technology has received tremendous interest for its significance in daily necessities, medical industry, and high-end products. Confidential tags based on photoluminescence are one of the most widely used approaches for their vivid visualization and high throughput. However, the complexity of confidential tags is generally limited to the accessibility of inks and their spatial location; generating an infinite combination of emission colors is therefore a challenging task. Here, we demonstrate a concept to create complex color light mixing in a confined space formed by microscale optofluidic concave interfaces. Infinite color combination and capacity were generated through chaotic behavior of light mixing and interaction in an ininkjet-printed skydome structure. Through the chaotic mixing of emission intensity, wavelength, and light propagation trajectories, the visionary patterns serve as a highly unclonable label. Finally, a deep learning-based machine vision system was built for the authentication process. The developed anticounterfeiting system may provide inspiration for utilizing space color mixing in optical security and communication applications.
Collapse
Affiliation(s)
- Chenlu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhiyuan Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chaoyang Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hui Xie
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
27
|
An Analysis of Cholesteric Spherical Reflector Identifiers for Object Authenticity Verification. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2022. [DOI: 10.3390/make4010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arrays of Cholesteric Spherical Reflectors (CSRs), microscopic cholesteric liquid crystals in a spherical shape, have been argued to become a game-changing technology in anti-counterfeiting. Used to build identifiable tags or coating, called CSR IDs, they can supply objects with unclonable fingerprint-like characteristics, making it possible to authenticate objects. In a previous study, we have shown how to extract minutiæ from CSR IDs. In this journal version, we build on that previous research, consolidate the methodology, and test it over CSR IDs obtained by different production processes. We measure the robustness and reliability of our procedure on large and variegate sets of CSR IDs’ images taken with a professional microscope (Laboratory Data set) and with a microscope that could be used in a realistic scenario (Realistic Data set). We measure intra-distance and interdistance, proving that we can distinguish images coming from the same CSR ID from images of different CSR IDs. However, without surprise, images in Laboratory Data set have an intra-distance that on average is less, and with less variance, than the intra-distance between responses from Realistic Data set. With this evidence, we discuss a few requirements for an anti-counterfeiting technology based on CSRs.
Collapse
|
28
|
Anastasiou A, Zacharaki EI, Tsakas A, Moustakas K, Alexandropoulos D. Laser fabrication and evaluation of holographic intrinsic physical unclonable functions. Sci Rep 2022; 12:2891. [PMID: 35190557 PMCID: PMC8861088 DOI: 10.1038/s41598-022-06407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Optical Physical Unclonable Functions (PUFs) are well established as the most powerful anticounterfeiting tool. Despite the merits of optical PUFs, widespread use is hindered by existing implementations that are complicated and expensive. On top, the overwhelming majority of optical PUFs refer to extrinsic implementations. Here we overcome these limitations to demonstrate for the first time strong intrinsic optical PUFs with exceptional security characteristics. In doing so, we use Computer-Generated Holograms (CGHs) as optical, intrinsic, and image-based PUFs. The required randomness is offered by the non-deterministic fabrication process achieved with industrial friendly, nanosecond pulsed fiber lasers. Adding to simplicity and low cost, the digital fingerprint is derived by a setup which is designed to be adjustable in a production line. In addition, we propose a novel signature encoding and authentication mechanism that exploits manifold learning techniques to efficiently differentiate data reconstruction-related variation from counterfeit attacks. The proposed method is applied experimentally on silver plates. The robustness of the fabricated intrinsic optical PUFs is evaluated over time. The results have shown exceptional values for robustness and a probability of cloning up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{-14}$$\end{document}10-14, which exceeds the standard acceptance rate in security applications.
Collapse
Affiliation(s)
- Aggeliki Anastasiou
- Department of Materials Science, University of Patras, 26504, Patras, Greece
| | - Evangelia I Zacharaki
- Department of Electrical and Computer Engineering, University of Patras, 26504, Patras, Greece
| | - Anastasios Tsakas
- Department of Materials Science, University of Patras, 26504, Patras, Greece
| | - Konstantinos Moustakas
- Department of Electrical and Computer Engineering, University of Patras, 26504, Patras, Greece
| | | |
Collapse
|
29
|
Katumo N, Li K, Richards BS, Howard IA. Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Sci Rep 2022; 12:2100. [PMID: 35136113 PMCID: PMC8826933 DOI: 10.1038/s41598-022-05885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
A significant impediment to the deployment of anti-counterfeiting technologies is the reliance on specialized hardware. Here, anti-counterfeiting labels are developed that are both excited and detected using a smartphone. The persistent luminescence pattern and color changes on the timescale of hundreds of milliseconds to seconds. The labels can be authenticated by comparing still images from the red and green channels of video acquired at known times after flashlight excitation against expected reference patterns. The labels are based on a green-emitting SrAl2O4: Eu2+,Dy3+ (SAED), and red-emitting CaS:Eu2+ phosphors whose lifetimes are varied: (i) for SAED from 0.5 to 11.7 s by annealing the commercial material in air; and (ii) CaS:Eu2+ from 0.1 to 0.6 s by varying the dopant concentration. Examples of anti-counterfeiting labels exhibiting changing emission patterns and colors on a seven-segment display, barcode, and emoji are demonstrated. These results demonstrate that phosphors with visible absorption and tunable persistent luminescence lifetimes on the order of hundreds of milliseconds to seconds are attractive for anti-counterfeiting applications as they allow authentication to be performed using only a smartphone. Further development should allow richer color shifts and enhancement of security by embedding further covert anti-counterfeiting features.
Collapse
Affiliation(s)
- Ngei Katumo
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Kai Li
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany.
| |
Collapse
|
30
|
Gan Z, Chen F, Li Q, Li M, Zhang J, Lu X, Tang L, Wang Z, Shi Q, Zhang W, Huang W. Reconfigurable Optical Physical Unclonable Functions Enabled by VO 2 Nanocrystal Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5785-5796. [PMID: 35044155 DOI: 10.1021/acsami.1c20803] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical physical unclonable function (PUF) is one of the most promising hardware security solutions, which has been proven to be resistant to machine learning attacks. However, the disordered structures of the traditional optical PUFs are usually deterministic once they are manufactured and therefore exhibit fixed challenge-response behaviors. Herein, a reconfigurable PUF (R-PUF) is proposed and demonstrated by using the reversible phase transition behavior of VO2 nanocrystals combined with TiO2 disordered nanoparticles. Both the simulation and experiment results show that the near-infrared laser speckle pattern of the R-PUF can be almost completely altered after the phase transition of VO2 nanocrystals, resulting in a reconfigurable and reproducible optical response. The similarity of the response speckles shows an obvious hysteresis loop during the rise and drop of temperature, providing a simple way to regulate and control the response behaviors of the R-PUF. More importantly, the hysteretic characteristic provides a new dimension to describe the challenge-response behavior of the R-PUF besides the laser speckle, providing an effective way to improve the security and encoding capacity of the optical PUFs. The proposed R-PUF can be employed as a promising security primitive for high robustness and high-security authentication and encryption.
Collapse
Affiliation(s)
- Zaixin Gan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065 China
| | - Feiliang Chen
- University of Electronic Science and Technology of China, Chengdu 611731 China
- Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Qian Li
- Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
| | - Mo Li
- University of Electronic Science and Technology of China, Chengdu 611731 China
- Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Jian Zhang
- University of Electronic Science and Technology of China, Chengdu 611731 China
- Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Xueguang Lu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065 China
| | - Lu Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065 China
| | - Zhao Wang
- University of Electronic Science and Technology of China, Chengdu 611731 China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065 China
| | - Weili Zhang
- University of Electronic Science and Technology of China, Chengdu 611731 China
| | - Wanxia Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065 China
| |
Collapse
|
31
|
Revisiting silk: a lens-free optical physical unclonable function. Nat Commun 2022; 13:247. [PMID: 35017474 PMCID: PMC8752800 DOI: 10.1038/s41467-021-27278-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
For modern security, devices, individuals, and communications require unprecedentedly unique identifiers and cryptographic keys. One emerging method for guaranteeing digital security is to take advantage of a physical unclonable function. Surprisingly, native silk, which has been commonly utilized in everyday life as textiles, can be applied as a unique tag material, thereby removing the necessary apparatus for optical physical unclonable functions, such as an objective lens or a coherent light source. Randomly distributed fibers in silk generate spatially chaotic diffractions, forming self-focused spots on the millimeter scale. The silk-based physical unclonable function has a self-focusing, low-cost, and eco-friendly feature without relying on pre-/post-process for security tag creation. Using these properties, we implement a lens-free, optical, and portable physical unclonable function with silk identification cards and study its characteristics and reliability in a systemic manner. We further demonstrate the feasibility of the physical unclonable functions in two modes: authentication and data encryption. Although conventional optical physical unclonable functions (PUFs) are attractive for security applications, existing optical PUFs have inherent complexity. Here, the authors report a low-cost, lens-free and compact optical PUF that uses silk microfiber-based stochastic diffraction.
Collapse
|
32
|
Galangau O, Norel L, Rigaut S. Metal complexes bearing photochromic ligands: photocontrol of functions and processes. Dalton Trans 2021; 50:17879-17891. [PMID: 34792058 DOI: 10.1039/d1dt03397b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal complexes associated with photochromic molecules are attractive platforms to achieve smart light-switching materials with innovative and exciting properties due to specific optical, electronic, magnetic or catalytic features of metal complexes and by perturbing the excited-state properties of both components to generate new reactivity and photochemical properties. In this overview, we focus on selected achievements in key domains dealing with optical, redox, magnetic properties, as well as application in catalysis or supramolecular chemistry. We also try to point out scientific challenges that are still faced for future developments and applications.
Collapse
Affiliation(s)
- Olivier Galangau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Lucie Norel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Stéphane Rigaut
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
33
|
Ameer FS, Ranasinghe M, Varahagiri S, Benza DW, Hu L, Willett DR, Wen Y, Bhattacharya S, Chumanov G, Rao AM, Anker JN. Impressively printing patterns of gold and silver nanoparticles. NANO SELECT 2021. [DOI: 10.1002/nano.202000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fathima S. Ameer
- Department of Chemistry Clemson University Clemson South Carolina USA
| | | | - Shilpa Varahagiri
- Department of Chemistry Clemson University Clemson South Carolina USA
- Department of Mechanical Engineering Clemson University Clemson South Carolina USA
| | - Donald W. Benza
- Department of Chemistry Clemson University Clemson South Carolina USA
- Department of Electrical and Computer Engineering Clemson University Clemson South Carolina USA
| | - Longyu Hu
- Department of Chemistry Clemson University Clemson South Carolina USA
- Clemson Nanomaterials Institute Department of Physics and Astronomy Clemson University Clemson South Carolina USA
| | - Daniel R. Willett
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Yimei Wen
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Sriparna Bhattacharya
- Clemson Nanomaterials Institute Department of Physics and Astronomy Clemson University Clemson South Carolina USA
| | - George Chumanov
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Apparao M. Rao
- Clemson Nanomaterials Institute Department of Physics and Astronomy Clemson University Clemson South Carolina USA
| | - Jeffrey N. Anker
- Department of Chemistry Clemson University Clemson South Carolina USA
- Center for Optical Materials Science and Engineering Technologies (COMSET) Clemson University Clemson South Carolina USA
| |
Collapse
|
34
|
Yu JS, Kim JH. Hacking detection based on the elastic properties of liquid crystals in different phases. OPTICS EXPRESS 2021; 29:39352-39361. [PMID: 34809301 DOI: 10.1364/oe.441941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We present a security device that can detect and block hacking using the characteristics of liquid crystals. This device is based on a liquid crystal cell consisting of a uniformly aligned layer and a photo-alignment layer. To inscribe a pattern, the device is illuminated when the liquid crystal is in the smectic phase. The resulting image is invisible after light irradiation. Heating to the nematic phase improves this alignment and reveals the recorded pattern. Returning to the smectic phase distorts the pattern. Because the pattern is not shown without heating and the trace of the pattern does not disappear once viewed, it is possible to detect whether data has been hacked. The device is easy to fabricate, cost-effective, and sensitive to outside intrusion.
Collapse
|
35
|
Caligiuri V, Patra A, De Santo MP, Forestiero A, Papuzzo G, Aceti DM, Lio GE, Barberi R, De Luca A. Hybrid Plasmonic/Photonic Nanoscale Strategy for Multilevel Anticounterfeit Labels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49172-49183. [PMID: 34632778 PMCID: PMC8532117 DOI: 10.1021/acsami.1c13701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/30/2021] [Indexed: 06/01/2023]
Abstract
Innovative goods authentication strategies are of fundamental importance considering the increasing counterfeiting levels. Such a task has been effectively addressed with the so-called physical unclonable functions (PUFs), being physical properties of a system that characterize it univocally. PUFs are commonly implemented by exploiting naturally occurring non-idealities in clean-room fabrication processes. The broad availability of classic paradigm PUFs, however, makes them vulnerable. Here, we propose a hybrid plasmonic/photonic multilayered structure working as a three-level strong PUF. Our approach leverages on the combination of a functional nanostructured surface, a resonant response, and a unique chromatic signature all together in one single device. The structure consists of a resonant cavity, where the top mirror is replaced with a layer of plasmonic Ag nanoislands. The naturally random spatial distribution of clusters and nanoparticles formed by this deposition technique constitutes the manufacturer-resistant nanoscale morphological fingerprint of the proposed PUF. The presence of Ag nanoislands allows us to tailor the interplay between the photonic and plasmonic modes to achieve two additional security levels. The first one is constituted by the chromatic response and broad iridescence of our structures, while the second by their rich spectral response, accessible even through a common smartphone light-emitting diode. We demonstrate that the proposed architectures could also be used as an irreversible and quantitative temperature exposure label. The proposed PUFs are inexpensive, chip-to-wafer-size scalable, and can be deposited over a variety of substrates. They also hold a great promise as an encryption framework envisioning morpho-cryptography applications.
Collapse
Affiliation(s)
- Vincenzo Caligiuri
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Aniket Patra
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova (GE), Italy
| | - Maria P. De Santo
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Agostino Forestiero
- CNR-ICAR,
Institute for High Performance and Networking, via P. Bucci 8-9c, 87036 Rende, Cosenza, Italy
| | - Giuseppe Papuzzo
- CNR-ICAR,
Institute for High Performance and Networking, via P. Bucci 8-9c, 87036 Rende, Cosenza, Italy
| | - Dante M. Aceti
- Institute
of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Giuseppe E. Lio
- CNR-INO
and European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara, 1, Sesto Fiorentino, 50019 Firenze (FI), Italy
| | - Riccardo Barberi
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| | - Antonio De Luca
- Department
of Physics, University of Calabria, via P. Bucci, 31C, 87036 Rende, Cosenza, Italy
- CNR
Nanotec UOS Rende, via
P. Bucci, 31D, 87036 Rende, Cosenza, Italy
| |
Collapse
|
36
|
Wang M, Jiang K, Gao Y, Liu Y, Zhang Z, Zhao W, Ji H, Zheng T, Feng H. A facile fabrication of conjugated fluorescent nanoparticles and micro-scale patterned encryption via high resolution inkjet printing. NANOSCALE 2021; 13:14337-14345. [PMID: 34473162 DOI: 10.1039/d1nr03062k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugated fluorescent materials are getting more and more attention in the biomedical arena due to their high fluorescence intensity, non-bleaching and good biocompatibility. However, conjugated fluorescent materials are still not widely used in the field of anti-counterfeiting and pattern encryption due to their extremely low solubility and enormous difficulties in processing. Here, we use a facile approach to fabricate conjugated polymer fluorescent nanoparticles through a classic micro-emulsion method to address these issues. The particle size, loading materials and fluorescence intensity can be tuned as demanded. Later, these particles are transformed into invisible inks for inkjet printers to achieve micro-scale pattern encryption. These patterns show an ultra-high accuracy of around 30 micrometres. They can be used as QR codes for information encryption with 3 times more information encryption and great anti-counterfeiting ability. Finally, we establish an identification recognition system to check their validity. The scenario is the patient identification system of a hospital. The results show that these tags can be read in less than 3 seconds and they can last for 12 months at least. This facile approach holds great potential and bright prospects in the field of privacy protection, information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Min Wang
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Kunkun Jiang
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zhenchao Zhang
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Flexible Printed Electronic Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
37
|
Mokhtar OM, Attia YA, Wassel AR, Khattab TA. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. LUMINESCENCE 2021; 36:1933-1944. [PMID: 34323370 DOI: 10.1002/bio.4127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
New photochromic film was developed toward the preparation of anti-counterfeiting documents utilizing inorganic/organic nanocomposite enclosing a photoluminescent inorganic pigment and a polyacrylic binder polymer. To generate a translucent film from pigment/polyacrylic nanocomposite, the phosphorescent strontium aluminum oxide pigment should be well-dispersed in the solution of the polyacrylic-based binder without agglomeration. The photochromic nanocomposite was applied efficiently onto commercial cellulose paper documents utilizing the effective and economical spray-coating technology followed with thermofixation. A homogeneous photochromic film was immobilized onto cellulose paper surface to introduce a transparent film changing to greenish-yellow upon exposure to ultraviolet light as depicted by CIE coloration measurements. The photochromic effect was monitored at lowest pigment concentration (0.25 wt%). The spray-coated paper documents exhibit two absorbance bands at 256 and 358 nm, and two fluorescence peaks at 433 and 511 nm. The morphologies of the spray-coated documents were explored. The spray-coated paper sheets showed a reversible photochromic effect without fatigue under ultraviolet irradiation. The rheology of the produced photochromic composites as well as the mechanical properties and photostability of the spray-coated documents were studied.
Collapse
Affiliation(s)
- Omnia M Mokhtar
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Yasser A Attia
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Film Department, Physics Research Division National Research Centre, Giza, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
38
|
Chen G, Weng Y, Wang W, Hong D, Zhou L, Zhou X, Wu C, Zhang Y, Yan Q, Yao J, Guo T. Spontaneous Formation of Random Wrinkles by Atomic Layer Infiltration for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27548-27556. [PMID: 34060813 DOI: 10.1021/acsami.1c04076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Continuous developments of innovative anticounterfeiting strategies are vital to restrain the fast-growing counterfeit markets. Physical unclonable function (PUF)-based taggants allow for a practical solution to provide irreproducible codes for strong authentication. Herein, an advanced anticounterfeiting strategy with multiple security levels was successfully developed using screen printing and atomic layer infiltration (ALI) techniques. Macroscale poly(dimethylsiloxane) (PDMS) patterns were fabricated for primary verification. Spontaneous formation of random wrinkles with size in the micrometer scale was achieved on the top surface of screen-printed PDMS patterns due to the anisotropic relief and redistribution of extra compressive stress after Al2O3 infiltration, which can be used for senior authentication by image identification using the artificial intelligence (AI) technique. Furthermore, the complexity and security level of a code, which are proportional to the minutia density, can be adjusted by the morphology of the wrinkles in terms of amplitude and wavelength via the degree of Al2O3 permeation depending on ALI conditions. These spontaneously formed random wrinkles were demonstrated for validation and decoding with AI, exhibiting the merits of being unclonable, nondestructive, universally adaptable, environmentally stable, and mass-producible, and sufficiently adaptable for an industry-suitable authentication strategy.
Collapse
Affiliation(s)
- Guixiong Chen
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yalian Weng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Wenwen Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Deming Hong
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Linpeng Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xiongtu Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chaoxing Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yongai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Qun Yan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jianmin Yao
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Tailiang Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
39
|
Berk KL, Blum SM, Funk VL, Sun Y, Yang IY, Gostomski MV, Roth PA, Liem AT, Emanuel PA, Hogan ME, Miklos AE, Lux MW. Rapid Visual Authentication Based on DNA Strand Displacement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19476-19486. [PMID: 33852293 DOI: 10.1021/acsami.1c02429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel ways to track and verify items of a high value or security is an ever-present need. Taggants made from deoxyribonucleic acid (DNA) have several advantageous properties, such as high information density and robust synthesis; however, existing methods require laboratory techniques to verify, limiting applications. Here, we leverage DNA nanotechnology to create DNA taggants that can be validated in the field in seconds to minutes with a simple equipment. The system is driven by toehold-mediated strand-displacement reactions where matching oligonucleotide sequences drive the generation of a fluorescent signal through the potential energy of base pairing. By pooling different "input" oligonucleotide sequences in a taggant and spatially separating "reporter" oligonucleotide sequences on a paper ticket, unique, sequence-driven patterns emerge for different taggant formulations. Algorithmically generated oligonucleotide sequences show no crosstalk and ink-embedded taggants maintain activity for at least 99 days at 60 °C (equivalent to nearly 2 years at room temperature). The resulting fluorescent signals can be analyzed by the eye or a smartphone when paired with a UV flashlight and filtered glasses.
Collapse
Affiliation(s)
- Kimberly L Berk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Steven M Blum
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Vanessa L Funk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Yuhua Sun
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - In-Young Yang
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Mark V Gostomski
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Pierce A Roth
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Alvin T Liem
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Peter A Emanuel
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Michael E Hogan
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Aleksandr E Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Matthew W Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| |
Collapse
|
40
|
Application of DNA sequences in anti-counterfeiting: Current progress and challenges. Int J Pharm 2021; 602:120580. [PMID: 33839229 PMCID: PMC9579332 DOI: 10.1016/j.ijpharm.2021.120580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 02/04/2023]
Abstract
Counterfeiting has never been more challenging than during the COVID-19 pandemic as counterfeit test kits and therapeutics have been discovered in the market. Current anti-counterfeiting labels have weaknesses: they can either be duplicated easily, are expensive or ill-suited for the existing complex supply chains. While RFID tags provide for an excellent alternative to current anti-counterfeiting methods, they can prove to be expensive and other routes involving nanomaterials can be difficult to encrypt. A DNA based anticounterfeiting system has significant advantages such as relative ease of synthesis and vast data storage abilities, along with great potential in encryption. Although DNA is equipped with such beneficial properties, major challenges that limit its real-world anti-counterfeiting applications include protection in harsh environments, rapid inexpensive sequence determination, and its attachment to products. This review elaborates the current progress of DNA based anti-counterfeiting systems and identifies technological gaps that need to be filled for its practical application. Progress made on addressing the primary challenges associated with the use of DNA, and potential solutions are discussed.
Collapse
|
41
|
Zheng X, Zhu Y, Liu Y, Zhou L, Xu Z, Feng C, Zheng C, Zheng Y, Bai J, Yang K, Zhu D, Yao J, Hu H, Zheng Y, Guo T, Li F. Inkjet-Printed Quantum Dot Fluorescent Security Labels with Triple-Level Optical Encryption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15701-15708. [PMID: 33764737 DOI: 10.1021/acsami.1c02390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical security labels play a significant role in protecting both our wealth and health. However, simultaneously meeting the requirements including low-cost fabrication, easy detection, and high-level security is still challenging for security labels. Here, we design an unclonable anti-counterfeiting system with triple-level security by using the inkjet printing technique, which can be authenticated by naked eyes, a portable microscope, and a fluorescence microscope. These labels are achieved by printing microscale quantum dot (QD) ink droplets on premodified substrates with random-distributed glass microspheres. Due to the unique capillary action induced by the glass microspheres, QDs in the ink droplets are deposited around the microspheres, forming microscale multicircular patterns. Multiple pinning of QDs at the three-phase contact lines appears during the evaporation of the droplet, resulting in the formation of a nanoscale labyrinthine pattern around the microspheres. The nanoscale labyrinth pattern and the microscale multicircular microsphere array, together with the printed macroscopic image, constitute a triple-level progressive anti-counterfeiting system. Moreover, the system is compatible with an artificial intelligence-based identification strategy that allows rapid identification and verification of the unclonable security labels.
Collapse
Affiliation(s)
- Xin Zheng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yangbin Zhu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yang Liu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Linpeng Zhou
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhongwei Xu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chen Feng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunbo Zheng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yueting Zheng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jieyu Bai
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Kaiyu Yang
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dongyan Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianmin Yao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
42
|
Smith JD, Reza MA, Smith NL, Gu J, Ibrar M, Crandall DJ, Skrabalak SE. Plasmonic Anticounterfeit Tags with High Encoding Capacity Rapidly Authenticated with Deep Machine Learning. ACS NANO 2021; 15:2901-2910. [PMID: 33559464 DOI: 10.1021/acsnano.0c08974] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Counterfeit goods create significant economic losses and product failures in many industries. Here, we report a covert anticounterfeit platform where plasmonic nanoparticles (NPs) create physically unclonable functions (PUFs) with high encoding capacity. By allowing anisotropic Au NPs of different sizes to deposit randomly, a diversity of surfaces can be facilely tagged with NP deposits that serve as PUFs and are analyzed using optical microscopy. High encoding capacity is engineered into the tags by the sizes of the Au NPs, which provide a range of color responses, while their anisotropy provides sensitivity to light polarization. An estimated encoding capacity of 270n is achieved, which is one of the highest reported to date. Authentication of the tags with deep machine learning allows for high accuracy and rapid matching of a tag to a specific product. Moreover, the tags contain descriptive metadata that is leveraged to match a tag to a specific lot number (i.e., a collection of tags created in the same manner from the same formulation of anisotropic Au NPs). Overall, integration of designer plasmonic NPs with deep machine learning methods can create a rapidly authenticated anticounterfeit platform with high encoding capacity.
Collapse
Affiliation(s)
- Joshua D Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Md Alimoor Reza
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Nathanael L Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jianxin Gu
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Maha Ibrar
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - David J Crandall
- Department of Computer Science, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Abdelazim NM, Fong MJ, McGrath T, Woodhead CS, Al-Saymari F, Bagci IE, Jones AT, Wang X, Young RJ. Hotspot generation for unique identification with nanomaterials. Sci Rep 2021; 11:1528. [PMID: 33452301 PMCID: PMC7810830 DOI: 10.1038/s41598-020-79644-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Nanoscale variations in the structure and composition of an object are an enticing basis for verifying its identity, due to the physical complexity of attempting to reproduce such a system. The biggest practical challenge for nanoscale authentication lies in producing a system that can be assessed with a facile measurement. Here, a system is presented in which InP/ZnS quantum dots (QDs) are randomly distributed on a surface of an aluminium-coated substrate with gold nanoparticles (Au NPs). Variations in the local arrangement of the QDs and NPs is shown to lead to interactions between them, which can suppress or enhance fluorescence from the QDs. This position-dependent interaction can be mapped, allowing intensity, emission dynamics, and/or wavelength variations to be used to uniquely identify a specific sample at the nanoscale with a far-field optical measurement. This demonstration could pave the way to producing robust anti-counterfeiting devices.
Collapse
Affiliation(s)
- Nema M Abdelazim
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK.,School of Electronic and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Matthew J Fong
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK.
| | - Thomas McGrath
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK
| | | | - Furat Al-Saymari
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK
| | - Ibrahim E Bagci
- School of Computing and Communications, Lancaster University, Bailrigg, LA1 4WA, UK
| | - Alex T Jones
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK
| | - Xintai Wang
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert J Young
- Department of Physics, Lancaster University, Bailrigg, LA1 4YB, UK.
| |
Collapse
|
44
|
Liu S, Liu X, Yuan J, Bao J. Multidimensional Information Encryption and Storage: When the Input Is Light. RESEARCH 2021; 2021:7897849. [PMID: 33623922 PMCID: PMC7877379 DOI: 10.34133/2021/7897849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The issue of information security is closely related to every aspect of daily life. For pursuing a higher level of security, much effort has been continuously invested in the development of information security technologies based on encryption and storage. Current approaches using single-dimension information can be easily cracked and imitated due to the lack of sufficient security. Multidimensional information encryption and storage are an effective way to increase the security level and can protect it from counterfeiting and illegal decryption. Since light has rich dimensions (wavelength, duration, phase, polarization, depth, and power) and synergy between different dimensions, light as the input is one of the promising candidates for improving the level of information security. In this review, based on six different dimensional features of the input light, we mainly summarize the implementation methods of multidimensional information encryption and storage including material preparation and response mechanisms. In addition, the challenges and future prospects of these information security systems are discussed.
Collapse
Affiliation(s)
- Senyang Liu
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaohu Liu
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jie Bao
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Cheng H, Lu Y, Zhu D, Rosa L, Han F, Ma M, Su W, Francis PS, Zheng Y. Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications. NANOSCALE 2020; 12:9471-9480. [PMID: 32347271 DOI: 10.1039/d0nr01223h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ∼104, excellent mechanical properties with tensile strength of 62.9 MPa and Young's modulus of 690.9 ± 40 MPa, and a random distribution of Raman intensity across the whole nanopaper. The plasmonic nanopapers were encoded with multiplexed optical signals including surface plasmon resonance, fluorescence and SERS for anti-counterfeiting applications, thus increasing security levels. The surface plasmon resonance and fluorescence information is used as the first layer of security and can be easily verified by the naked eye, while the unclonable SERS mapping is used as the second layer of security and can be readily authenticated by Raman spectroscopy using a computer vision technique.
Collapse
Affiliation(s)
- Hongrui Cheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yongfeng Lu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Dongyan Zhu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Lorenzo Rosa
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, via Vivarelli 10, I-41125, Modena, Italy and Applied Plasmonics Lab, Centre for Micro-Photonics, Mail H74, P.O. Box 218, Hawthorn, VIC 3122, Australia
| | - Fei Han
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Mingguo Ma
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenyue Su
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
46
|
Gu Y, He C, Zhang Y, Lin L, Thackray BD, Ye J. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nat Commun 2020; 11:516. [PMID: 31980613 PMCID: PMC6981139 DOI: 10.1038/s41467-019-14070-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Anticounterfeiting labels based on physical unclonable functions (PUFs), as one of the powerful tools against counterfeiting, are easy to generate but difficult to duplicate due to inherent randomness. Gap-enhanced Raman tags (GERTs) with embedded Raman reporters show strong intensity enhancement and ultra-high photostability suitable for fast and repeated readout of PUF labels. Herein, we demonstrate a PUF label fabricated by drop-casting aqueous GERTs, high-speed read using a confocal Raman system, digitized through coarse-grained coding methods, and authenticated via pixel-by-pixel comparison. A three-dimensional encoding capacity of over 3 × 1015051 can be achieved for the labels composed of ten types of GERTs with a mapping resolution of 2500 pixels and quaternary encoding of Raman intensity levels at each pixel. Authentication experiments have ensured the robustness and security of the PUF system, and the practical viability is demonstrated. Such PUF labels could provide a potential platform to realize unbreakable anticounterfeiting.
Collapse
Affiliation(s)
- Yuqing Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Chang He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yuqing Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Benjamin David Thackray
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
47
|
Leem JW, Kim MS, Choi SH, Kim SR, Kim SW, Song YM, Young RJ, Kim YL. Edible unclonable functions. Nat Commun 2020; 11:328. [PMID: 31949156 PMCID: PMC6965141 DOI: 10.1038/s41467-019-14066-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/16/2019] [Indexed: 02/04/2023] Open
Abstract
Counterfeit medicines are a fundamental security problem. Counterfeiting medication poses a tremendous threat to patient safety, public health, and the economy in developed and less developed countries. Current solutions are often vulnerable due to the limited security levels. We propose that the highest protection against counterfeit medicines would be a combination of a physically unclonable function (PUF) with on-dose authentication. A PUF can provide a digital fingerprint with multiple pairs of input challenges and output responses. On-dose authentication can verify every individual pill without removing the identification tag. Here, we report on-dose PUFs that can be directly attached onto the surface of medicines, be swallowed, and digested. Fluorescent proteins and silk proteins serve as edible photonic biomaterials and the photoluminescent properties provide parametric support of challenge-response pairs. Such edible cryptographic primitives can play an important role in pharmaceutical anti-counterfeiting and other security applications requiring immediate destruction or vanishing features.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science Technology, Gwangju, 61005, Republic of Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science Technology, Gwangju, 61005, Republic of Korea
| | - Robert J Young
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA.
- Regenstrief Center for Healthcare Engineering, West Lafayette, Indiana, 47907, USA.
- Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
48
|
Yuan J, Christensen PR, Wolf MO. Dynamic anti-counterfeiting security features using multicolor dianthryl sulfoxides. Chem Sci 2019; 10:10113-10121. [PMID: 32055366 PMCID: PMC6991183 DOI: 10.1039/c9sc03948a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023] Open
Abstract
A new concept for difficult-to-replicate security inks for use in advanced anti-counterfeiting applications is presented. Inks fabricated from a mixture of photoactive dyes result in a unique fluorescent color upon irradiation that differs from the starting fluorescence. The dyes are substituted 9,9'-dianthryl sulfoxides that undergo photochemical extrusion of a sulfoxide moiety (SO) to produce emissive red, blue, and green emitters. The resulting emissive feature has specific Commission international de l'éclairage (CIE) coordinates that are used for authentication. Additionally, the temporal evolution of the fluorescence can be monitored, introducing a dynamic nature to these security features. The three compounds show different rates of photoconversion dependent on the irradiation wavelength, allowing selective wavelengths for activation to be used for additional security. CIE coordinates can be extracted from patches containing the three compounds using an inexpensive, commercially available smartphone application (app) and compared against a known value to confirm the validity of the method.
Collapse
Affiliation(s)
- Jennifer Yuan
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Peter R Christensen
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| | - Michael O Wolf
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada .
| |
Collapse
|
49
|
Jiang K, Xu D, Liu Z, Zhao W, Ji H, Zhang J, Li M, Zheng T, Feng H. An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles. RSC Adv 2019; 9:37292-37299. [PMID: 35542252 PMCID: PMC9075753 DOI: 10.1039/c9ra05774a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
The popularity of 2D barcodes is playing a key role in simplifying people's daily life activities, such as identification, quick payment, checking in and checking out, etc. However, relevant issues have emerged as their popularity has soared. The most urgent and representative problem is decryption, which may lead to serious information leakage and substantial damage to organizations, such as governments and international enterprises. This issue is mainly due to the visibility of 2D barcodes. In order to prevent potential privacy violation and sensitive information leakage through easy access of those visible 2D barcodes, we have designed and fabricated invisible 2D barcodes that will only be visible under UV illumination. This approach provides a promising solution to address the previous problem by transferring 2D barcodes into an invisible state. We have employed a typical micro-emulsion method to fabricate polystyrene (PS) fluorescent nanoparticles due to its simplicity. The invisible patterns can and will only be accessed and recognized under UV light illumination to protect personal private information. These invisible 2D barcodes provide a feasible solution for personal information protection and fit with a patient's privacy protection scenario very well, as we have demonstrated.
Collapse
Affiliation(s)
- Kunkun Jiang
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Dandan Xu
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Zhongyang Liu
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hongjun Ji
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jiaheng Zhang
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Mingyu Li
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital Shenzhen China
| | - Huanhuan Feng
- Flexible Printed Electronics Technology Center, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
50
|
Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat Commun 2019; 10:2409. [PMID: 31160579 PMCID: PMC6547729 DOI: 10.1038/s41467-019-10406-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
An ideal anti-counterfeiting technique has to be inexpensive, mass-producible, nondestructive, unclonable and convenient for authentication. Although many anti-counterfeiting technologies have been developed, very few of them fulfill all the above requirements. Here we report a non-destructive, inkjet-printable, artificial intelligence (AI)-decodable and unclonable security label. The stochastic pinning points at the three-phase contact line of the ink droplets is crucial for the successful inkjet printing of the unclonable security labels. Upon the solvent evaporation, the three-phase contact lines are pinned around the pinning points, where the quantum dots in the ink droplets deposited on, forming physically unclonable flower-like patterns. By utilizing the RGB emission quantum dots, full-color fluorescence security labels can be produced. A convenient and reliable AI-based authentication strategy is developed, allowing for the fast authentication of the covert, unclonable flower-like dot patterns with different sharpness, brightness, rotations, amplifications and the mixture of these parameters. Anti-counterfeiting technologies should ideally be unclonable, yet simple to fabricate and decode. Here, the authors develop an inkjet-printable and unclonable security label based on random patterning of quantum dot inks, and accompany it with an artificial intelligence decoding mechanism capable of authenticating the patterns.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Fei Han
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China.
| | - Yan Zhao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Maosheng Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Zhongwei Xu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Xin Zheng
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Jianmin Yao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, China
| | - Wanzhen Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Baogui You
- Guangdong Poly Optoelectronics Co., Ltd, Jiangmen, 529020, China
| | - Pai Liu
- Guangdong Poly Optoelectronics Co., Ltd, Jiangmen, 529020, China
| | - Yang Li
- Guangdong Poly Optoelectronics Co., Ltd, Jiangmen, 529020, China
| | - Lei Qian
- TCL Corporate Research, No. 1001 Zhongshan Park Road, Nanshan District, Shenzhen, 518067, China.
| |
Collapse
|