1
|
Wang L, Yang Z, Koirala KP, Bowden ME, Freeland JW, Sushko PV, Kuo CT, Chambers SA, Wang C, Jalan B, Du Y. Interfacial charge transfer and its impact on transport properties of LaNiO 3/LaFeO 3 superlattices. SCIENCE ADVANCES 2024; 10:eadq6687. [PMID: 39693436 DOI: 10.1126/sciadv.adq6687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO3/LaFeO3 superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe3+ (3d5). Here, we synthesized a series of epitaxial LaNiO3/LaFeO3 superlattices and demonstrated partial (up to ~0.5 e-/interface unit cell) charge transfer from Fe to Ni near the interface, supported by density functional theory simulations and spectroscopic evidence of changes in Ni and Fe oxidation states. The electron transfer from LaFeO3 to LaNiO3 and the subsequent rearrangement of the Fe 3d band create an unexpected metallic ground state within the LaFeO3 layer, strongly influencing the in-plane transport properties across the superlattice. Moreover, we establish a direct correlation between interfacial charge transfer and in-plane electrical transport properties, providing insights for designing functional oxide heterostructures with emerging properties.
Collapse
Affiliation(s)
- Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhifei Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
- School of Physics and Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - John W Freeland
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Cheng-Tai Kuo
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
2
|
Chen M, Liu H, He X, Li M, Tang CS, Sun M, Koirala KP, Bowden ME, Li Y, Liu X, Zhou D, Sun S, Breese MBH, Cai C, Wang L, Du Y, Wee ATS, Yin X. Uncovering an Interfacial Band Resulting from Orbital Hybridization in Nickelate Heterostructures. ACS NANO 2024; 18:27707-27717. [PMID: 39327231 DOI: 10.1021/acsnano.4c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO3 synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO3 on SrTiO3 (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.
Collapse
Affiliation(s)
- Mingyao Chen
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Huimin Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Xu He
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, Liège B-4000, Belgium
| | - Minjuan Li
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
| | - Mengxia Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yangyang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiongfang Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Difan Zhou
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Shuo Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Mark B H Breese
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Chuanbing Cai
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore 117546, Singapore
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Yoo SJ, Hwang J, Jang J, Jang JH, Park CH, Lee JH, Choi MY, Yuk JM, Choi SY, Lee J, Chung SY. Comparing the Impacts of Strain Types on Oxygen-Vacancy Formation in a Perovskite Oxide via Nanometer-Scale Strain Fields. ACS NANO 2024; 18:18465-18476. [PMID: 38888543 DOI: 10.1021/acsnano.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The utilization of an in-plane lattice misfit in an oxide epitaxially grown on another oxide with a different lattice parameter is a well-known approach to induce strains in oxide materials. However, achieving a sufficiently large misfit strain in this heteroepitaxial configuration is usually challenging, unless the thickness of the grown oxide is kept well below a critical value to prevent the formation of misfit dislocations at the interface for relaxation. Instead of adhering to this conventional approach, here, we employ nanometer-scale large strain fields built around misfit dislocations to examine the effects of two distinct types of strains─tension and compression─on the generation of oxygen vacancies in heteroepitaxial LaCoO3 films. Our atomic-level observations, coupled with local electron-beam irradiation, clarify that the in-plane compression notably suppresses the creation of oxygen vacancies, whereas the formation of vacancies is facilitated under tensile strain. Demonstrating that the defect generation can considerably vary with the type of strain, our study highlights that the experimental approach adopted in this work is applicable to other oxide systems when investigating the strain effects on vacancy formation.
Collapse
Affiliation(s)
- Seung Jo Yoo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jinhyuk Jang
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae Hyuck Jang
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Chang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji-Hyun Lee
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Min Yeong Choi
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Liu LB, Yi C, Mi HC, Zhang SL, Fu XZ, Luo JL, Liu S. Perovskite Oxides Toward Oxygen Evolution Reaction: Intellectual Design Strategies, Properties and Perspectives. ELECTROCHEM ENERGY R 2024; 7:14. [PMID: 38586610 PMCID: PMC10995061 DOI: 10.1007/s41918-023-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 12/03/2023] [Indexed: 04/09/2024]
Abstract
Developing electrochemical energy storage and conversion devices (e.g., water splitting, regenerative fuel cells and rechargeable metal-air batteries) driven by intermittent renewable energy sources holds a great potential to facilitate global energy transition and alleviate the associated environmental issues. However, the involved kinetically sluggish oxygen evolution reaction (OER) severely limits the entire reaction efficiency, thus designing high-performance materials toward efficient OER is of prime significance to remove this obstacle. Among various materials, cost-effective perovskite oxides have drawn particular attention due to their desirable catalytic activity, excellent stability and large reserves. To date, substantial efforts have been dedicated with varying degrees of success to promoting OER on perovskite oxides, which have generated multiple reviews from various perspectives, e.g., electronic structure modulation and heteroatom doping and various applications. Nonetheless, the reviews that comprehensively and systematically focus on the latest intellectual design strategies of perovskite oxides toward efficient OER are quite limited. To bridge the gap, this review thus emphatically concentrates on this very topic with broader coverages, more comparative discussions and deeper insights into the synthetic modulation, doping, surface engineering, structure mutation and hybrids. More specifically, this review elucidates, in details, the underlying causality between the being-tuned physiochemical properties [e.g., electronic structure, metal-oxygen (M-O) bonding configuration, adsorption capacity of oxygenated species and electrical conductivity] of the intellectually designed perovskite oxides and the resulting OER performances, coupled with perspectives and potential challenges on future research. It is our sincere hope for this review to provide the scientific community with more insights for developing advanced perovskite oxides with high OER catalytic efficiency and further stimulate more exciting applications. Graphical Abstract
Collapse
Affiliation(s)
- Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Chenxing Yi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Hong-Cheng Mi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Song Lin Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634 Singapore
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000 China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9 Canada
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
5
|
Xiao Z, Huang H, Hu S, Weng Z, Huang Y, Du B, Zeng X, Meng Y, Huang C. Bifunctional Square-Planar NiO 4 Coordination of Topotactic LaNiO 2.0 Films for Efficient Oxygen Evolution Reaction. SMALL METHODS 2024; 8:e2300793. [PMID: 38009512 DOI: 10.1002/smtd.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The high-efficient and low-cost oxygen evolution reaction (OER) is decisive for applications of oxide catalysts in metal-air batteries, electrolytic cells, and energy-storage technologies. Delicate regulations of active surface and catalytic reaction pathway of oxide materials principally determine thermodynamic energy barrier and kinetic rate during catalytic reactions, and thus have crucial impacts on OER performance. Herein, a synergistic modulation of catalytically active surface and reaction pathway through facile topotactic transformations switching from perovskite (PV) LaNiO3.0 film to infinite-layer (IL) LaNiO2.0 film is demonstrated, which absolutely contributes to improving OER performance. The square-planar NiO4 coordination of IL-LaNiO2.0 brings about more electrochemically active metal (Ni+ ) sites on the film surface. Meanwhile, the oxygen-deficient driven PV- IL topotactic transformations lead to a reaction pathway converted from absorbate evolution mechanism to lattice-oxygen-mediated mechanism (LOM). The non-concerted proton-electron transfer of LOM pathway, evidenced by the pH-dependent OER kinetics, further boosts the OER activity of IL-LaNiO2.0 films. These findings will advance the in-depth understanding of catalytic mechanisms and open new possibilities for developing highly active perovskite-derived oxide catalysts.
Collapse
Affiliation(s)
- Zhifei Xiao
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoliang Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sixia Hu
- Sustech Core Research Facilities, Southern University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Zhuanglin Weng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Du
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Chuanwei Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Choi MJ, Lee JW, Jang HW. Strain Engineering in Perovskites: Mutual Insight on Oxides and Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308827. [PMID: 37996977 DOI: 10.1002/adma.202308827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Perovskite materials have garnered significant attention over the past decades due to their applications, not only in electronic materials, such as dielectrics, piezoelectrics, ferroelectrics, and superconductors but also in optoelectronic devices like solar cells and light emitting diodes. This interest arises from their versatile combinations and physiochemical tunability. While strain engineering is a recognized powerful tool for tailoring material properties, its collaborative impact on both oxides and halides remains understudied. Herein, strain engineering in perovskites for energy conversion devices, providing mutual insight into both oxides and halides is discussed. The various experimental methods are presented for applying strain by using thermal mismatch, lattice mismatch, defects, doping, light illumination, and flexible substrates. In addition, the main factors that are influenced by strain, categorized as structure (e.g., symmetry breaking, octahedral distortion), bandgap, chemical reactivity, and defect formation energy are described. After that, recent progress in strain engineering for perovskite oxides and halides for energy conversion devices is introduced. Promising methods for enhancing the performance of energy conversion devices using perovskites through strain engineering are suggested.
Collapse
Affiliation(s)
- Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Woo Lee
- Department of Materials Science and Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
7
|
Sun Y, Wu CR, Ding TY, Gu J, Yan JW, Cheng J, Zhang KHL. Direct observation of the dynamic reconstructed active phase of perovskite LaNiO 3 for the oxygen-evolution reaction. Chem Sci 2023; 14:5906-5911. [PMID: 37293652 PMCID: PMC10246674 DOI: 10.1039/d2sc07034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Ni-based transition metal oxides are promising oxygen-evolution reaction (OER) catalysts due to their abundance and high activity. Identification and manipulation of the chemical properties of the real active phase on the catalyst surface is crucial to improve the reaction kinetics and efficiency of the OER. Herein, we used electrochemical-scanning tunnelling microscopy (EC-STM) to directly observe structural dynamics during the OER on LaNiO3 (LNO) epitaxial thin films. Based on comparison of dynamic topographical changes in different compositions of LNO surface termination, we propose that reconstruction of surface morphology originated from transition of Ni species on LNO surface termination during the OER. Furthermore, we showed that the change in surface topography of LNO was induced by Ni(OH)2/NiOOH redox transformation by quantifying STM images. Our findings demonstrate that in situ characterization for visualization and quantification of thin films is very important for revealing the dynamic nature of the interface of catalysts under electrochemical conditions. This strategy is crucial for in-depth understanding of the intrinsic catalytic mechanism of the OER and rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| |
Collapse
|
8
|
Kiens EM, Choi MJ, Wei L, Lu Q, Wang L, Baeumer C. Deeper mechanistic insights into epitaxial nickelate electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:4562-4577. [PMID: 36920360 PMCID: PMC10100650 DOI: 10.1039/d3cc00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.
Collapse
Affiliation(s)
- Ellen M Kiens
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Luhan Wei
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| |
Collapse
|
9
|
Weng Z, Huang H, Li X, Zhang Y, Shao R, Yi Y, Lu Y, Zeng X, Zou J, Chen L, Li W, Meng Y, Asefa T, Huang C. Coordination Tailoring of Epitaxial Perovskite-Derived Iron Oxide Films for Efficient Water Oxidation Electrocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Zhuanglin Weng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoliang Huang
- Anhui Laboratory of Advanced Photon Science and Technology, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaowen Li
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yihao Zhang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Institute of Convergence in Medicine and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yazhuo Yi
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jizhao Zou
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway 08854, New Jersey, United States
| | - Chuanwei Huang
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Do VH, Lee JM. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS NANO 2022; 16:17847-17890. [PMID: 36314471 DOI: 10.1021/acsnano.2c08919] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past few decades, development of electrocatalysts for energy applications has extensively transitioned from trial-and-error methodologies to more rational and directed designs at the atomic levels via either nanogeometric optimization or modulating electronic properties of active sites. Regarding the modulation of electronic properties, nonprecious transition metal-based materials have been attracting large interest due to the capability of versatile tuning d-electron configurations expressed through the flexible orbital occupancy and various possible degrees of spin polarization. Herein, recent advances in tailoring electronic properties of the transition-metal atoms for intrinsically enhanced electrocatalytic performances are reviewed. We start with discussions on how orbital occupancy and spin polarization can govern the essential atomic level processes, including the transport of electron charge and spin in bulk, reactive species adsorption on the catalytic surface, and the electron transfer between catalytic centers and adsorbed species as well as reaction mechanisms. Subsequently, different techniques currently adopted in tuning electronic structures are discussed with particular emphasis on theoretical rationale and recent practical achievements. We also highlight the promises of the recently established computational design approaches in developing electrocatalysts for energy applications. Lastly, the discussion is concluded with perspectives on current challenges and future opportunities. We hope this review will present the beauty of the structure-activity relationships in catalysis sciences and contribute to advance the rational development of electrocatalysts for energy conversion applications.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
11
|
Wang H, Cui M, Fu G, Zhang J, Ding X, Azaceta I, Bugnet M, Kepaptsoglou DM, Lazarov VK, de la Peña O’Shea VA, Oropeza FE, Zhang KHL. Vertically aligned Ni/NiO nanocomposites with abundant oxygen deficient hetero-interfaces for enhanced overall water splitting. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Buvat G, Eslamibidgoli MJ, Zhang T, Prabhudev S, Youssef AH, Ruediger A, Garbarino S, Botton GA, Zhang P, Eikerling M, Guay D. Understanding the Effect of Ni-Substitution on the Oxygen Evolution Reaction of (100) IrO 2 Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaëtan Buvat
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
- Institut d’Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520─IEMN, Lille F-59000, France
| | - Mohammad J. Eslamibidgoli
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Tianjun Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Sagar Prabhudev
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Azza Hadj Youssef
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
| | - Andreas Ruediger
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
| | - Sébastien Garbarino
- PRIMA Québec, 505 de Maisonneuve Boulevard West, Montreal, QC H3A 3C2, Canada
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Michael Eikerling
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Daniel Guay
- Institut National de la recherche scientifique, Énergie, matériaux et Télécommunications, 1650 Lionel-Boulet Boulevard, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
13
|
Liu H, Qi J, Xu H, Li J, Wang F, Zhang Y, Feng M, Lü W. Ambipolar Enhanced Oxygen Evolution Reaction in Flexible van der Waals LaNiO 3 Membrane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Ji Qi
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hang Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jiaming Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
| | - Fujun Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
| | - Yuan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University, Changchun 130103, China
| | - Weiming Lü
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
14
|
Facile synthesis of self support Fe doped Ni3S2 nanosheet arrays for high performance alkaline oxygen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang Y, Huang C, Chen K, Zhao Y, He J, Xi S, Chen P, Ding X, Wu X, Kong Q, An X, Raziq F, Zu X, Du Y, Xiao H, Zhang KHL, Qiao L. Promoting the Oxygen Evolution Activity of Perovskite Nickelates through Phase Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58566-58575. [PMID: 34852196 DOI: 10.1021/acsami.1c16885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskite oxides have emerged as promising candidates for the oxygen evolution reaction (OER) electrocatalyst due to their flexible lattice structure, tunable electronic structure, superior stability, and cost-effectiveness. Recent research studies have mostly focused on the traditional methods to tune the OER performance, such as cation/anion doping, A-/B-site ordering, epitaxial strain, oxygen vacancy, and so forth, leading to reasonable yet still limited activity enhancement. Here, we report a novel strategy for promoting the OER activity for perovskite LaNiO3 by crystal phase engineering, which is realized by breaking long-range chemical bonding through amorphization. We provide the first and direct evidence that perovskite oxides with an amorphous structure can induce the self-adaptive process, which helps enhance the OER performance. This is evidenced by the fact that an amorphous LaNiO3 film on glassy carbon shows a 9-fold increase in the current density compared to that of an epitaxial LaNiO3 single crystalline film. The obtained current density of 1038 μΑ cm-2 (@ 1.6 vs RHE) is the largest value among the literature reported values. Our work thus offers a new protocol to boost the OER performance for perovskite oxides for future clean energy applications.
Collapse
Affiliation(s)
- Yong Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Huang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaifeng Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yang Zhao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jingxuan He
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Pei Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xingyu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiyan Xiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
16
|
Qi Q, Tai J, Hu J, Zhang Z, Dai L, Song H, Shao M, Zhang C, Zhang L. Ligand Functionalized Iron‐Based Metal‐Organic Frameworks for Efficient Electrocatalytic Oxygen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202101242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qianglong Qi
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
- Faculty of Science Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Jun Tai
- Faculty of Science Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Zihan Zhang
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Linqing Dai
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Hongchuan Song
- School of Energy and Environment Science Yunnan Normal University Kunming 650092 P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD South Area Hi-tech Park Nanshan Shenzhen 518057 P. R. China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| |
Collapse
|
17
|
Liu D, Zhou P, Bai H, Ai H, Du X, Chen M, Liu D, Ip WF, Lo KH, Kwok CT, Chen S, Wang S, Xing G, Wang X, Pan H. Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101605. [PMID: 34310054 DOI: 10.1002/smll.202101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoqiang Ai
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xinyu Du
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Mingpeng Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
18
|
Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden-Popper phases. Nat Commun 2021; 12:5527. [PMID: 34545102 PMCID: PMC8452630 DOI: 10.1038/s41467-021-25889-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
As the physical properties of ABX3 perovskite-based oxides strongly depend on the geometry of oxygen octahedra containing transition-metal cations, precise identification of the distortion, tilt, and rotation of the octahedra is an essential step toward understanding the structure-property correlation. Here we discover an important electrostatic origin responsible for remarkable Jahn-Teller-type tetragonal distortion of oxygen octahedra during atomic-level direct observation of two-dimensional [AX] interleaved shear faults in five different perovskite-type materials, SrTiO3, BaCeO3, LaCoO3, LaNiO3, and CsPbBr3. When the [AX] sublayer has a net charge, for example [LaO]+ in LaCoO3 and LaNiO3, substantial tetragonal elongation of oxygen octahedra at the fault plane is observed and this screens the strong repulsion between the consecutive [LaO]+ layers. Moreover, our findings on the distortion induced by local charge are identified to be a general structural feature in lanthanide-based An + 1BnX3n + 1-type Ruddlesden-Popper (RP) oxides with charged [LnO]+ (Ln = La, Pr, Nd, Eu, and Gd) sublayers, among more than 80 RP oxides and halides with high symmetry. The present study thus demonstrates that the local uneven electrostatics is a crucial factor significantly affecting the crystal structure of complex oxides.
Collapse
|
19
|
Guo H, Huang J, Zhou H, Zuo F, Jiang Y, Zhang KHL, Fu X, Bu Y, Cheng W, Sun Y. Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24887-24895. [PMID: 34002602 DOI: 10.1021/acsami.1c04903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO.. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni-O orbital hybridization, which triggers the local electron-electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.
Collapse
Affiliation(s)
- Hongquan Guo
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| | - Jijie Huang
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fan Zuo
- Department of Chemistry and Physics, Indiana State University, Terre Haute, Indiana 47809, United States
| | - Yifeng Jiang
- Runner (Xiamen) Corp., Xiamen 361021, P. R. China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xianzhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yunfei Bu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, P. R. China
| | - Wei Cheng
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
20
|
Baeumer C, Li J, Lu Q, Liang AYL, Jin L, Martins HP, Duchoň T, Glöß M, Gericke SM, Wohlgemuth MA, Giesen M, Penn EE, Dittmann R, Gunkel F, Waser R, Bajdich M, Nemšák S, Mefford JT, Chueh WC. Tuning electrochemically driven surface transformation in atomically flat LaNiO 3 thin films for enhanced water electrolysis. NATURE MATERIALS 2021; 20:674-682. [PMID: 33432142 DOI: 10.1038/s41563-020-00877-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO3 epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction. Specifically, the Ni termination (in the as-prepared state) is considerably more active than the La termination, with overpotential differences of up to 150 mV. A combined electrochemical, spectroscopic and density-functional theory investigation suggests that this activity trend originates from a thermodynamically stable, disordered NiO2 surface layer that forms during the operation of Ni-terminated surfaces, which is kinetically inaccessible when starting with a La termination. Our work thus demonstrates the tunability of surface transformation pathways by modifying a single atomic layer at the surface and that active surface phases only develop for select as-synthesized surface terminations.
Collapse
Affiliation(s)
- Christoph Baeumer
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Institute of Electronic Materials (IWE2) and JARA-FIT, RWTH Aachen University, Aachen, Germany.
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands.
| | - Jiang Li
- SUNCAT Center for Interface Science and Catalysis, SLAC National Laboratory, Menlo Park, CA, USA
| | - Qiyang Lu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Engineering, Westlake University, Hangzhou, China
| | - Allen Yu-Lun Liang
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lei Jin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH, Juelich, Germany
| | | | - Tomáš Duchoň
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Maria Glöß
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Sabrina M Gericke
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Combustion Physics, Lund University, Lund, Sweden
| | - Marcus A Wohlgemuth
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Margret Giesen
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Emily E Penn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Regina Dittmann
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Felix Gunkel
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Rainer Waser
- Institute of Electronic Materials (IWE2) and JARA-FIT, RWTH Aachen University, Aachen, Germany
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Laboratory, Menlo Park, CA, USA.
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Germany.
| | - J Tyler Mefford
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - William C Chueh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
21
|
Song Y, Xu B, Liao T, Guo J, Wu Y, Sun Z. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002240. [PMID: 32851763 DOI: 10.1002/smll.202002240] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
2D metal (hydr)oxide nanosheets have captured increasing interest in electrocatalytic applications aroused by their high specific surface areas, enriched chemically active sites, tunable physiochemical properties, etc. In particular, the electrocatalytic reactivities of materials greatly rely on their surface electronic structures. Generally speaking, the electronic structures of catalysts can be well adjusted via controlling their morphologies, defects, and heterostructures. In this Review, the latest advances in 2D metal (hydr)oxide nanosheets are first reviewed, including the applications in electrocatalysis for the hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Then, the electronic structure-property relationships of 2D metal (hydr)oxide nanosheets are discussed to draw a picture of enhancing the electrocatalysis performances through a series of electronic structure tuning strategies. Finally, perspectives on the current challenges and the trends for the future design of 2D metal (hydr)oxide electrocatalysts with prominent catalytic activity are outlined. It is expected that this Review can shed some light on the design of next generation electrocatalysts.
Collapse
Affiliation(s)
- Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yucheng Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
22
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
23
|
Qi Q, Hu J, Zhang Y, Li W, Huang B, Zhang C. Two‐Dimensional Metal–Organic Frameworks‐Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/aesr.202000067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianglong Qi
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Jue Hu
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Yingjie Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| | - Wei Li
- Faculty of Science Kunming University of Science and Technology Kunming 650093 China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR 999077 China
| | - Chengxu Zhang
- The Engineering Laboratory of Advanced Battery and Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
24
|
Bak J, Bae HB, Oh C, Son J, Chung SY. Effect of Lattice Strain on the Formation of Ruddlesden-Popper Faults in Heteroepitaxial LaNiO 3 for Oxygen Evolution Electrocatalysis. J Phys Chem Lett 2020; 11:7253-7260. [PMID: 32677839 DOI: 10.1021/acs.jpclett.0c01426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A great deal of research has recently been focused on Ruddlesden-Popper (RP) two-dimensional planar faults consisting of intervened [AO] monolayers in an ABO3 perovskite framework due to the structurally peculiar shear configuration. In this work, we scrutinize the effect of elastic strain on the generation behavior of RP faults, which are electrocatalytically very active sites for the oxygen evolution reaction (OER), in (001) epitaxial LaNiO3 thin films through by using two distinct single-crystal substrates with different cubic lattice parameters. Atomic-scale direct observations reveal that RP faults can be more favorably created when tensile misfit strain is exerted. Furthermore, we demonstrate that the controlled growth of thin films show notably enhanced OER activity by the RP faults. The findings in this study highlight the impact of symmetry-breaking defect formation for better oxygen electrocatalysis in perovskite oxides.
Collapse
Affiliation(s)
- Jumi Bak
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Chadol Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Junwoo Son
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
25
|
Sun Y, Nguyen TNH, Anderson A, Cheng X, Gage TE, Lim J, Zhang Z, Zhou H, Rodolakis F, Zhang Z, Arslan I, Ramanathan S, Lee H, Chubykin AA. In Vivo Glutamate Sensing inside the Mouse Brain with Perovskite Nickelate-Nafion Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24564-24574. [PMID: 32383375 DOI: 10.1021/acsami.0c02826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glutamate, one of the main neurotransmitters in the brain, plays a critical role in communication between neurons, neuronal development, and various neurological disorders. Extracellular measurement of neurotransmitters such as glutamate in the brain is important for understanding these processes and developing a new generation of brain-machine interfaces. Here, we demonstrate the use of a perovskite nickelate-Nafion heterostructure as a promising glutamate sensor with a low detection limit of 16 nM and a response time of 1.2 s via amperometric sensing. We have designed and successfully tested novel perovskite nickelate-Nafion electrodes for recording of glutamate release ex vivo in electrically stimulated brain slices and in vivo from the primary visual cortex (V1) of awake mice exposed to visual stimuli. These results demonstrate the potential of perovskite nickelates as sensing media for brain-machine interfaces.
Collapse
Affiliation(s)
- Yifei Sun
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tran N H Nguyen
- Birck Nanotechnology Center, Center for Implantable Device, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Adam Anderson
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jongcheon Lim
- Birck Nanotechnology Center, Center for Implantable Device, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhan Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fanny Rodolakis
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Birck Nanotechnology Center, Center for Implantable Device, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Li W, Xue S, Watzele S, Hou S, Fichtner J, Semrau AL, Zhou L, Welle A, Bandarenka AS, Fischer RA. Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surface-Mounted Metal-Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:5837-5843. [PMID: 31912955 PMCID: PMC7154533 DOI: 10.1002/anie.201916507] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 01/08/2023]
Abstract
Metal-organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a "strain modulation" approach has been applied through the use of surface-mounted NiFe-MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm-2 at an overpotential of only ≈210 mV. It demonstrates operational long-term stability even at a high current density of 500 mA cm-2 and exhibits the so far narrowest "overpotential window" ΔEORR-OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.
Collapse
Affiliation(s)
- Weijin Li
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485748Garching b. MünchenGermany
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
| | - Song Xue
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
- Department of PhysicsTechnical University of MunichJames-Franck-Straße 185748Garching b. MünchenGermany
| | - Sebastian Watzele
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
- Department of PhysicsTechnical University of MunichJames-Franck-Straße 185748Garching b. MünchenGermany
| | - Shujin Hou
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
- Department of PhysicsTechnical University of MunichJames-Franck-Straße 185748Garching b. MünchenGermany
| | - Johannes Fichtner
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
- Department of PhysicsTechnical University of MunichJames-Franck-Straße 185748Garching b. MünchenGermany
| | - A. Lisa Semrau
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485748Garching b. MünchenGermany
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
| | - Liujiang Zhou
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Alexander Welle
- Institute of Functional Interfaces, and Karlsruhe Nano Micro FacilityKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Aliaksandr S. Bandarenka
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
- Department of PhysicsTechnical University of MunichJames-Franck-Straße 185748Garching b. MünchenGermany
| | - Roland A. Fischer
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485748Garching b. MünchenGermany
- Catalysis Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748Garching b. MünchenGermany
| |
Collapse
|
27
|
Li W, Xue S, Watzele S, Hou S, Fichtner J, Semrau AL, Zhou L, Welle A, Bandarenka AS, Fischer RA. Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surface‐Mounted Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weijin Li
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching b. München Germany
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
| | - Song Xue
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
- Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching b. München Germany
| | - Sebastian Watzele
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
- Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching b. München Germany
| | - Shujin Hou
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
- Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching b. München Germany
| | - Johannes Fichtner
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
- Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching b. München Germany
| | - A. Lisa Semrau
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching b. München Germany
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
| | - Liujiang Zhou
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Alexander Welle
- Institute of Functional Interfaces, and Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Aliaksandr S. Bandarenka
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
- Department of Physics Technical University of Munich James-Franck-Straße 1 85748 Garching b. München Germany
| | - Roland A. Fischer
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching b. München Germany
- Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching b. München Germany
| |
Collapse
|
28
|
Zeng Z, Xu Y, Zhang Z, Gao Z, Luo M, Yin Z, Zhang C, Xu J, Huang B, Luo F, Du Y, Yan C. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 2020; 49:1109-1143. [PMID: 31939973 DOI: 10.1039/c9cs00330d] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As star material, perovskites have been widely used in the fields of optics, photovoltaics, electronics, magnetics, catalysis, sensing, etc. However, some inherent shortcomings, such as low efficiency (power conversion efficiency, external quantum efficiency, etc.) and poor stability (against water, oxygen, ultraviolet light, etc.), limit their practical applications. Downsizing the materials into nanostructures and incorporating rare earth (RE) ions are effective means to improve their properties and broaden their applications. This review will systematically summarize the key points in the design, synthesis, property improvements and application expansion of RE-containing (including both RE-based and RE-doped) halide and oxide perovskite nanomaterials (PNMs). The critical factors of incorporating RE elements into different perovskite structures and the rational design of functional materials will be discussed in detail. The advantages and disadvantages of different synthesis methods for PNMs will be reviewed. This paper will also summarize some practical experiences in selecting suitable RE elements and designing multi-functional materials according to the mechanisms and principles of REs promoting the properties of perovskites. At the end of this review, we will provide an outlook on the opportunities and challenges of RE-containing PNMs in various fields.
Collapse
Affiliation(s)
- Zhichao Zeng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yueshan Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zheshan Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zhansheng Gao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Meng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Chao Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Liu J, Jia E, Wang L, Stoerzinger KA, Zhou H, Tang CS, Yin X, He X, Bousquet E, Bowden ME, Wee ATS, Chambers SA, Du Y. Tuning the Electronic Structure of LaNiO 3 through Alloying with Strontium to Enhance Oxygen Evolution Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901073. [PMID: 31592141 PMCID: PMC6774028 DOI: 10.1002/advs.201901073] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Indexed: 05/21/2023]
Abstract
The perovskite oxide LaNiO3 is a promising oxygen electrocatalyst for renewable energy storage and conversion technologies. Here, it is shown that strontium substitution for lanthanum in coherently strained, epitaxial LaNiO3 films (La1- x Sr x NiO3) significantly enhances the oxygen evolution reaction (OER) activity, resulting in performance at x = 0.5 comparable to the state-of-the-art catalyst Ba0.5Sr0.5Co0.8Fe0.2O3- δ . By combining X-ray photoemission and X-ray absorption spectroscopies with density functional theory, it is shown that an upward energy shift of the O 2p band relative to the Fermi level occurs with increasing x in La1- x Sr x NiO3. This alloying step strengthens Ni 3d-O 2p hybridization and decreases the charge transfer energy, which in turn accounts for the enhanced OER activity.
Collapse
Affiliation(s)
- Jishan Liu
- State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center for Excellence in Superconducting ElectronicsChinese Academy of SciencesShanghai200050China
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Endong Jia
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
- The Key Laboratory of Solar Thermal Energy and Photovoltaic SystemInstitute of Electrical EngineeringChinese Academy of SciencesBeijing100190China
- Department of PhysicsUniversity of Chinese Academy of SciencesBeijing100190China
| | - Le Wang
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Kelsey A. Stoerzinger
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
- School of ChemicalBiological and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Hua Zhou
- X‐Ray Science DivisionAdvanced Photon SourceArgonne National LaboratoryLemontIL60439USA
| | - Chi Sin Tang
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117456Singapore
| | - Xinmao Yin
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
| | - Xu He
- Theoretical Materials PhysicsQ‐MATCesamUniversity of LiègeB‐4000LiègeBelgium
| | - Eric Bousquet
- Theoretical Materials PhysicsQ‐MATCesamUniversity of LiègeB‐4000LiègeBelgium
| | - Mark E. Bowden
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWA99354USA
| | - Andrew T. S. Wee
- Department of PhysicsFaculty of ScienceNational University of SingaporeSingapore117542Singapore
| | - Scott A. Chambers
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Yingge Du
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| |
Collapse
|
30
|
Xu J, Chen C, Han Z, Yang Y, Li J, Deng Q. Recent Advances in Oxygen Electrocatalysts Based on Perovskite Oxides. NANOMATERIALS 2019; 9:nano9081161. [PMID: 31416200 PMCID: PMC6724126 DOI: 10.3390/nano9081161] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
Electrochemical oxygen reduction and oxygen evolution are two key processes that limit the efficiency of important energy conversion devices such as metal–air battery and electrolysis. Perovskite oxides are receiving discernable attention as potential bifunctional oxygen electrocatalysts to replace precious metals because of their low cost, good activity, and versatility. In this review, we provide a brief summary on the fundamentals of perovskite oxygen electrocatalysts and a detailed discussion on emerging high-performance oxygen electrocatalysts based on perovskite, which include perovskite with a controlled composition, perovskite with high surface area, and perovskite composites. Challenges and outlooks in the further development of perovskite oxygen electrocatalysts are also presented.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Chan Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhifei Han
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuanyuan Yang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Junsheng Li
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Provincial Key Laboratory of Fuel Cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Qibo Deng
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
31
|
Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W. Low‐Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayi Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Guoqiang Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Kun Rui
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Mengmeng Lao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Yaping Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|
32
|
Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W. Low‐Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2019; 58:12540-12544. [DOI: 10.1002/anie.201907017] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jiayi Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science Chinese Academy of Sciences Nanjing 210008 P. R. China
| | - Guoqiang Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Kun Rui
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Mengmeng Lao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Yaping Chen
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| | - Wenping Sun
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Wollongong NSW 2522 Australia
| |
Collapse
|