1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Liu H, Kim M, Xu Y, Jing L, Chen S, Lee CKW, Tan M, Zhong H, Chan YHT, Yao S, Li MG. Wettability Investigation of Laser-Crafted Antiwetting/Superwetting Surfaces on a Polyethylene-Painted Aluminum Plate for Moisture Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30267-30283. [PMID: 40340358 DOI: 10.1021/acsami.5c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The heightened atmospheric humidity from sea warming poses concerns about infrastructural damage and residential discomfort. It has motivated extensive surface engineering research on antiwetting and dehumidification. However, the preparation of large-scale surfaces incorporating promising dual antiwetting/superwetting features with high efficiency and sustainability is challenging due to procedural complexity and limited industrialization. This study introduces a straightforward laser etching approach independent of chemical inputs and complicated experimental variables for crafting superior wetting surfaces on a commercially available aluminum plate applied to a surface-engineered architecture to combat the exacerbated moist ambient. Outstanding isotropic superhydrophobicity (water static contact angle (WCA) = 162.81 ± 2.26°, water sliding angle (WSA) = 6.06 ± 0.44°) and superhydrophilicity (WCA ≈ 0°) were achieved by controlling machine parameters and precisely manipulating the laser beam energy. Mechanism investigations, including a surface tension increase on interfacial hydrophilization and correlations between surface roughness and apparent contact angles, were thoroughly analyzed to figure out the essential influential factors in optimizing antiwetting or superwetting properties and to identify the dominant cause for wettability reversal. It was proved that the surface tension increase helps break through energy barriers between two opposite wetting behaviors, and surface roughness evolution governs wettability regulation in superhydrophobicity and superhydrophilicity following Cassie-Baxter's propositions and Wenzel's propositions, respectively. Additionally, superhydrophobicity isotropy examination, antiwetting/dehumidifying capability evaluation under humid circumstances contacting different phases of water, fractal-patterned moisture-capturing system design for room dehumidification, and environment/human impact and cost-efficiency assessment as alternatives to conventional approaches were comprehensively carried out. Our work underlines the technological versatility in customizing and integrating distinct wetting characteristics on identical carriers and its one-step fabrication advantage for large-scale production, offering significant practicability and promise for industrialization in moisture management surface engineering.
Collapse
Affiliation(s)
- Huan Liu
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Minseong Kim
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yang Xu
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Le Jing
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Siyu Chen
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Connie Kong Wai Lee
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Min Tan
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Haosong Zhong
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yee Him Timothy Chan
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Mitch Guijun Li
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Dai C, Li Y, Qi B, Li Z, Wang B, Fang F, Dai X, Qin Z, Qin X, Wan Y. A low-cost, easily fabricated sodium alginate-nanoparticle coated paper membrane with superb oil-fouling resistance for efficient oil-in-water emulsion separation. Int J Biol Macromol 2025; 307:142090. [PMID: 40086320 DOI: 10.1016/j.ijbiomac.2025.142090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The treatment of kitchen oily wastewater has often been neglected, despite its significant annual discharge and associated environmental risks. This study addresses the issue by developing a novel composite paper membrane, using A4 paper as a substrate coated with a simple and durable hydrogel composite of nanoparticles (SiO2 or TiO2) and sodium alginate. The optimal membrane preparation conditions were determined to be 0.6 wt% sodium alginate and 0.1 wt% nanoparticles, ensuring a stable and effective coating. Oil-in-water emulsions can be effectively separated by the resultant membrane, which exhibits superhydrophilic and underwater superoleophobic properties, with a water contact angle in air close to 14° and an oil contact angle in water close to 150°. According to experimental findings, adding nanoparticles improved the composite membrane's surface roughness and selective wettability. The membrane demonstrated outstanding oil removal efficiency for five types of oil-water emulsions (>95 %) and exhibited excellent reusability (over 15 cycles), without causing significant environmental concerns after prolonged use. This study introduces an inexpensive and eco-friendly hydrogel composite membrane that is easy to fabricate and demonstrates excellent emulsion separation capabilities, regeneration performance, and practical application potential. It is positioned as a viable material for treating oily wastewater because of these qualities.
Collapse
Affiliation(s)
- Chang Dai
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China; Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yun Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Benkun Qi
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Bin Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xuhuan Dai
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Zhiheng Qin
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xiaopeng Qin
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yinhua Wan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, PR China
| |
Collapse
|
4
|
Yuan R, Xie D, Tang T, Zhang H, Huang Y, Ma T, Yang L, Cao Q, Chang G. In-Situ Simple Fabrication of Superhydrophobic and Bacteriostatic Indole-Based Sponge via Strong π-π Stacking for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9729-9739. [PMID: 40198790 DOI: 10.1021/acs.langmuir.5c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Sorbent materials for efficient oil-water separation are crucial due to the increasing discharge of industrial and environmental oil pollutants. Herein, we report the fabrication of a superhydrophobic and bacteriostatic poly(triazatruxene) (PTAT)-coated melamine sponge (MF@PTAT) via a one-step in situ polymerization method, utilizing strong π-π stacking interactions between the triazatruxene rings and melamine skeleton. The MF@PTAT material displayed a water contact angle of 158.6°, high porosity, and excellent compression recovery, with an outstanding ability to absorb oils and organic solvents, up to 186.7 g/g. Furthermore, the material demonstrated excellent performance in separating oil-water emulsions, achieving an impressive efficiency of 99.3%. In addition, MF@PTAT demonstrated significant antibacterial performance, effectively inhibiting bacterial growth. The combination of a simple fabrication method, superior oil-water separation efficiency, and strong antibacterial properties makes the low-cost MF@PTAT material highly promising for oil contaminant treatment across various applications.
Collapse
Affiliation(s)
- Rui Yuan
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
- School of Mathematics and Physics, Yibin University, Yibin 644000, P.R. China
| | - Dongjin Xie
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Taolang Tang
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Huijuan Zhang
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Ying Huang
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Tengning Ma
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Li Yang
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| | - Qilong Cao
- School of Mathematics and Physics, Yibin University, Yibin 644000, P.R. China
| | - Guanjun Chang
- School of Materials and Chemistry and State Key Laboratory of Environmental-Friendly Energy Materials and National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology, Mianyang 621010, P.R. China
| |
Collapse
|
5
|
Zeng J, Wu C, Wang S, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties. Int J Biol Macromol 2025; 303:140308. [PMID: 39864706 DOI: 10.1016/j.ijbiomac.2025.140308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC). The chitosan's -NH₂ groups were chlorinated to form N-halamine groups, significantly enhancing the membrane's bactericidal properties. Experimental results demonstrated that the CS/PEO-CNC-2-Cl membrane achieved complete inactivation of E. coli (108 CFU/mL) and S. aureus within 1 min of contact. Furthermore, under a filtration rate of up to 1273 L·m-2·h-1, the membrane fully inactivated a 106 CFU/mL S. aureus bacterial solution. These findings indicate that the superhydrophilic, antibacterial membrane developed in this study holds considerable promise for applications in water treatment, particularly in addressing oil and microbial contamination.
Collapse
Affiliation(s)
- Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Chen Wu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Shuxiu Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
6
|
Liu Z, Li R, Hou Y, Guo J, Li X, Li K, Liu Q. Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation. Carbohydr Polym 2025; 352:123251. [PMID: 39843131 DOI: 10.1016/j.carbpol.2025.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice. Herein, we reported a free-standing polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) hydrogel sponge for controllable oil/water separation. In the design, the salt/CNC hybrid crystals instead of conventional salt particles were employed as the sacrificial template, thus CNC was creatively integrated into the long and tortuous 3D interconnected channels via the solvent displacement combined template-leaching strategy. The resultant microstructure woven by CNC bundles in sponge channels could alleviate severe pore collapse in leaching process and oil intrusion. Moreover, it could serve as the superhydrophilic "sieve", promoting the separation efficiency significantly. The gravity-based separation efficiencies for PC5-HL hydrogel sponge in processing of diverse oil/water mixture and oil-in-water emulsions could achieve up to 99.7 and 99.4 %, respectively. In addition, this hydrogel sponge can be used for continuous oil/water separation without obvious decline upon several cycles. This work provides a different way to fabricate the eco-friendly, low-cost and energy-saving filtration hydrogel sponge, showing high potential in oily wastewater treatment.
Collapse
Affiliation(s)
- Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Juan Guo
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
7
|
Wu X, Wu W, Han X, Gong X. Sandwich-Structured Superhydrophobic Coating for Rapid and Ultrahigh-Efficiency Viscous Oil Separation from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5557-5570. [PMID: 39985466 DOI: 10.1021/acs.langmuir.4c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Oil spill accidents on the sea and oily wastewater produced in daily life have posed serious threats to the environment. Therefore, there is an urgent need for a material that can effectively separate these mixtures using simple operations. Herein, an ecofriendly sandwich-structured coating with excellent superhydrophobic/superoleophilic properties was fabricated by in situ growth on copper mesh and cotton fabric substrates. Specifically, using the versatility of tannic acid (TA) film, including chelation and reduction with Cu2+, flower-like Cu2S@CuO can be in situ grown on a copper mesh or fabric surface. Then, the Schiff base reaction between TA and octadecylamine is used to hydrophobically modify the surface. Water contact angle (WCA) of the sandwich-structured TA-Cu2S-TA-ODA-coated copper mesh and fabric can reach 160.8 and 156.3°. The coated copper mesh can be folded into a miniature container to collect oil, with collection efficiency reaching 96.47%. And the collection efficiency can be above 90% even after 10 cycles, and its WCA is still 155°. Besides, it can quickly separate various oils. Even for highly viscous peanut oil, the separation efficiency and flux can reach 90.7% and 0.038 mL·cm-2·s-1, respectively, which are much higher than those reported by other similar studies. Furthermore, the coating can endow cotton fabrics with excellent UV-shielding performance compared to the original cotton fabrics. In particular, even after 100 tape peeling tests, 7 washing cycles, 1 h of continuous strong UV irradiation, or 24 h of organic solvent soaking, the sandwich-structured TA-Cu2S-TA-ODA coating still has superhydrophobic properties.
Collapse
Affiliation(s)
- Xiang Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xinting Han
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
8
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
9
|
Gavazzoni C, Lazzari D, da Silva Ramos IP, Brito C. Optimizing oil-water separation using fractal surfaces. J Chem Phys 2025; 162:044702. [PMID: 39840682 DOI: 10.1063/5.0247599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
Oil has become a prevalent global pollutant, stimulating the research to improve the techniques to separate oil from water. Materials with special wetting properties-primarily those that repel water while attracting oil-have been proposed as suitable candidates for this task. However, one limitation in developing efficient substrates is the limited available volume for oil absorption. In this study, we investigate the efficacy of disordered fractal materials in addressing this challenge, leveraging their unique wetting properties. Using a combination of a continuous model and Monte Carlo simulations, we characterize the hydrophobicity and oleophilicity of substrates created through ballistic deposition (BD). Our results demonstrate that these materials exhibit high contact angles for water, confirming their hydrophobic nature while allowing significant oil penetration, indicative of oleophilic behavior. The available free volume within the substrates varies from 60% to 90% of the total volume of the substrate depending on some parameters of the BD. By combining their water and oil wetting properties with a high availability of volume, the fractal substrates analyzed in this work achieve an efficiency in separating oil from water of nearly 98%, which is significantly higher compared to micro-pillared surfaces made from the same material but lacking a fractal design.
Collapse
Affiliation(s)
- Cristina Gavazzoni
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Davi Lazzari
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Iara Patrícia da Silva Ramos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Sahu S, Dhar Purkayastha D. 2D Titanium Carbide MXene-Interfaced Zinc Oxide/Tungstite Architectures Adorned Mixed Matrix Polymer Membranes for Oily Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5278-5289. [PMID: 39791980 DOI: 10.1021/acsami.4c15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (Ti3C2) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO3·H2O) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel Ti3C2/ZnO/WO3·H2O heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively. The superhydrophilic hierarchical architectures offer optimal separation potential for stable oil-water emulsions with a higher flux. Additionally, when exposed to LED light, the composite membrane demonstrated an enhanced photocatalytic capacity for the removal of organic contaminants. This simple, inexpensive, and eco-friendly approach may thus promote the route for the fabrication of 2D MXene-based multifunctional membranes for effective treatment of complex oily wastewater.
Collapse
Affiliation(s)
- Shivshankar Sahu
- Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India
- Department of Physics, Eastern Karbi Anglong College, Sarihajan, Karbi Anglong 782480, Assam, India
| | - Debarun Dhar Purkayastha
- Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India
| |
Collapse
|
11
|
Li D, Yang F, Shi X, Tian G, Fu C, Liu Y, Guo Z. Highly Efficient Oil-Water Separation in Different Scenarios through Synergistic Self-Assembly of ZIF-67@PPy Coatings with Unique Wetting Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68632-68647. [PMID: 39587973 DOI: 10.1021/acsami.4c15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In recent years, oil pollution and industrial organic pollutants discharge has become a major problem affecting the ecological and human living environment, and the removal of oil in oily wastewater is increasingly urgent, especially for emulsion separation. Therefore, it is crucial to develop efficient oil-water separation membranes with low cost, green sustainability, and ease of operation. Herein, an ingenious spraying hybrid coatings containing ZIF-67 (Zeolitic Imidazolate Framework-67) and polypyrrole (PPy) onto stainless steel mesh (SSM) and polyvinylidene fluoride (PVDF) was proposed. Through solidification and cooperative self-assembly to build rough structures, oil-water separation membranes ZIF-67@PPy SSM and ZIF-67@PPy PVDF have been obtained, which are hydrophilic and oleophilic in air and superoleophobic underwater. Depending on the scenario, on-demand separation of light oil/water mixtures and oil-in-water emulsions can be easily realized. The resulting oil-water separation membranes performed well that the separation efficiency of ZIF-67@PPy SSM can exceed 99.3% for all kinds of light oil/water mixtures, with a water flux of up to 66250 L/(m2·h), and maintains a separation efficiency of 98.5% even after 50 cycles. ZIF-67@PPy PVDF has a separation efficiency of more than 99.4% for various oil-in-water emulsions, and sustains outstanding performance despite undergoing 10 cycles. In addition, ZIF-67@PPy SSM and ZIF-67@PPy PVDF are sustainable in harsh environments, with good mechanical durability and some antimicrobial properties. The coatings prepared in this work that can be used for the separation of light oil/water mixtures and oil-in-water emulsions, and the proposed combination of multiple separation strategies are expected to improve the selectivity, improve efficiency, enhance contamination resistance, and increase accessibility of oil-water separation technologies.
Collapse
Affiliation(s)
- Dongyin Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xuan Shi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Changhui Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Yifan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
12
|
Liu H, Zhong H, Yuan Q, Yang R, Kim M, Chan YHT, Chen S, Lin J, Li MG. Roll-to-Roll Manufacturing of Breathable Superhydrophobic Membranes. SMALL METHODS 2024; 8:e2400038. [PMID: 38593365 PMCID: PMC11672173 DOI: 10.1002/smtd.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Self-cleaning and anti-biofouling are both advantages for lotus-leaf-like superhydrophobic surfaces. Methods for creating superhydrophobicity, including chemical bonding low surface energy molecular fragments and constructing surface morphology with protrusions, micropores, and trapped micro airbags by traditional physical strategies, unfortunately, have encountered challenges. They often involve complex synthesis processes, stubborn chemical accumulation, brutal degradation, or infeasible calculation and imprecise modulation in fabricating hierarchical surface roughness. Here, a scalable method to prepare high-quality, breathable superhydrophobic membranes is proposed by developing a successive roll-to-roll laser manufacturing technique, which offers advantages over conventional fabrication approaches in enabling automatically large-scale production and ensuring cost-effectiveness. Nanosecond laser writing and femtosecond laser drilling produce surface microstructures and micropore arrays, respectively, endowing the membrane with superior antiwater capability with hierarchical microstructures forming a barrier and blocking water infiltration. The membrane's breathability is carefully optimized by tailoring micropore arrays to allow for the adequate passage of water vapor while maintaining superhydrophobicity. These membranes combine the benefits of anti-aqueous corrosive liquid behaviors, photothermal effects, thermoplastic properties, and stretchable performances as promising comprehensive materials in diverse scenes.
Collapse
Affiliation(s)
- Huan Liu
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Haosong Zhong
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Qiaoyaxiao Yuan
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Rongliang Yang
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Minseong Kim
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Yee Him Timothy Chan
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics TechnologiesThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Siyu Chen
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Jing Lin
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| | - Mitch Guijun Li
- Research Center on Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics TechnologiesThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongSAR999077P. R. China
| |
Collapse
|
13
|
Sahoo P, Ramachandran AA, Sow PK. A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122641. [PMID: 39362169 DOI: 10.1016/j.jenvman.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
The rapid increase in the production of oily wastewater by industrial and daily activities, oil spill accidents, etc., has led to critical environmental issues. The solution to oil-induced pollution lies in developing efficient oil-water separation technologies. Recently, materials with extreme wettability, particularly those exhibiting superhydrophilic with superoleophobic or superhydrophobic with superoleophilic properties, have emerged as promising solutions for achieving highly efficient and selective oil-water separation. This review offers a comprehensive overview of system designs utilizing such materials for selective oil-water separation. Here, we discuss the rationale underlying the design strategy for the systems used for the separation process. Based on the broad scenarios utilizing oil-water separation, two primary groups of system designs are identified: those handling enclosed oil-water mixtures, such as treating oily wastewater before discharge, and those addressing open-to-air hypaethral oil-water mixtures, such as in the case of oil spills, oil on water bodies post oily wastewater discharge. The review traces the evolution of system designs from batch processing to continuous processing systems, identifies commonalities, and discusses the rationale and underlying design constraints. This analysis can guide the selection of appropriate systems for testing materials in oil-water separation and provides insights into future design development for further real-life deployment.
Collapse
Affiliation(s)
- Priyanka Sahoo
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Ankitha Athreya Ramachandran
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Pradeep Kumar Sow
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| |
Collapse
|
14
|
Zhang L, Wen X, Zhang G, Wang X, Li X, Peng C, Jiang M, Wang M, Ma L. An Anchored Fe-Cu LDH onto a Polyvinylidene Fluoride Membrane with Strong Peroxymonosulfate Activation-Induced Degradation of Methylene Blue and Self-Cleaning Property of Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21663-21674. [PMID: 39367852 DOI: 10.1021/acs.langmuir.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Developing a strong catalytic antifouling membrane to achieve efficient sewage purification has great potential for alleviating water crisis. In this work, we designed and prepared an Fe/Cu-layered double hydroxide (Fe-Cu LDH)-coated polyvinylidene fluoride (PVDF) composite membrane (PVDF/Fe-Cu LDHs) with strong antifouling and activating peroxymonosulfate (PMS) catalytic degradation performance through polydopamine-coordination anchoring and hydrothermal reaction. The results showed that abundant hydroxyl groups of the LDH surface endowed the superhydrophilicity (water contact angle <10°) and underwater superoleophobicity (underwater-oil contact angle >150°) of the membrane surface, which displayed outstanding resistance to crude oil adhesion. With assistance of the LDH surface-bound sulfate radical of the peroxymonosulfate system, the PVDF/Fe-Cu LDH membrane demonstrated robust catalytic degradation performance for the methylene blue (MB) in the dark; the degradation rate constant (k, min-1) reached 0.96. Meanwhile, facing the oily wastewater, the selective wettability and charge effect of LDH of the surface made the PVDF/Fe-Cu LDH membrane realize the separation for the various surfactant-free and surfactant-stabilized emulsions. Importantly, the PMS-activation catalytic produced the ROS (•SO4-,•OH, •O2-, and 1O2), which enhanced the regeneration of the fouled PVDF/Fe-Cu LDH membrane and obtained a high flux recovery ratio in the dark (94.7%) after 10 cycles of separation experiments. Hence, we believed that the PVDF/Fe-Cu LDH membrane can provide inspiration for the development and further practical application of antifouling membranes.
Collapse
Affiliation(s)
- Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Guilan Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xiang Li
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Cong Peng
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Minghang Jiang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Mengjun Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| |
Collapse
|
15
|
Liu S, Huang Q, Gao R, Yuan G, Li N, Liu Y, Zhang X, Chen Y, Wang M. Patterned Ultraslippery Surfaces of Stainless Steel Prepared by Femtosecond Laser Ablation for Directional Manipulation of Liquid Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20763-20772. [PMID: 39287408 DOI: 10.1021/acs.langmuir.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have promising applications in chip laboratories, nanofriction power generation, and microfluidics due to their excellent properties such as good hydrophobicity and low adhesion. However, the self-driven stability of conventionally lubricated surfaces is not high, and the velocity of liquid droplets is difficult to regulate. This greatly limits the potential applications of SLIPS. A strategy is offered to prepare microporous structures of SLIPS directly on a stainless-steel substrate using femtosecond laser processing technology as the main means to realize exhibiting smoothness to liquids. At the same time, the principle of bionics is utilized, the porous structure of SLIPS is combined with the groove structure of rice leaves, or porous structures are combined with the wedge structure of shorebird beak to prepare the three-dimensional structure of SLIPS. Droplets exhibit significant individual anisotropy on three-dimensional (3D) SLIPS of leaf-like groove stripe structure in rice, enabling the precise control of droplet motion direction. When droplets are transported in wedge-shaped SLIPS with an asymmetric structure, the wedge edge can limit the direction of droplet motion while squeezing the droplet to generate Laplace pressure gradient, which achieves continuous self-driven transport of droplets. In addition, based on the above two processing strategies, an information transfer device is designed: the splicing of the self-driven transport surface with anisotropic topological channels enables the differential drive for liquid transport, which provides the conditions for the information transfer of the droplets. This strategy not only is simple and efficient but also provides new ideas for the effective development of multifunctional SLIPS as well as lab-on-a-chip and microfluidic domains.
Collapse
Affiliation(s)
- Shengkai Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Qingyi Huang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Ruming Gao
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Guangli Yuan
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Nana Li
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yiting Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Xuhui Zhang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yulong Chen
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Meng Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
16
|
Lin M, Deng C, Li Q, Zeng X, Dong L, Zhou C. Dual Biomimetic Synergistic Effects of Cactus Spines and Desert Beetle Shells for Water-In-Oil Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20700-20706. [PMID: 39310972 DOI: 10.1021/acs.langmuir.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Drawing inspiration from the unique properties of cactus spines and desert beetle shells, we have designed a biomimetic stainless steel mesh specifically for efficient water-in-oil emulsion separation. The tapered arrays of cactus spines are prepared by a light-curing-templating method, and the hydrophobic regions are constructed by adhering hydrophobic silica nanoparticles to the surface of the mesh. This innovative design takes full advantage of the unique properties of these two natural plants, which can agglomerate tiny emulsified water to achieve an emulsion-breaking effect only under static conditions. At the same time, the stainless steel mesh with the conical arrays has a high water-in-oil emulsion separation efficiency (up to 99.6%), high permeance (2400 L·m-2·h-1·bar-1), and good cycling performance. The concept of dual biomimetic explored in this work may extend beyond oil-water separation to encompass various applications, such as fog collection, droplet manipulation, and more.
Collapse
Affiliation(s)
- Menghao Lin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chengfei Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xinjuan Zeng
- School of Materials and Energy, Foshan University, Foshan 528000, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
17
|
Wang D, Huang H, Min F, Li Y, Zhou W, Gao Y, Xie G, Huang Z, Dong Z, Chu Z. Antigravity Autonomous Superwettable Pumps for Spontaneous Separation of Oil-Water Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402946. [PMID: 38881253 DOI: 10.1002/smll.202402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Oil-water separation based on superwettable materials offers a promising way for the treatment of oil-water mixtures and emulsions. Nevertheless, such separation techniques often require complex devices and external energy input. Therefore, it remains a great challenge to separate oil-water mixtures and emulsions through an energy-efficient, economical, and sustainable way. Here, a novel approach demonstrating the successful separation of oil-water emulsions using antigravity-driven autonomous superwettable pumps is presented. By transitioning from traditional gravity-driven to antigravity-driven separation, the study showcases the unprecedented success in purifying oil/water from emulsions by capillary/siphon-driven superwettable autonomous pumps. These pumps, composed of self-organized interconnected channels formed by the packing of superhydrophobic and superhydrophilic sand particles, exhibit outstanding separation flux, efficiency, and recyclability. The findings of this study not only open up a new avenue for oil-water emulsion separation but also hold promise for profound impacts in the field.
Collapse
Affiliation(s)
- Deqi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haikang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fan Min
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Yixuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenting Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yifeng Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ganhua Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zonglin Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| |
Collapse
|
18
|
Pi P, Ren Z, Yang Y, Chen W, Lin Y. A review of various dimensional superwetting materials for oil-water separation. NANOSCALE 2024; 16:17248-17275. [PMID: 39225194 DOI: 10.1039/d4nr01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the application and fabrication technologies of superwetting materials in the field of oil-water separation have become a research hotspot, aiming to address challenges in marine oil spill response and oily wastewater treatment. Simultaneously, the fabrication technologies and related applications of superwetting materials have been increasingly diversified. This paper systematically reviews the sources and hazards of oily wastewater and oil-water emulsions, several traditional oil-water separation methods, and their limitations, thereby highlighting the advantages of superwetting materials. Additionally, this paper provides an overview of the fundamental theories of wetting and conducts a microanalysis of the penetration mechanism based on Laplace pressure at the gas-liquid-solid three-phase interface. Following this, the latest advances in superwetting oil-water separation materials are elucidated, focusing on five categories: (i) superhydrophobic-superoleophilic materials; (ii) superhydrophilic-underwater superoleophobic materials; (iii) superhydrophobic-superoleophobic materials; (iv) "special" superwetting materials; and (v) smart switchable superwetting materials. This paper innovatively discusses these materials from the perspectives of two-dimensional and three-dimensional materials, deeply studying the mechanisms of oil-water separation and using data to quantify the separation efficiency. Comparative discussions are conducted on the materials from various dimensions, including different substrates, innovations in existing technologies, and fabrication methods as discussed in various articles, followed by corresponding summaries. Finally, the existing shortcomings and challenges of current superwetting materials are summarized, and prospects are proposed. We firmly believe that developing low-cost, stable, environmentally friendly, and practical large-scale superwetting oil-water separation materials will have broad application prospects and potential in the future.
Collapse
Affiliation(s)
- Peng Pi
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Yu Yang
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Weiping Chen
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Youxi Lin
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| |
Collapse
|
19
|
Zhang X, Ding J, Chen H, Fu H, Xu J. Superhydrophobic and environmentally friendly bovine bone biomass based cellulose membrane for oil-water separation. Int J Biol Macromol 2024; 280:135677. [PMID: 39293627 DOI: 10.1016/j.ijbiomac.2024.135677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
With the development of superhydrophobic materials for oil-water separation, there is an urgent need to develop environmentally friendly, low-cost, and novel hydrophobic materials. In this paper, based on bovine bone biomass raw materials, bone ash particles are obtained by calcination and grinding, and then bovine bone ash/cotton fabric cellulose membranes are prepared by vacuum filtration and impregnation methods. The pore size of the membrane is regulated and the hydrophobicity of the material is enhanced by constructing the surface microstructures. Results indicate that the membranes possess good hydrophobicity with a contact angle of 161° and the flux can reach 53,635.2 L/m2h for light oil. The separation efficiencies for petroleum ether, cyclohexane, kerosene, and dichloromethane all reach >99 %. In addition, the separation efficiency of the cellulose membrane is still >99 % in the 40-day separation test and always exceeds 90 % for 30 cycling test, indicating that it has good stability and recoverability. Interestingly, the cellulose membrane is prepared from biodegradable and renewable raw materials, which reduces environmental pollution and effectively utilize natural resources.
Collapse
Affiliation(s)
- Xin Zhang
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Jijun Ding
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China.
| | - Haixia Chen
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Haiwei Fu
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Jiayuan Xu
- Shaanxi Engineering Research Center of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
20
|
Li T, Peng Y, You H, Guan X, Lv J, Yang C. Recent Developments in the Fabrication and Application of Superhydrophobic Suraces. CHEM REC 2024; 24:e202400065. [PMID: 39248661 DOI: 10.1002/tcr.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Indexed: 09/10/2024]
Abstract
A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Ting Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yi Peng
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hang You
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaoya Guan
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Jin Lv
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| | - Chong Yang
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
21
|
Fu C, Tian G, He S, Yao L, Guo Z. Hydrogel Coated Mesh with Controlled Flux for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37757-37769. [PMID: 39001806 DOI: 10.1021/acsami.4c08781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Superwetting surfaces are often applied in oil/water separation. Hydrogels have been widely prepared as superhydrophilic/underwater superoleophobic materials for oil/water separation since they are naturally hydrophilic. Hydrogels usually need to be combined with porous substrates such as stainless steel mesh (SSM) due to their poor mechanical properties. However, it is usually inevitable that the pores of the substrate are clogged during the actual preparation process, leading to a significant decrease in the flux, which limits its effective application. In this study, acrylic acid (AA), chitosan (CS) and modified silica were utilized to form a layer of dual-network PAA/CS@SiO2 hydrogel by photopolymerization on SSM, followed by a simple and novel ultrasonic-assisted pore-making method to generate numerous pores in situ on the surface of the hydrogel-coated mesh, which led to an increase in water flux from 0 to 70,000 L m-2 h-1 without decreasing the separation efficiency. After 100 separations of a mixture of n-hexane and water, the flux was still higher than 50,000 L m-2 h-1 with a separation efficiency above 99%, which is superior to most of hydrogel-coated meshes reported so far. Moreover, the prepared PAA/CS@SiO2 hydrogel-coated mesh also has good environmental stability, low swelling, and self-cleaning properties. We believe that the strategy of this study will provide a simple new perspective when hydrogels block the substrate pores, resulting in low water flux.
Collapse
Affiliation(s)
- Changhui Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Shiping He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Li Yao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
22
|
Zhu F, Zhan Y, Chen X, Chen Y, Lei Y, Jia H, Li Y, Duan X. Photocatalytic PAN Nanofibrous Membrane through Anchoring a Nanoflower-Branched CoAl-LDH@PANI Heterojunction for Organic Hazards Degradation and Oil-Containing Emulsified Wastewater Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14368-14383. [PMID: 38954527 DOI: 10.1021/acs.langmuir.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The synergistic treatment of oily wastewater containing organic hazards and emulsified oils remains a big challenge for membrane separation technology. Herein, the photocatalytic membrane, which combined the physical barrier and catalytic oxidation-driven degradation functionality, was fabricated via anchoring a nanoflower-branched CoAl-LDH@PANI Z-scheme heterojunction onto a porous polyacrylonitrile mat and using tannic acid as an adhesive. The assembly of such a Z-scheme heterojunction offered the superior photocatalytic degradation performance of soluble dyes and tetracycline (up to 94.3%) to the membrane with the improved photocatalytic activity of 2.33 times compared with the CoAl-LDH@pPAN membrane. Quenching experiments suggested that the •O2- was the most reactive oxygen species in the catalytic reaction system of the composite membrane. The greatly enhanced photocatalytic activity was attributed to the effective inhibition of photogenerated hole-electron combination using PANI as a carrier, with charge transferring from LDH to PANI. The possible photocatalytic degradation mechanism was proposed based on VB-XPS, electron spin resonance spectroscopy, and DRS technologies, which was confirmed by density functional theory calculation. Meanwhile, benefiting from the superhydrophilic/oleophobic feature and low oil adhesion, the membrane exhibited high permeability for isooctane emulsion (3990.39 L·m-2·h-1), high structure stability, and satisfactory cycling performance. This work provided a strategy to develop superwetting and photocatalytic composite membranes for treating complex multicomponent pollutants in the chemical industry.
Collapse
Affiliation(s)
- Fei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, P R China
| | - Ximin Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yiwen Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yajie Lei
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P R China
| | - Hongshan Jia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yinlong Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Xinyue Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| |
Collapse
|
23
|
Cui Y, Zheng W, Pu H, Xiong J, Liu H, Shi Y, Huang X. Intertwisted superhydrophilic and superhydrophobic collagen fibers enabled anti-fouling high-performance separation of emulsion wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134653. [PMID: 38795482 DOI: 10.1016/j.jhazmat.2024.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Oil-contaminated wastewater has been one of the most concerned environmental issues. Superwetting materials-enabled remediation of oil contamination in wastewater faces the critical challenge of fouling problems due to the formation of intercepted phase. Herein, high-performance separation of emulsions wastewater was accomplished by developing collagen fibers (CFs)-derived water-oil dual-channels that were comprised of intertwisted superhydrophilic and superhydrophobic CFs. The dual-channels relied on the superhydrophilic CFs to accomplish efficient demulsifying, which played the role as water-channel to enable fast transportation of water, while the superhydrophobic CFs served as the oil-transport channel to permit oil transportation. The mutual repellency between water-channel and oil-channel was essential to guarantee the stability of established dual-channels. The unique dual-channel separation mechanism fundamentally resolved the intercepted phase-caused fouling problem frequently engaged by the superwetting materials that provided single-channel separation capability. Long-lasting (1440 min) anti-fouling separations were achieved by the superwetting CFs-derived dual-channels with separation efficiency high up to 99.99%, and more than 4-fold of stable separation flux as compared with that of superhydrophilic CFs with single-channel separation capability. Our investigations demonstrated a novel strategy by using superwetting CFs to develop water-oil dual-channels for achieving high-performance anti-fouling separation of emulsions wastewater. ENVIRONMENTAL IMPLICATION: Industrial processes discard a large amount of emulsion wastewater, which seriously imperils the aquatic ecosystem. This work demonstrated a conceptual-new strategy to achieve effective remediation of emulsion wastewater via the water-oil dual-channels established by the intertwisted superhydrophilic and superhydrophobic collagen fibers (CFs). The superhydrophilic CFs enabled efficient demulsification of emulsions and played the role of water-channel for the rapid transportation of water, while the superhydrophobic CFs worked as oil-channel to permit the efficient transportation of oil pollutants. Consequently, the long-term (1440 min) anti-fouling high-performance separation of emulsion wastewater was achieved.
Collapse
Affiliation(s)
- Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wan Zheng
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Haoliang Pu
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiexi Xiong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Honglian Liu
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Xin Huang
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Tang S, Wu Z, Wei L, Weng J, Luo J, Wang X. Double-drying 3D lamellar-structured aerogel membrane for efficient oil-water separation and long-lasting antibacterial activity. Int J Biol Macromol 2024; 273:132967. [PMID: 38851609 DOI: 10.1016/j.ijbiomac.2024.132967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Conventional oil-water separation membranes are difficult to establish a trade-off between membrane flux and separation efficiency, and often result in serious secondary contamination due to their fouling issue and non-degradability. Herein, a double drying strategy was introduced through a combination of oven-drying and freeze-drying to create a super-wettable and eco-friendly oil-water separating aerogel membrane (TMAdf). Due to the regular nacre-like structures developed in the drying process and the pores formed by freeze-drying, TMAdf aerogel membrane finally develops regularly arranged porous structures. In addition, the aerogel membrane possesses excellent underwater superoleophobicity with a contact angle above 168° and antifouling properties. TMAdf aerogel membrane can effectively separate different kinds of oil-water mixtures and highly emulsified oil-water dispersions under gravity alone, achieving exceptionally high flux (3693 L·m-2·h-1) and efficiency (99 %), while being recyclable. The aerogel membrane also displays stability and universality, making it effective in removing oil droplets from water in corrosive environments such as acids, salts and alkalis. Furthermore, TMAdf aerogel membrane shows long-lasting antibacterial properties (photothermal sterilization up to 6 times) and biodegradability (completely degraded after 50 days in soil). This study presents new ideas and insights for the fabrication of multifunctional membranes for oil-water separation.
Collapse
Affiliation(s)
- Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Food Science and Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhengguo Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, China
| | - Lansheng Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiayao Weng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiwen Luo
- South China Normal Univ, Higher Educ Mega Ctr Guangzhou, Sch Environm, Guangzhou 510006, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Qasim M, Ali A, Alnaser A. Micropatterned superhydrophobic meshes coated with low-cost carbon nanoparticles for efficient oil/water separation. RSC Adv 2024; 14:20426-20440. [PMID: 38946774 PMCID: PMC11208865 DOI: 10.1039/d4ra03275f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Superhydrophobic and superoleophilic meshes have gained considerable attention in oil/water separation in recent years. To fabricate such meshes, surface roughness features can be introduced, and the surface free energy can be lowered, preferably, by utilizing low cost, safe, and readily available materials. Herein, we report a novel approach for fabricating a superhydrophobic copper mesh using low-cost carbon nanoparticles embedded within surface micropatterns. To create the micropatterns, a femtosecond laser was employed. The fabricated mesh exhibited a water contact angle of 168.9° and a roll-off angle of only 5.9°. Additionally, the mesh was highly durable and effectively retained its superhydrophobicity during water jet impact and tape-peeling tests. After 50 cycles of the water jet impact test and 5 cycles of the tape-peeling test, the water contact angle reduced by only 0.3° and 2.3°, respectively. When tested for separating n-hexane/water mixtures, the mesh exhibited a separation efficiency of up to 98%. The separation efficiency remained essentially constant after 10 cycles of n-hexane/water separation. It was observed that the surface micropatterns played a significant role in achieving superhydrophobicity and imparting high durability to the mesh. Meshes lacking these laser-induced micropatterns showed higher wettability, lower durability, and decreased separation performance with repeated use.
Collapse
Affiliation(s)
- Muhammad Qasim
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah Sharjah 26666 United Arab Emirates
- Department of Chemical and Biological Engineering, American University of Sharjah Sharjah 26666 United Arab Emirates
| | - Asghar Ali
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah Sharjah 26666 United Arab Emirates
| | - Ali Alnaser
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah Sharjah 26666 United Arab Emirates
- Department of Physics, American University of Sharjah Sharjah 26666 United Arab Emirates
- Materials Research Center, American University of Sharjah Sharjah 26666 United Arab Emirates
| |
Collapse
|
26
|
Cui S, Wu M, Xu M, Li X, Ren Q, Wang L, Zheng W. Supercritical CO 2 extrusion foaming of highly open-cell poly(lactic acid) foam with superior oil adsorption performance. Int J Biol Macromol 2024; 269:132138. [PMID: 38718998 DOI: 10.1016/j.ijbiomac.2024.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Addressing marine oil spills and industrial water pollution necessitates the development of eco-efficient oil-absorbing materials. With increasing concern for the environment, there is a consensus to decrease the use of petroleum-based polymers. Herein, lightweight poly(lactic acid) (PLA) blend foams with varying thermoplastic polyurethane (TPU) content were fabricated via a solvent-free, eco-friendly supercritical carbon dioxide (scCO2) extrusion foaming technology. The incorporation of TPU significantly enhanced the crystallization rate of PLA, with the semi-crystallization time of PT30 and PT50 blends at 105 °C exhibiting a reduction of 77.2 % and 47.9 %, respectively, compared to neat PLA. The resulting foams exhibited an open-cell structure with excellent selective oil adsorption capabilities. Notably, the PT30 foam achieved a remarkable maximum expansion ratio of 36.0, while the PT50 foam attained the highest open-cell content of 96.2 %. The PT50 foam demonstrated an outstanding adsorption capacity, spanning from 4.7 to 18.8 g/g for diverse oils and solvents, with rapid adsorption kinetics, reaching 94.9 % of the equilibrium adsorption capacity for CCl4 within just 1 min. Furthermore, the PT50 foam retained 95.2 % of its adsorption capacity for CCl4 over 10 adsorption-desorption cycles. This study presents a scalable and sustainable approach for large-scale production of high-performance, bio-based foams, facilitating efficient oil-water separation.
Collapse
Affiliation(s)
- Shijie Cui
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China; Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Minghui Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingxian Xu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Li
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Long Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Liu L, Yang D, Bai Y, Li X, Tan F, Ma J, Wang Y. Construction of biodegradable superhydrophilic/underwater superoleophobic materials with CNF (cellulose nanofiber) fence-like attached on the surface for efficient oil/water emulsion separation. Int J Biol Macromol 2024; 269:132175. [PMID: 38729497 DOI: 10.1016/j.ijbiomac.2024.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.
Collapse
Affiliation(s)
- Lei Liu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Bai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiliang Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
28
|
Wu Z, He J, Zhao G, Tang X, Li J, Chen W, Li R. Superhydrophilic PANI/Ag/TA@PVDF Composite Membrane with Antifouling Property for Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11329-11339. [PMID: 38748512 DOI: 10.1021/acs.langmuir.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The current membrane materials used for oil-water separation suffer from low separation efficiency and poor durability, and membrane contamination is also a key issue that must be addressed urgently. In this paper, a superhydrophilic PANI/Ag/TA@PVDF composite membrane with PANI-Ag NPs heterojunction structure was prepared via chelation and reduction of Ag+ by tannic acid (TA) and in situ growth of hydrochloric acid-doped polyaniline (PANI). TA endows the prepared composite membrane with excellent superhydrophilicity and underwater oleophobicity, remarkable oil-water separation capacity (the separation efficiency of more than 97% for soybean oil), and extraordinary antifouling properties. Notably, the range of photodegradation is expanded from UV to visible light by the construction of a Schottky heterostructure between PANI and Ag NPs, the photocatalytic degradation ability of composite membrane for organic pollutants has been improved obviously, and the degradation efficiency for crystal violet (CV) is 97.9%. Considering these merits, the PANI/Ag/TA@PVDF composite membrane provides an effective strategy to overcome the shortcomings of existing membrane materials, presenting enormous potential in the treatment and purification of oily wastewater.
Collapse
Affiliation(s)
- Zhenmin Wu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jie He
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Guoyu Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Xiaoyan Tang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Junqing Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Wenhang Chen
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruiqi Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
29
|
Chen F, Liu X, Huang S. Asymmetric Wettability Janus Mesh via Electrostatic Printing for Selective Oil-Water and Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10676-10684. [PMID: 38736194 DOI: 10.1021/acs.langmuir.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Janus mesh with two-sided asymmetric wettability shows high potential for selective oil-water and emulsion separation. However, it remains a challenge to construct Janus mesh structures with good stability and extremely asymmetric wettability. Herein, a novel Janus mesh with asymmetric wettability was structured by two different precursors, polydimethylsiloxane/zinc oxide (PDMS/ZnO) and zinc oxide-polyacrylonitrile/N,N-dimethylformamide (ZnO-PAN/DMF), by electrostatic printing, including electrostatic air spraying and electrostatic spinning. The prepared Janus mesh has special micro-nanostructures on two sides, including PDMS@ZnO and ZnO@PAN. On the basis of gravity, when the placement direction is changed, Janus mesh can effectively separate oil-water mixtures of different densities and surfactant-stabilized oil-water emulsions. Meanwhile, the obtained Janus mesh exhibited good separation efficiency (>96.3%) for various oil-water mixtures, and the flux was up to 2621 ± 30 L m-2 h-1. The Janus mesh was cycled 20 times with no weakening in separation efficiency, indicating satisfactory cycling stability. The Janus mesh displayed good stability under harsh conditions (acidic, alkaline, and high temperature). The Janus mesh can realize low energy input and long-lasting oil-water separation, which has widespread application prospects in intelligent oil-water separation. This top-down electrostatic printing strategy provides a way to construct Janus interface materials with practical applications.
Collapse
Affiliation(s)
- Fengjun Chen
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, Zhejiang 325035, People's Republic of China
- National Engineering Research Center for High Efficiency Grinding, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xin Liu
- National Engineering Research Center for High Efficiency Grinding, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Shuai Huang
- National Engineering Research Center for High Efficiency Grinding, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
30
|
Mikolei JJ, Helbrecht C, Pleitner JC, Stanzel M, Pardehkhorram R, Biesalski M, Schabel S, Andrieu-Brunsen A. Single-fibre coating and additive manufacturing of multifunctional papers. RSC Adv 2024; 14:14161-14169. [PMID: 38686290 PMCID: PMC11057565 DOI: 10.1039/d4ra01957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Paper-based materials with precisely designed wettabilities show great potential for fluid transport control, separation, and sensing. To tune the wettability of paper, paper sheets are usually modified after the paper manufacturing process. This limits the complexity of the local wettability design. We combined the wettability design of the individual fibres with subsequent paper sheet fabrication through either fibre deposition or fibre printing. Using silica-based cellulose fibre functionalization, the wettability of the paper sheets, containing only one specific fibre type, could be gradually tuned from highly hydrophilic to highly hydrophobic, resulting in water exclusion. The development of a silica-functionalized fibre library containing mesoporous or dense silica coatings, as well as silica with varying precursor compositions, further enabled the variation of the paper wettability and fluid flow. By combining this fibre library with the paper fabrication process by (i) fibre deposition or (ii) fibre printing, the paper wettability architecture and thus the local fibre composition were adjusted without any further processing steps. This enabled the fabrication of papers with wettability integration, such as a wettability pattern or a Janus paper design, containing wettability gradients along the paper sheet cross section. This asymmetric wettability along all three spatial dimensions enabled side-selective oil-water separation.
Collapse
Affiliation(s)
- Joanna Judith Mikolei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| | - Christiane Helbrecht
- Paper Technology and Mechanical Process Engineering, Technische Universität Darmstadt Alexanderstraße 8 64283 Darmstadt Germany
| | - Janine Christin Pleitner
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| | - Mathias Stanzel
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| | - Raheleh Pardehkhorram
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| | - Markus Biesalski
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular and Paper Chemistry, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| | - Samuel Schabel
- Paper Technology and Mechanical Process Engineering, Technische Universität Darmstadt Alexanderstraße 8 64283 Darmstadt Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Macromolecular Chemistry - Smart Membranes, Technische Universität Darmstadt Peter-Grünberg-Straße 8 D-64287 Darmstadt Germany
| |
Collapse
|
31
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
32
|
Lin YL, Zhao MX, Yu YL, Liu SL, Li M, Jiang AL, Deng M. The treatment of oily wastewater by thermo-responsive calcium alginate capsules immobilized Pseudomonas aeruginosa. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11022. [PMID: 38655583 DOI: 10.1002/wer.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
A microfluidic strategy of smart calcium alginate (CA) capsules is presented to immobilize Pseudomonas aeruginosa to treat oil slicks effectively. The capsule wall is embedded with poly (N-isopropyl acrylamide) sub-microspheres as thermo-responsive switches. CA capsules, with a diameter of 3.26 mm and a thin wall thickness about 12.8 μm, have satisfying monodispersity, cavity structure, and dense surface structures. The capsules possess excellent encapsulation of bacteria, which are fixed in a restricted space and become more aggregated. It overcomes the disadvantages of a long fermentation production cycle, easy loss of bacteria, and susceptibility to shear effect. The smart CA capsules immobilized with bacteria treat model wastewater containing soybean oil or diesel and display favorable fermentation ability. The capsules can effectively treat oil slicks with high concentration, and it is an economical way for processing oily wastewater. PRACTITIONER POINTS: A thermo-responsive calcium alginate capsule was prepared by microfluidic strategy. Pseudomonas aeruginosa is environmentally friendly in treating oil slicks. The capsules, immobilized bacteria, treat oil slicks effectively. This study provides an economical way for processing different oily water.
Collapse
Affiliation(s)
- Yin-Liang Lin
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Ming-Xin Zhao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Ya-Lan Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Sheng-Li Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Min Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - A-Li Jiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Min Deng
- Yibin Siliya Co. Ltd, Yibin, China
| |
Collapse
|
33
|
Liang Y, Liu F, Wang E, Miao Y, Han W, Chen Y, Zhang W, Li L, Huang J. Preparation of highly elastic superhydrophobic CNF/Fe 3O 4 based materials modified in aqueous phase for oil-water separation. Int J Biol Macromol 2024; 265:130807. [PMID: 38484808 DOI: 10.1016/j.ijbiomac.2024.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Magnetic superhydrophobic materials have broad application prospect in oil-water separation. In this study, a magnetic and superhydrophobic aerogel with lamellar structure was successfully prepared using cellulose nanofibrils (CNF) as the skeleton, Fe3O4 as the magnetic ion, 1H, 1H, 2H, 2H trialkylfluorooctane triethoxysilane (FS) and 3-(2-aminoethyl amino)-propyl trimethoxysilane (AS) as the combined modifier. The prepared aerogel shows lower density (38.63 mg/cm3), excellent magnetic (15.13 emu/g), high elasticity and good oil sorption properties (21 g/g). In addition, FS/AS also exhibits excellent mechanical properties and superhydrophobic ability (water contact angle (WCA) of 151.9 ± 1.4°), as it provides sufficient toughness and low surface energy for the layer-branch structure. It should be noted that the entire preparation process is carried out in the aqueous phase, without the use of any organic solvents, providing a green oil-water separation strategy.
Collapse
Affiliation(s)
- Yipeng Liang
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Feng Liu
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Enfu Wang
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Miao
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Weisheng Han
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Chen
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenbiao Zhang
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China
| | - Luming Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Jingda Huang
- Bamboo Industry Institude, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
34
|
Belachew GB, Hu CC, Chang YY, Wang CF, Hung WS, Chen JK, Lai JY. An Eco-Friendly Manner to Prepare Superwetting Melamine Sponges with Switchable Wettability for the Separation of Oil/Water Mixtures and Emulsions. Polymers (Basel) 2024; 16:693. [PMID: 38475376 DOI: 10.3390/polym16050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.
Collapse
Affiliation(s)
- Guyita Berako Belachew
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yan-Yu Chang
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-Feng Wang
- Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
35
|
Chhajed M, Verma C, Maji PK. Recent advances in hydrophobic nanocellulose aerogels for oil spill applications: A review. MARINE POLLUTION BULLETIN 2024; 199:116024. [PMID: 38219295 DOI: 10.1016/j.marpolbul.2024.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
In a rapidly growing world, petroleum is used extensively in various industries, and the extraction, processing, and transportation of petroleum generates large amounts of petroleum-containing wastewater. Conventional oil/water separation methodologies are often ineffective and costly. Nanocellulose-based aerogels (NA) have emerged as a possible solution to this problem. However, hydrophobic modification is required for effective use in oil/water separation. This review on materials commonly used in these processes and outlines the requirements for adsorbent materials and methods for creating unique lipophilic surfaces. New trends in hydrophobization methods for NA are also discussed. Additionally, it includes the development of composite nanocellulose aerogels (CNAs) and cellulose based membrane specially developed for oil/water (o/w) separation considering different separation requirements. This analysis also examines how CNAs have evolved by introducing special properties that facilitate oil collection or make the adsorbent recyclable. We also discuss the difficulties in creating effective NAs for these important applications in a changing society, as well as the difficulties in creating oil recovery equipment for oil spill cleanup.
Collapse
Affiliation(s)
- Monika Chhajed
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, U.P., India
| | - Chhavi Verma
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, U.P., India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, U.P., India.
| |
Collapse
|
36
|
Li Y, Xue Y, Wang J, Zhang D, Zhao Y, Liu JJ. Antibacterial Hydrophilic ZnO Microstructure Film with Underwater Oleophobic and Self-Cleaning Antifouling Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:150. [PMID: 38251115 PMCID: PMC10820557 DOI: 10.3390/nano14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Zhao
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| | - Jun-Jie Liu
- School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (Y.L.); (Y.X.); (J.W.); (D.Z.)
| |
Collapse
|
37
|
Liu Y, Bai T, Zhao S, Zhang Z, Feng M, Zhang J, Li D, Feng L. Sugarcane-based superhydrophilic and underwater superoleophobic membrane for efficient oil-in-water emulsions separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132551. [PMID: 37722321 DOI: 10.1016/j.jhazmat.2023.132551] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The development of ecological, low cost, easy preparation, especially high performance materials for emulsions separation is of great importance due to the rise in pollution of oil-water emulsions from industrial production and domestic waste. Straws as agricultural wastes, including plenty of hydrophilic groups and multi-level pore structures, can be prepared as biomass membranes for oil-water emulsion separation. Herein, a novel super-hydrophilic sugarcane-based (SHS) membrane was prepared using a facile and eco-friendly method including chemical treatment and freeze-drying. The as-prepared SHS membrane has unique wettabilities due to the hydrophilic property of the internal cellulose and the micro-nano pores, including superhydrophilicity (water contact angle of 0°) and underwater superoleophobicity (underwater oil contact angles of over 150°). The SHS membrane has good durability and stability against ultraviolet (UV) irradiation, corrosion by acids and alkalis, mechanical abrasion and especially mould adhesion. Importantly, the SHS membrane can be used for separation of various oil-in-water emulsions, and exhibits excellent separation performances such as high separation efficiency (> 99 %) and good separation flux (above 891 L m-2 h-1 bar-1). The SHS membrane also exhibits excellent recyclability over 10 continuous separation cycles. Furthermore, the SHS membrane can be utilized to selectively absorb water from oils as a water absorbent material. Hence, SHS membrane is a promising and practical material for applications in treatment of wastewater containing oil-water emulsions.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Tianbin Bai
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shixing Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhuanli Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Meijun Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianbin Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dianming Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Libang Feng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
38
|
Hu DD, Zhang YX, Li YD, Zeng JB. Fully biobased hydrogel based on chitosan and tannic acid coated cotton fabric for underwater superoleophobicity and efficient oil/water separation. Int J Biol Macromol 2024; 254:127892. [PMID: 37952799 DOI: 10.1016/j.ijbiomac.2023.127892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this backdrop, this study aimed to fabricate an environmental-friendly UWSO textile using biobased materials. To achieve this, hydrogel consisting of chitosan (CS) and poly(tannic acid) (PTA) were formed and coated on cotton fabric (CTF) via dip-coating followed by oxidative polymerization. CS&PTA hydrogel endowed the CTF with a rough surface and high surface energy, leading to an UWSO CTF with an underwater oil contact angle as high as 166.84°. The CS&PTA/CTF had excellent separation capability toward various oil/water mixtures, showing separation efficiency above 99.84 % and water flux higher than 23, 999 L m-2 h-1. Moreover, CS&PTA/CTF possessed excellent mechanical and environmental stability with underwater superoleophobicity unchanged after sandpaper friction, ultrasonication, organic solvents, NaCl (m/v, 30 %) solution, and acid/base solution immersion, due to the strong interaction between the hydrogel and cotton fabric generated by the mussel-inspired adhesion owing to the presence of PTA. The fully biobased UWSO CTF exhibits great promising to be an alternative to traditional superwetting materials for separation of oil/water mixtures.
Collapse
Affiliation(s)
- Dan-Dan Hu
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ye-Xin Zhang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Dong Li
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Bing Zeng
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Ning D, Lu Z, Tian C, Yan N, Xie F, Li N, Hua L. Superwettable cellulose acetate-based nanofiber membrane with spider-web structure for highly efficient oily water purification. Int J Biol Macromol 2023; 253:126865. [PMID: 37717870 DOI: 10.1016/j.ijbiomac.2023.126865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Electrospinning nanofibers membrane has received much attention to remove the insoluble oil from the sewage, while the poor mechanical strength and low oil/water separation efficiency of membranes limit their practical application. Here, we prepared a superwettable deacetylated cellulose acetate (d-CA)-based electrospinning nanofibers membrane simply dipped by bacterial cellulose (BC) and cross-linked with citric acid (CCA) to construct the spider-web structure spontaneously. Compared with the pristine d-CA membrane, the obtained d-CA/BC@CCA membrane exhibits the remarkable oil/water separation performance. The flux and separation efficiency of n-hexane/water emulsion without (SFE) and with (SSE) emulsifier for d-CA/BC@CCA membrane are 9364 L·m-2·h-1·bar-1, 98.34 % and 5479 L·m-2·h-1·bar-1, 99.39 %, respectively, which are mainly attributed to the improved hydrophilicity of its surface and the decreased pore sizes caused by the unique spider-web structure. In addition, d-CA/BC@CCA membrane also possesses the outstanding mechanical properties, the better cycle stability, as well as the excellent durability. This study provides a novel strategy for the construction of the high-performance oil/water separation membrane.
Collapse
Affiliation(s)
- Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Cuiyu Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Nan Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Hua
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
40
|
Peng Y, Zhao S, Huang C, Deng F, Liu J, Liu C, Li Y. Superhydrophilic and Underwater Superoleophobic Copper Mesh Coated with Bamboo Cellulose Hydrogel for Efficient Oil/Water Separation. Polymers (Basel) 2023; 16:14. [PMID: 38201679 PMCID: PMC10780632 DOI: 10.3390/polym16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Super-wetting interface materials have shown great potential for applications in oil-water separation. Hydrogel-based materials, in particular, have been extensively studied for separating water from oily wastewater due to their unique hydrophilicity and excellent anti-oil effect. In this study, a superhydrophilic and underwater superoleophobic bamboo cellulose hydrogel-coated mesh was fabricated using a feasible and eco-friendly dip-coating method. The process involved dissolving bamboo cellulose in a green alkaline/urea aqueous solvent system, followed by regeneration in ethanol solvent, without the addition of surface modifiers. The resulting membrane exhibited excellent special wettability, with superhydrophilicity and underwater superoleophobicity, enabling oil-water separation through a gravity-driven "water-removing" mode. The super-wetting composite membrane demonstrated a high separation efficiency of higher than 98% and a permeate flux of up to 9168 L·m-2·h-1 for numerous oil/water mixtures. It also maintained a separation efficiency of >95% even after 10 cycles of separation, indicating its long-term stability. This study presents a green, simple, cost-effective, and environmentally friendly approach for fabricating superhydrophilic surfaces to achieve oil-water separation. It also highlights the potential of bamboo-based materials in the field of oil-water separation.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunhua Liu
- Engineering Research Center of Jiangxi Province for Bamboo-Based Advanced Materials and Biomass Conversion, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.P.); (S.Z.); (C.H.); (F.D.); (J.L.)
| | - Yibao Li
- Engineering Research Center of Jiangxi Province for Bamboo-Based Advanced Materials and Biomass Conversion, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (Y.P.); (S.Z.); (C.H.); (F.D.); (J.L.)
| |
Collapse
|
41
|
Vaithilingam S, Thirviyam SK, Muthukaruppan A, Arulanandu JA. CdO-Nanografted Superhydrophobic Hybrid Polymer Composite-Coated Cotton Fabrics for Self-Cleaning and Oil/Water Separation Applications. ACS OMEGA 2023; 8:43163-43177. [PMID: 38024688 PMCID: PMC10652371 DOI: 10.1021/acsomega.3c06790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The current study presents a simple and cost-competitive method for the development of high-performance superhydrophobic and superoleophilic cotton fabrics coated with cadmium oxide/cerotic acid (CdO/CE)-polycaprolactone (PCL)- and cadmium oxide/stearic acid (CdO/ST)-polycaprolactone-grafted hybrid composites. X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy are used to characterize the CdO/CE-PCL and CdO/ST-PCL and polycaprolactone-modified cotton fabrics. Using an optical contact angle meter, the wetting behavior of corrosive liquids such as coffee, milk, tea, water dyed with methylene blue, strong acids (HCl), strong alkali (NaOH), and saturated salt solution (NaCl) on the CdO-CE/ST/PCL-modified cotton fabrics is assessed as well as the durability of CdO-CE/ST/PCL-modified cotton fabrics in corrosive liquids. Data obtained from the oil-water separation experiment indicate remarkable separation efficiency with oil purity values of ≥99.97 wt %, and high permeation flux values of up to 11,700 ± 300 L m-2 h-1 are observed for surfactant-stabilized water-in-oil emulsions via a gravity-driven technique. From the data obtained, it is concluded that the nano-CdO-grafted superhydrophobic hybrid polymer composite-coated cotton fabrics (CdO-ST/(CE)/PCL/CFs) can be utilized for self-cleaning and oil/water separation applications.
Collapse
Affiliation(s)
- Selvaraj Vaithilingam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
| | - Swarna Karthika Thirviyam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
- Dept.
of Chemistry, SDNB Vaishnav College for
Women, Chrompet, Chennai 600 044, India
| | - Alagar Muthukaruppan
- Polymer
Engineering Laboratory, PSG Institute of
Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | | |
Collapse
|
42
|
Kim HJ, Jung YJ, Son SH, Choi WS. Compressible Separator and Catalyst for Simultaneous Separation and Purification of Emulsions and Aqueous Pollutants. ACS OMEGA 2023; 8:40741-40753. [PMID: 37929114 PMCID: PMC10620873 DOI: 10.1021/acsomega.3c05776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Oily wastewater, a global environmental concern, demands efficient oil/water separation and pollutant removal. Our compressible separator and catalyst (CSC) balls, prepared through sponge etching and metal nanoparticle synthesis, exhibited efficient degradation of dyes of varying sizes, spanning a molecular weight range from 139 to 696 g/mol during the oil/water separation. Control over the distance between catalysts was achieved by incorporating Ag-Pt-Pd catalysts into the sponge skeleton and by adjusting the compression rates. The dispersion of the catalysts improved degradation efficiency for larger dyes, while concentrating the catalysts proved to be more effective for the smaller ones. By optimizing the compression rates of CSC balls, we successfully achieved the effective removal of emulsions of different sizes and precise control of flux. Our CSC ball-loaded system offers efficient and versatile solutions for concurrent separation and purification of emulsions and pollutants with potential environmental benefits.
Collapse
Affiliation(s)
- Hee Ju Kim
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Young Ju Jung
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Su Hyeon Son
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| | - Won San Choi
- Department of Chemical and Biological
Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Republic of Korea
| |
Collapse
|
43
|
Wang X, Zhang J, Wang Y, Qin S, Pan Y, Tu Y, Liu X. Superhydrophobic Thermoplastic Polyurethane Foam Fabricated by Phase Separation and Silica Coating for Oil-Water Separation. Macromol Rapid Commun 2023; 44:e2300333. [PMID: 37573031 DOI: 10.1002/marc.202300333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Oil spills and the presence of oily wastewater have resulted in substantial ecological damage. Superhydrophobic polymer foam with selectivity and adsorption capacity is a promising candidate for efficient oil-water separation. In this study, a method that combines phase separation and silica coating to produce superhydrophobic thermoplastic polyurethane (TPU) foam is proposed. The TPU foam demonstrates superhydrophobicity with a water contact angle of 155.62°, and exhibits a maximum saturated adsorption capacity of 54.11 g g-1 . Furthermore, the foam can be utilized as a filter for oil-water separation, maintaining its filtration efficiency (41.2 m3 m2 h-1 ) even after ten filtration cycles.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
- Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, Nancy, 54000, France
| | - Jingna Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| | - Yiding Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| | - Shengxue Qin
- College of Mechanical and Electrical Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
| | - Yamin Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yongqiang Tu
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, P. R. China
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| |
Collapse
|
44
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
45
|
Mizan MMH, Gurave PM, Rastgar M, Rahimpour A, Srivastava RK, Sadrzadeh M. "Biomass to Membrane": Sulfonated Kraft Lignin/PCL Superhydrophilic Electrospun Membrane for Gravity-Driven Oil-in-Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41961-41976. [PMID: 37624730 DOI: 10.1021/acsami.3c09964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Biobased membranes made with green solvents have numerous advantages in the water purification industry; however, their long-term use is impeded by severe membrane fouling and low structural stability. Herein, we proposed a facile and green approach to fabricate an eco-friendly and biodegradable electrospun membrane by simply blending polycaprolactone (PCL) with sulfonated kraft lignin (SKL) in a green solvent (i.e., acetic acid) without needing any additional post-treatment. We investigated the influence of SKL content on the surface morphology, chemical composition, and mechanical properties of the electrospun membrane. The SKL-modified membranes (L-5 and L-10) showed superhydrophilicity and underwater superoleophobicity with a water contact angle (WCA) of 0° (<3 s) and an underwater-oil contact angle (UWOCA) over 150° due to the combined effect of surface roughness and hydrophilic chemical functionality. Furthermore, the as-prepared membranes demonstrated excellent pure water flux of 800-900 LMH and an emulsion flux of 170-480 LMH during the gravity-driven filtration of three surfactant-stabilized oil-in-water emulsions, namely, mineral oil/water, gasoline/water, and n-hexadecane/water emulsions. In addition, these membranes exhibited superior antioil-fouling performance with excellent separation efficiency (97-99%) and a high flux recovery ratio (>98%). The 10 wt % SKL-incorporated membrane (L-10) also showed consistent separation performance after 10 cyclic tests, indicating its excellent reusability and recyclability. Furthermore, the stability of the membrane under harsh pH conditions was also evaluated and proved to be robust enough to maintain its wettability in a wide pH range (pH 1-10).
Collapse
Affiliation(s)
- Md Mizanul Haque Mizan
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pramod M Gurave
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
46
|
Karmelich C, Wan Z, Tian W, Crooke E, Qi X, Carroll A, Konstas K, Wood C. Advancing hyper-crosslinked materials with high efficiency and reusability for oil spill response. Sci Rep 2023; 13:9779. [PMID: 37328512 DOI: 10.1038/s41598-023-36577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Developing materials with high efficiency for recovering oil to mitigate the environmental impact of oil spills has always been a challenging task. A commercial melamine formaldehyde sponge was coated with an optimised superhydrophobic/superoleophilic hyper-crosslinked polymer and applied to the removal of crude oil from oil-in-water emulsions for the improvement of oil spill clean-up processes. The high surface area, porosity, hydrophobicity, and selectivity of oil over water made the hyper-crosslinked polymer coated sponge (HPCS) an ideal sorbent for efficient oil/water separation. The system was able to strip crude oil from water emulsions of 1000 ppm to a negligible level of 2 ppm oil with minimal amounts of the HPCS material. More importantly, the HPCS material could be reused via a simple mechanical compression process, and the uptake capacity was retained over ten cycles. For five cycles of oil adsorption/mechanical compression the HPCS was able to provide water filtrate with oil concentrations of under 15 ppm. This is an effective and economical recovery system, removing the need for consistent solvent washing and drying processes. These results suggest that the HPCS is a promising material for oil/water separation and recovery under challenging conditions.
Collapse
Affiliation(s)
- Caleb Karmelich
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia
| | - Zhijian Wan
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia
| | - Wendy Tian
- Manufacturing, Commonwealth Scientific Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Emma Crooke
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia
| | - Xiubin Qi
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia
| | - Ann Carroll
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia
| | - Kristina Konstas
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Private Bag 10, Clayton South MDC, VIC, 3169, Australia
| | - Colin Wood
- Energy Business Unit, Commonwealth Scientific Industrial Research Organisation (CSIRO), Kensington, WA, 6151, Australia.
| |
Collapse
|
47
|
Varamesh A, Abraham BD, Wang H, Berton P, Zhao H, Gourlay K, Minhas G, Lu Q, Bryant SL, Hu J. Multifunctional fully biobased aerogels for water remediation: Applications for dye and heavy metal adsorption and oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131824. [PMID: 37327610 DOI: 10.1016/j.jhazmat.2023.131824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Water ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m3 kg-1 specific Young's modulus and ∼111 kJ/m3 energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS. The addition of CS and CA increased the variety of functional groups (carboxylic acid, hydroxyl and amines) on the materials' surface, resulting in super-high dye and heavy metal adsorption capacities (619 mg/g and 206 mg/g for methylene blue and copper, respectively). Further modification of FBAs with a simple approach using methyltrimethoxysilane endowed aerogel oleophilic and hydrophobic properties. The developed FBAs showed a fast performance in water and oil/organic solvents separation with more than 96% efficiency. Besides, the FBA sorbents could be regenerated and reused for multiple cycles without any significant impact on their performance. Moreover, thanks to the presence of amine groups by addition of CS, FBAs also displayed antibacterial properties by preventing the growth of Escherichia coli on their surface. This work demonstrates the preparation of FBAs from abundant, sustainable, and inexpensive natural resources for applications in wastewater purification.
Collapse
Affiliation(s)
- Amir Varamesh
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Brett David Abraham
- Department of Biomedical Engineering, University of Calgary, Calgary T2N 1N4, Canada; Pharmaceutical Production Research Facility, University of Calgary, Calgary T2N 1N4, Canada
| | - Hui Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Paula Berton
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Keith Gourlay
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Gurminder Minhas
- Performance BioFilaments, 700 West Pender Street, Vancouver V6C 1G8, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
48
|
Liu F, Di X, Sun X, Wang X, Yang T, Wang M, Li J, Wang C, Li Y. Superhydrophobic/Superoleophilic PDMS/SiO 2 Aerogel Fabric Gathering Device for Self-Driven Collection of Floating Viscous Oil. Gels 2023; 9:gels9050405. [PMID: 37232997 DOI: 10.3390/gels9050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
The persistent challenge of removing viscous oil on water surfaces continues to pose a major concern and requires immediate attention. Here, a novel solution has been introduced in the form of a superhydrophobic/superoleophilic PDMS/SiO2 aerogel fabric gathering device (SFGD). The SFGD is based on the adhesive and kinematic viscosity properties of oil, enabling self-driven collection of floating oil on the water surface. The SFGD is able to spontaneously capture the floating oil, selectively filter it, and sustainably collect it into its porous fabric interior through the synergistic effects of surface tension, gravity, and liquid pressure. This eliminates the need for auxiliary operations such as pumping, pouring, or squeezing. The SFGD demonstrates exceptional average recovery efficiencies of 94% for oils with viscosities ranging from 10 to 1000 mPa·s at room temperature, including dimethylsilicone oil, soybean oil, and machine oil. With its facile design, ease of fabrication, high recovery efficiency, excellent reclaiming capabilities, and scalability for multiple oil mixtures, the SFGD represents a significant advancement in the separation of immiscible oil/water mixtures of various viscosities and brings the separation process one step closer to practical application.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Di
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaohan Sun
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tinghan Yang
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Meng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Li
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yudong Li
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
49
|
Wang Y, Meng F, Han L, Liu X, Guo F, Lu H, Cheng D, Wang W. Constructing a highly tough, durable, and renewable flexible filter by epitaxial growth of a glass fiber fabric for high flux and superefficient oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130807. [PMID: 36709734 DOI: 10.1016/j.jhazmat.2023.130807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The separation and purification of complex and stable stubborn oily sewage is extremely challenging. To respond to this challenge, we developed a powerful flexible filter with ultrahigh strength, durability, flux, separation efficiency, and a multiobjective separation function based on a universal epitaxial growth process of glass fiber fabric (Gf). The underwater oil contact angle (UOCA) of the silicate@Gf (MgSi@Gf) filter is 156.3°, so it can achieve both an ultrahigh permeation flux (5632.7 L·m-2·h-1) and oil-water separation efficiency (99.5%) under gravity (≈ 1 kPa) in purifying surfactant-stabilized emulsions, actual industrial oily sewage and mechanical cold rolling emulsions. The filter with a high tensile strength (66.5 MPa) and oil invasion pressure (4626 Pa) can withstand the impact of much sewage or intense water flow. The filter can tolerate extreme conditions and can maintain high separation performance in acid or alkaline (pH 1-13), high or low temperature (100 °C, 200 °C, -18 °C) conditions or natural salty waters such as seawater. The filter can remove methylene blue (MB) dye (99.8%) by filtration, and can be repeatedly and easily reconstructed (renewable advantage). The filter shows great potential for efficiently eliminating the hazards of contaminants in actual oily sewage and thus protect human health.
Collapse
Affiliation(s)
- Yiwen Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fanxiang Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Hang Lu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Dehao Cheng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
50
|
Apsey H, Hill D, Barron AR, Alexander S. Slippery Alkoxysilane Coatings for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17353-17363. [PMID: 36951685 PMCID: PMC10080537 DOI: 10.1021/acsami.3c00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the wettability and antifouling behavior of a range of different siloxane coatings on plastic and glass substrates. The films investigated are prepared using trimethoxysilane precursors with different alkyl chain lengths (1-18 C atoms) in order to study how the nature of the hydrophobic group affects the different parameters used to characterize wettability (contact angles, sliding angles, and contact angle hysteresis). Atomic force microscopy analysis shows that the coatings possess low surface topography [root mean squared roughness (rms) < 50 nm] and are highly transparent as studied using UV-vis spectroscopy. The sliding properties of H2O, CH2I2, methanol, and ethylene glycol were observed to be strongly influenced by the chain length of the alkoxysilane precursor used. The coatings formed from the longer chain analogues show comparable water sliding angles to superhydrophobic surfaces. These coatings show similar performance to analogous alkoxysilane coating-bearing fluorinated groups, indicating that they could act as viable environmentally friendly alternatives to some of the fluorinated films that have been widely adopted. Furthermore, these surfaces are highly durable toward common forms of abrasion and are observed to show low adhesion toward synthetic feces, indicating that their utility extends further than repelling liquids alone. Consequently, these coatings could show promise for potential use in applications in the medical sector where fouling by biological mixtures leads to an unsustainable use of materials.
Collapse
Affiliation(s)
- Henry Apsey
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Donald Hill
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Andrew R. Barron
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
- Arizona
Institute for Resilient Environments and Societies (AIRES), University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Faculty
of Engineering, Universiti Teknologi Brunei, Darussalam BE1410, Brunei
| | - Shirin Alexander
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| |
Collapse
|