1
|
Hu F, Zhou Q, Liu R, Zhu Y, Liang Y, Fang D, Ji B, Chen Z, Luo J, Zhou B. Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception. MATERIALS HORIZONS 2025; 12:418-433. [PMID: 39575668 DOI: 10.1039/d4mh01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Electronic skin (E-skin) has attracted considerable attention for simulating the human sensory system for use in prosthetics, human-machine interactions, and healthcare monitoring. However, it is still challenging to fully mimic the skin function that can de-couple stimuli such as normal/tangential forces, contact/non-contact behaviors, and react to high-frequency inputs. Herein, we propose fully bionic E-skin (FBE-skin), which consists of a magnetized micro-cilia array (MMCA), a micro-dome array (MDA), and flexible electrodes to completely duplicate the hairy layer, epidermis/dermis interface, and subcutaneous mechanoreceptors of human skin. The optimized MDA and interdigital electrode enable the FBE-skin to perceive static forces with a linear sensitivity of 96.6 kPa-1 up to 100 kPa, while the branch of electromagnetic induction allows the FBE-skin to sensitively capture dynamic stimuli with vibrating signals up to 100 Hz. The top-down integration of MDA and MMCA not only replicates the three-dimensional structure of human skin, but also synergistically provides the FBE-skin with bionic rapidly adapting (RA) and slowly adapting (SA) receptors. Consequently, the FBE-skin is capable of perceiving dynamic/static, normal/tangential, and contact/non-contact stimuli with a broad range of working pressures and frequencies. We expect that the design of FBE-skin will be promising for widespread applications from intelligent sensing to human-machine interactions.
Collapse
Affiliation(s)
- Fengming Hu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Qian Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Ruolin Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Yanfei Zhu
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Yuanzhe Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Dan Fang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| | - Bing Ji
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Zhiming Chen
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Jianyi Luo
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
| |
Collapse
|
2
|
Yu J, Ai M, Liu C, Bi H, Wu X, Ying WB, Yu Z. Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:76. [PMID: 39796867 PMCID: PMC11722616 DOI: 10.3390/s25010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human-machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology's potential for future applications.
Collapse
Affiliation(s)
- Jiahe Yu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| | - Muxi Ai
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| | - Cairong Liu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| | - Wu Bin Ying
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Zhe Yu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Zhang Z, Wang Y, Zhang C, Zhan W, Zhang Q, Xue L, Xu Z, Peng N, Jiang Z, Ye Z, Liu M, Zhang X. Cilia-Inspired Magnetic Flexible Shear Force Sensors for Tactile and Fluid Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50524-50533. [PMID: 39266047 DOI: 10.1021/acsami.4c12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Recently, there has been a burgeoning interest in flexible shear force sensors capable of precisely detecting both magnitude and direction. Despite considerable efforts, the challenge of achieving accurate direction recognition persists, primarily due to the inherent structural characteristics and sensing mechanisms. Here, we present a shear force sensor constructed by a magnetically induced assembled Ni/PDMS composite membrane, which is magnetized and integrated with a three-axis Hall sensor, facilitating its ability to simultaneously monitor both shear force magnitude (0.7-87 mN) and direction (0-360°). The cilia-inspired shear force magnetic sensor (CISFMS) exhibits admirable attributes, including exceptional flexibility, high sensitivity (0.76 mN-1), an exceedingly low detection limit (1° and 0.7 mN), and remarkable durability (over 10,000 bending cycles). Further, our results demonstrate the capacity of the CISFMS in detecting tactile properties, fluid velocity, and direction, offering substantial potential for future developments in wearable electronics.
Collapse
Affiliation(s)
- Zeying Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yijing Wang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Cuiling Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Wang Zhan
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Qi Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Li Xue
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Zhe Xu
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, P. R. China
| | - Zhilu Ye
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| | - Ming Liu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaohui Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-End Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China
| |
Collapse
|
4
|
Aftab S, Hussain S, Al-Kahtani AA. Latest Innovations in 2D Flexible Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301280. [PMID: 37104492 DOI: 10.1002/adma.202301280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
2D materials with dangling-bond-free surfaces and atomically thin layers have been shown to be capable of being incorporated into flexible electronic devices. The electronic and optical properties of 2D materials can be tuned or controlled in other ways by using the intriguing strain engineering method. The latest and encouraging techniques in regard to creating flexible 2D nanoelectronics are condensed in this review. These techniques have the potential to be used in a wider range of applications in the near and long term. It is possible to use ultrathin 2D materials (graphene, BP, WTe2 , VSe2 etc.) and 2D transition metal dichalcogenides (2D TMDs) in order to enable the electrical behavior of the devices to be studied. A category of materials is produced on smaller scales by exfoliating bulk materials, whereas chemical vapor deposition (CVD) and epitaxial growth are employed on larger scales. This overview highlights two distinct requirements, which include from a single semiconductor or with van der Waals heterostructures of various nanomaterials. They include where strain must be avoided and where it is required, such as solutions to produce strain-insensitive devices, and such as pressure-sensitive outcomes, respectively. Finally, points-of-view about the current difficulties and possibilities in regard to using 2D materials in flexible electronics are provided.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Glass P, Shar A, Pemberton C, Nguyen E, Park SH, Joung D. 3D-Printed Artificial Cilia Arrays: A Versatile Tool for Customizable Mechanosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303164. [PMID: 37483144 PMCID: PMC10502633 DOI: 10.1002/advs.202303164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Bio-inspired cilium-based mechanosensors offer a high level of responsiveness, making them suitable for a wide range of industrial, environmental, and biomedical applications. Despite great promise, the development of sensors with multifunctionality, scalability, customizability, and sensing linearity presents challenges due to the complex sensing mechanisms and fabrication methods involved. To this end, high-aspect-ratio polycaprolactone/graphene cilia structures with high conductivity, and facile fabrication are employed to address these challenges. For these 3D-printed structures, an "inter-cilium contact" sensing mechanism that enables the sensor to function akin to an on-off switch, significantly enhancing sensitivity and reducing ambiguity in detection, is proposed. The cilia structures exhibit high levels of customizability, including thickness, height, spacing, and arrangement, while maintaining mechanical robustness. The simplicity of the sensor design enables highly sensitive detection in diverse applications, encompassing airflow and water flow monitoring, braille detection, and debris recognition. Overall, the unique conductive cilia-based sensing mechanism that is proposed brings several advantages, advancing the development of multi-sensing capabilities and flexible electronic skin applications in smart robotics and human prosthetics.
Collapse
Affiliation(s)
- Phillip Glass
- Department of PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
| | - Andy Shar
- Department of PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
| | - Charles Pemberton
- Department of PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
| | - Ethan Nguyen
- Department of PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
| | - Sung Hyun Park
- Sustainable Technology and Wellness R&D GroupKorea Institute of Industrial Technology (KITECH)Jeju‐siJeju‐do63243Republic of Korea
| | - Daeha Joung
- Department of PhysicsVirginia Commonwealth UniversityRichmondVA23284USA
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
- Institute for Sustainable Energy and EnvironmentVirginia Commonwealth UniversityRichmondVA23284USA
| |
Collapse
|
6
|
Wang HL, Chen T, Zhang B, Wang G, Yang X, Wu K, Wang Y. A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206830. [PMID: 36700923 DOI: 10.1002/smll.202206830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Indexed: 05/25/2023]
Abstract
The progress from intelligent interactions and supplemented/augmented reality requires artificial skins to shift from the single-functional tactile paradigm. Dual-responsive sensors that can both detect pre-contact proximal events and tactile pressure levels enrich the perception dimensions and deliver additional cognitive information. Previous dual-responsive sensors show very limited utilizations only in proximity perception or approaching switches. Whereas, the approaching inputs from the environment should be able to convey more valuable messages. Herein, a flexible iontronic dual-responsive artificial skin is present. The artificial skin is sensitive to external object's applied pressure as well as its approaching, and can elicit information of target material categories encoded in the proximal inputs. Versatile applications are then demonstrated. Dual-mode human-machine interfaces are developed based on the devices, including a manipulation of virtual game characters, navigation and zooming in of electronic maps, and scrolling through electronic documents. More importantly, the proof-of-concept application of an entirely touchless material classification system is demonstrated. Three types of materials (metals, polymers, and human skins) are classified and predicted accurately. These features of the artificial skin make it highly promising for next-generation smart engineered electronics.
Collapse
Affiliation(s)
- Hai Lu Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianyu Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bojian Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guohui Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kunlin Wu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Yousuf S, Mahmoud Halabi J, Tahir I, Ahmed E, Rezgui R, Li L, Laws P, Daqaq M, Naumov P. Elastic Organic Crystals as Bioinspired Hair-Like Sensors. Angew Chem Int Ed Engl 2023; 62:e202217329. [PMID: 36575895 DOI: 10.1002/anie.202217329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s-1 ) and fast response time (≈2.70 s). The air-flow-induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair-like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics.
Collapse
Affiliation(s)
- Soha Yousuf
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Jad Mahmoud Halabi
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Ejaz Ahmed
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Rachid Rezgui
- New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates.,Science and Engineering Department, Sorbonne University Abu Dhabi, PO Box, 38044, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates.,Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates.,Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates.,Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia.,Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
8
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
9
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Park C, Lee B, Kim J, Lee H, Kang J, Yoon J, Ban J, Song C, Cho SJ. Flexible Sensory Systems: Structural Approaches. Polymers (Basel) 2022; 14:1232. [PMID: 35335562 PMCID: PMC8955130 DOI: 10.3390/polym14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Biology is characterized by smooth, elastic, and nonplanar surfaces; as a consequence, soft electronics that enable interfacing with nonplanar surfaces allow applications that could not be achieved with the rigid and integrated circuits that exist today. Here, we review the latest examples of technologies and methods that can replace elasticity through a structural approach; these approaches can modify mechanical properties, thereby improving performance, while maintaining the existing material integrity. Furthermore, an overview of the recent progress in wave/wrinkle, stretchable interconnect, origami/kirigami, crack, nano/micro, and textile structures is provided. Finally, potential applications and expected developments in soft electronics are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seong J. Cho
- Department of Mechanical Engineering, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea; (C.P.); (B.L.); (J.K.); (H.L.); (J.K.); (J.Y.); (J.B.); (C.S.)
| |
Collapse
|
11
|
Zhang M, Gao X, Lu C, Yao D, Wu L, Li D, Fang H, A S, Sun Y. Ultrathin Superhydrophobic Flexible Tactile Sensors for Normal and Shear Force Discrimination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55735-55746. [PMID: 34761892 DOI: 10.1021/acsami.1c17391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible tactile sensors, with the ability to sense and even discriminate between different mechanical stimuli, can enable real-time and precise monitoring of dexterous and complex robotic motions. However, making them ultrathin and superhydrophobic for practical applications is still a great challenge. Here, superhydrophobic flexible tactile sensors with hierarchical micro- and nanostructures, that is, warped graphene nanosheets adhered to micron-height wrinkled surfaces, were constructed using ultrathin medical tape (40 μm) and graphene. The tactile sensor enables the discrimination of normal and shear forces and senses sliding friction and airflow. Moreover, the tactile sensor exhibits high sensitivity to normal and shear forces, extremely low detection limits (15 Pa for normal forces and 6.4 mN for shear forces), and cyclic robustness. Based on the abovementioned characteristics, the tactile sensor enables real-time and accurate monitoring of the robotic arm's motions, such as moving, gripping, and lifting, during the process of picking up objects. The superhydrophobicity even allows the sensor to monitor the motions of the robotic arm underwater in real time. Our tactile sensors have potential applications in the fields of intelligent robotics and smart prosthetics.
Collapse
Affiliation(s)
- Mengpei Zhang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- College of Chemical Engineering & Pharmaceutics, National United Engineer Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Lanlan Wu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dongxue Li
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hanqing Fang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shiwei A
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Yafei Sun
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
12
|
Huang S, Zhang B, Lin Y, Lee CS, Zhang X. Compact Biomimetic Hair Sensors Based on Single Silicon Nanowires for Ultrafast and Highly-Sensitive Airflow Detection. NANO LETTERS 2021; 21:4684-4691. [PMID: 34053221 DOI: 10.1021/acs.nanolett.1c00852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wearable sensors that can mimic functionalities of human bodies have attracted intense recent attention. However, research on wearable airflow sensors is still lagging behind. Herein, we report a biomimetic hair sensor based on a single ultralong silicon nanowire (SiNW-BHS) for airflow detection. In our device, the SiNW can provide both mechanical and electrical responses in airflow, which enables a simple and compact design. The SiNW-BHSs can detect airflow with a low detection limit (<0.15 m/s) and a record-high response speed (response time <40 ms). The compact design of the SiNW-BHSs also enables easy integration of an array of devices onto a flexible substrate to mimic human skin to provide comprehensive airflow information including wind speed, incident position, incident angle, and so forth. This work provides novel-designed BHSs for ultrafast and highly sensitive airflow detection, showing great potential for applications such as e-skins, wearable electronics, and robotics.
Collapse
Affiliation(s)
- Siyi Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou 215123, Jiangsu People's Republic of China
| | - Yuan Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSADF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, People's Republic of China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Guo H, Tan YJ, Chen G, Wang Z, Susanto GJ, See HH, Yang Z, Lim ZW, Yang L, Tee BCK. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat Commun 2020; 11:5747. [PMID: 33184285 PMCID: PMC7665015 DOI: 10.1038/s41467-020-19531-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Human skin is a self-healing mechanosensory system that detects various mechanical contact forces efficiently through three-dimensional innervations. Here, we propose a biomimetic artificially innervated foam by embedding three-dimensional electrodes within a new low-modulus self-healing foam material. The foam material is synthesized from a one-step self-foaming process. By tuning the concentration of conductive metal particles in the foam at near-percolation, we demonstrate that it can operate as a piezo-impedance sensor in both piezoresistive and piezocapacitive sensing modes without the need for an encapsulation layer. The sensor is sensitive to an object's contact force directions as well as to human proximity. Moreover, the foam material self-heals autonomously with immediate function restoration despite mechanical damage. It further recovers from mechanical bifurcations with gentle heating (70 °C). We anticipate that this material will be useful as damage robust human-machine interfaces.
Collapse
Affiliation(s)
- Hongchen Guo
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Yu Jun Tan
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ge Chen
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Zifeng Wang
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Glenys Jocelin Susanto
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Hian Hian See
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Zi Wei Lim
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore, Singapore
| | - Benjamin C K Tee
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore.
- Department of Materials Science and Engineering (MSE), National University of Singapore, Singapore, Singapore.
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore, Singapore.
- Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- N.1 Institute of Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|