1
|
Zeng X, Li C, Li Z, Tao Z, Li M. Review of research advances in microbial sterilization technologies and applications in the built environment. J Environ Sci (China) 2025; 154:314-348. [PMID: 40049877 DOI: 10.1016/j.jes.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 05/13/2025]
Abstract
As globalization accelerates, microbial contamination in the built environment poses a major public health challenge. Especially since Corona Virus Disease 2019 (COVID-19), microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment. Based on this, the study reviews sterilization technologies in the built environment, focusing on the principles, efficiency and applicability, revealing advantages and limitations, and summarizing current research advances. Despite the efficacy of single sterilization technologies in specific environments, the corresponding side effects still exist. Thus, this review highlights the efficiency of hybrid sterilization technologies, providing an in-depth understanding of the practical application in the built environment. Also, it presents an outlook on the future direction of sterilization technology, including the development of new methods that are more efficient, energy-saving, and targeted to better address microbial contamination in the complex and changing built environment. Overall, this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future, as well as a scientific basis for developing more effective air quality control strategies.
Collapse
Affiliation(s)
- Xinran Zeng
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China
| | - Chunhui Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhenhai Li
- School of Mechanical Engineering Department, Tongji University, Shanghai 201804, China.
| | - Zhizheng Tao
- SWJTU-Leeds Joint School, Southwest Jiaotong University, Chengdu 610097, China
| | - Mingtong Li
- School of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
2
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2025; 45:556-590. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Wang Y, Wu X, Li X, Zhang C, Lv X, Zhang Z, Wang X, Shi H, Yang F, Zhao H. Covalently crosslinked carboxymethyl chitosan beads containing SiO 2 and ionic polymer for efficient adsorptive removal of methylene blue. Int J Biol Macromol 2025; 294:139441. [PMID: 39755316 DOI: 10.1016/j.ijbiomac.2024.139441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO2 and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption. By using methylene blue (MB) as a representative pollutant, adsorption experiments have demonstrated that the presence of SiO2 and PAMPS significantly enhances the adsorption performance of the CMCS-based beads. The adsorption behavior aligns with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating the occurrence of chemical adsorption and monolayer adsorption phenomena. The optimal sample, CCMCS-SiO2@PAMPS, exhibits a maximum adsorption capacity of 606.06, 649.35, and 684.93 mg g-1 at 25, 35, and 45 °C, respectively, as calculated from the Langmuir isotherm model. The effects of pH, ionic strength, and adsorbent dosage on adsorption performance are investigated, and the porous composite beads exhibit robust reusability, maintaining their efficiency even after four adsorption-desorption cycles. The significant findings of this research confirm the superior performance of the functionalized CMCS-based beads for the effective removal of organic dyes from aqueous environments.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiandi Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xunzhang Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Chang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinru Lv
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhufeng Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xusheng Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hongqi Shi
- Institute of Failure Analysis and Intelligent Detection, Suqian University, Suqian 223800, PR China
| | - Feng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Huaixia Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
5
|
Fares MY, Daher M, Boufadel P, Haikal E, Haj Shehade T, Koa J, Khan AZ, Abboud JA. The use of autologous chondrocyte transplantation for the treatment of osteoarthritis: a systematic review of clinical trials. Cell Tissue Bank 2024; 26:5. [PMID: 39729188 DOI: 10.1007/s10561-024-10154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023. Inclusion criteria consisted of clinical trials that involve autologous cartilage transplantation for the treatment of osteoarthritis. Clinical, imaging, arthroscopic, and histologic outcomes were assessed. A total of 15 clinical trials, involving 851 participants, were included in the study. All trials utilized ACT in the treatment of knee osteoarthritis through varying scaffolds: collagen-based (10 trials), polymer-based (2 trials), hyaluronic-acid based (2 trials), and spheroid technology (1 trial). Clinical improvement of patients undergoing ACT was noted in 14 trials; five showed superior clinical outcomes compared to the control group, while one showed inferiority compared to mesenchymal stem cells. Postoperative imaging was utilized to assess the degree of cartilage regeneration in 11 trials. Ten trials showed signs of cartilage recovery with ACT, four trials showed no difference, and two showed worse outcomes when compared to controls. Second-look-arthroscopy was performed in three trials, which reported varying degrees of improvement in cartilage regeneration. Histologic analysis was performed in four trials and generally showed promising results. While improved clinical outcomes were demonstrated, conflicting findings in postoperative outcome analysis raise questions about the unequivocal utility of ACT. Additional research with control groups, randomization, and appropriate blinding is required.
Collapse
Affiliation(s)
- Mohamad Y Fares
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA.
- Southern California Permanente Medical Group, Panorama City, CA, USA.
| | - Mohammad Daher
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Peter Boufadel
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Emil Haikal
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Tarek Haj Shehade
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Jonathan Koa
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Adam Z Khan
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| | - Joseph A Abboud
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
- Southern California Permanente Medical Group, Panorama City, CA, USA
| |
Collapse
|
6
|
Guliani E, Taneja A, Ranjan KR, Mishra V. Luminous Insights: Exploring Organic Fluorescent "Turn-On" Chemosensors for Metal-Ion (Cu +2, Al +3, Zn +2, Fe +3) Detection. J Fluoresc 2024; 34:1965-2001. [PMID: 37787885 DOI: 10.1007/s10895-023-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
There are several metal ions that are vital for the growth of the environmental field as well as for the biological field but only up to the maximum limit. If they are present in excess, it could be hazardous for the human health. With the growing technology, a series of various detection techniques are employed in order to recognize those metal ions, some of them include voltammetry, electrochemical methods, inductively couples, etc. However, these techniques are expensive, time consuming, requires large storage, advanced instrumentation, and a skilled person to operate. So, here comes the need of a sensor and it is defined as a miniature device which detects the substance of interest by giving response in the form of energy change. So, from past few decades, many sensors have been formulated for detecting metal ions with some basic characteristics like selectivity, specificity, sensitivity, high accuracy, lower detection limit, and response time. Detecting various metal ions by employing chemosensors involves different techniques such as fluorescence, phosphorescence, chemiluminescence, electrochemical, and colorimetry. The fluorescence technique has certain advantages over the other techniques. This review mainly focuses on the chemosensors that show a signal in the form of fluorescence to detect Al+3, Zn+2, Cu+2, and Fe+3 ions.
Collapse
Affiliation(s)
- Eksha Guliani
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India
| | - Akanksha Taneja
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India
| | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, 201301, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
7
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
8
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
9
|
Ma Z, Yang S, Shi Y, Fu Y, Wang K, Xiao G, Zou B. Considerable Piezochromism in All-Inorganic Zero-Dimensional Perovskite Nanocrystals via Pressure-Modulated Self-Trapped Exciton Emission. Angew Chem Int Ed Engl 2024; 63:e202406015. [PMID: 38635006 DOI: 10.1002/anie.202406015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Piezochromic materials refer to a class of matters that alter their photoluminescence (PL) colors in response to the external stimuli, which exhibit promising smart applications in anti-counterfeiting, optoelectronic memory and pressure-sensing. However, so far, most reported piezochromic materials have been confined to organic materials or hybrid materials containing organic moieties with limited piezochromic range of less than 100 nm in visible region. Here, we achieved an intriguing piezochromism in all-inorganic zero-dimensional (0D) Cs3Cu2Cl5 nanocrystals (NCs) with a considerable piezochromic range of 232 nm because of their unique inorganic rigid structure. The PL energy shifted from the lowest-energy red fluorescence (1.85 eV) to the highest-energy blue fluorescence (2.83 eV), covering almost the entire visible wavelength range. Pressure-modulated self-trapped exciton emission between different energy levels of self-trapped states within Cs3Cu2Cl5 NCs was the main reason for this piezochromism property. Note that the quenched emission, which is over five times more intense than that in the initial state, is retained under ambient conditions upon decompression. This work provides a promising pressure indicating material, particularly used in pressure stability monitoring for equipment working at extreme environments.
Collapse
Affiliation(s)
- Zhiwei Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Songrui Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Yue Shi
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Yuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Elaissaoui I, Sayeb S, Ounif I, Ferhi M, Karima HN, Ennigrou DJ. Preparation and characterization of acetate cellulose electrospun nanofibers membrane: Potential application on wastewater treatment. Heliyon 2024; 10:e32552. [PMID: 39183835 PMCID: PMC11341289 DOI: 10.1016/j.heliyon.2024.e32552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Development of nanofiber membranes with the ability to remove organic dye such as Indigo Carmine (IC) from effluent wastewater is of immense help to the textile industry. In the present study, we investigate the preparation of cellulose acetate (CA) nanofiber membranes with optimized performances using electrospinning technique for effective removal of Indigo Carmine (IC) dye. Electrospinning parameters and solvent system containing acetic acid were adjusted to obtain CA nanofibers membranes which better suits dye removal application. The obtained nanofiber membranes were characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FT-IR) and contact angle analysis. Results show that nanofiber webs with optimized electrospinning parameters were continuously formed and are substantially free of defects such as beading, with an average diameter of 950 ± 50 nm. Hydrophobicity of membranes were successfully modified and showed important increase of contact angle values from 37° to 107°. The stirring time was varied to improve the solution homogeneity and consequently the response of membranes in filtration treatment. The CA membranes performance was evaluated through water flux and permeability measurement and tested on IC dye removal. The results showed a rate of dye removal around 83 % and a maximum adsorption capacity (Qm) of 13.09 mg/g for the optimized CA membranes.
Collapse
Affiliation(s)
- Ines Elaissaoui
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P.O. Box: 73-8027, Soliman, Tunisia
| | - Soumaya Sayeb
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P.O. Box: 73-8027, Soliman, Tunisia
| | - Ibtissem Ounif
- Laboratory of Water, Membrane and Environmental Biotechnology, Centre of Research and Water Technologies, Technopark of Borj-Cedria, BP 273, 8020, Soliman, Tunisia
| | - Mounir Ferhi
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P.O. Box: 73-8027, Soliman, Tunisia
| | - Horchani-naifer Karima
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P.O. Box: 73-8027, Soliman, Tunisia
| | - Dorra Jellouli Ennigrou
- Physical Chemistry Laboratory of Mineral Materials and Their Applications, National Center for Research in Materials Sciences, Technopark Borj Cedria, P.O. Box: 73-8027, Soliman, Tunisia
| |
Collapse
|
11
|
Xiao H, Wang L, Bu N, Duan J, Pang J. Electrospun Photodynamic Antibacterial Konjac Glucomannan/Polyvinylpyrrolidone Nanofibers Incorporated with Lignin-Zinc Oxide Nanoparticles and Curcumin for Food Packaging. Foods 2024; 13:2007. [PMID: 38998513 PMCID: PMC11240967 DOI: 10.3390/foods13132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Due to the growing concerns surrounding microbial contamination and food safety, there has been a surge of interest in fabricating novel food packaging with highly efficient antibacterial activity. Herein, we describe novel photodynamic antibacterial konjac glucomannan (KGM)/polyvinylpyrrolidone (PVP) nanofibers incorporated with lignin-zinc oxide composite nanoparticles (L-ZnONPs) and curcumin (Cur) via electrospinning technology. The resulting KGM/PVP/Cur/L-ZnONPs nanofibers exhibited favorable hydrophobic properties (water contact angle: 118.1°), thermal stability, and flexibility (elongation at break: 241.9%). Notably, the inclusion of L-ZnONPs and Cur endowed the nanofibers with remarkable antioxidant (ABTS radical scavenging activity: 98.1%) and photodynamic antimicrobial properties, demonstrating enhanced inhibitory effect against both Staphylococcus aureus (inhibition: 12.4 mm) and Escherichia coli (12.1 mm). As a proof-of-concept study, we evaluated the feasibility of applying nanofibers to fresh strawberries, and the findings demonstrated that our nanofibers could delay strawberry spoilage and inhibit microbial growth. This photodynamic antimicrobial approach holds promise for design of highly efficient antibacterial food packaging, thereby contributing to enhanced food safety and quality assurance.
Collapse
Affiliation(s)
- Huimin Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
13
|
Emam MH, Elezaby RS, Swidan SA, Hathout RM. Nanofiberous facemasks as protectives against pandemic respiratory viruses. Expert Rev Respir Med 2024; 18:127-143. [PMID: 38753449 DOI: 10.1080/17476348.2024.2356601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Wearing protective face masks and respirators has been a necessity to reduce the transmission rate of respiratory viruses since the outbreak of the coronavirus (COVID-19) disease. Nevertheless, the outbreak has revealed the need to develop efficient air filter materials and innovative anti-microbial protectives. Nanofibrous facemasks, either loaded with antiviral nanoparticles or not, are very promising personal protective equipment (PPE) against pandemic respiratory viruses. AREAS COVERED In this review, multiple types of face masks and respirators are discussed as well as filtration mechanisms of particulates. In this regard, the limitations of traditional face masks were summarized and the advancement of nanotechnology in developing nanofibrous masks and air filters was discussed. Different methods of preparing nanofibers were explained. The various approaches used for enhancing nanofibrous face masks were covered. EXPERT OPINION Although wearing conventional face masks can limit viral infection spread to some extent, the world is in great need for more protective face masks. Nanofibers can block viral particles efficiently and can be incorporated into face masks in order to enhance their filtration efficiency. Also, we believe that other modifications such as addition of antiviral nanoparticles can significantly increase the protection power of facemasks.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt, Cairo, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Cheng H, Newton MAA, Rajib M, Zhang Q, Gao W, Lu Z, Zheng Y, Dai Z, Zhu J. A ZIF-8-encapsulated interpenetrated hydrogel/nanofiber composite patch for chronic wound treatment. J Mater Chem B 2024; 12:2042-2053. [PMID: 38315081 DOI: 10.1039/d3tb02683c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Designing wound dressings necessitates the crucial considerations of maintaining a moist environment and implementing effective bacterial control. Furthermore, developing a three-dimensional framework emulating the extracellular matrix (ECM) confers advantages in fostering cellular migration and proliferation. Inspired by this, hydrogel/nanofiber composites have been demonstrated as promising materials for wound dressings. The composites also overcome the disadvantages of poor mechanical properties and rapid release of traditional pure hydrogels. In this study, we constructed a calcium alginate hydrogel/polylactic acid nanofiber (CAH/PLANF) composite with an interpenetrated network. Additionally, the synthesis of zeolitic imidazolate framework-8 (ZIF-8) incorporated into the composite system endowed the system with enhanced mechanical properties and photodynamic antibacterial attributes. The obtained composite patch (ZIF-8@CAH/PLANF) exhibited excellent swelling, strong mechanical properties, low cytotoxicity, and durable photodynamic antibacterial effect with an antibacterial efficacy of higher than 99.99%. Finally, bacterial infection and wound healing properties were investigated in vivo, and the ZIF-8@CAH/PLANF patch was proven to have the ability to fight infection and accelerate wound healing.
Collapse
Affiliation(s)
- Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Mia Rajib
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
15
|
Luceri A, Francese R, Perero S, Lembo D, Ferraris M, Balagna C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3955-3965. [PMID: 38195426 DOI: 10.1021/acsami.3c13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The indoor air quality should be better controlled and improved to avoid numerous health issues. Even if different devices are developed for air filtration, the proliferation of microorganisms under certain conditions must be controlled. For this purpose, a silver nanocluster/silica composite coating was deposited via a cosputtering technique onto fiber glass and polymeric based substrates. The aim of this work is focused on the evaluation of the antibacterial and antiviral effects of the developed coating. The preliminary results of the compositional and morphological tests showed an evenly distributed coating on filters surfaces. Several antibacterial tests were performed, confirming strong effect both in qualitative and quantitative methods, against S. epidermidis and E. coli. To understand if the coating can stop the proliferation of bacteria colonies spread on it, simulation of everyday usage of filters was performed, nebulizing bacteria solution with high colonies concentration and evaluating the inhibition of bacteria growth. Additionally, a deep understanding of the virucidal action and mechanism of Ag nanoclusters of the coating was performed. The effect of the coating both in aqueous medium and in dry methods was evaluated, in comparison with analysis on ions release. The virucidal performances are assessed against the human coronavirus OC43 strain (HCoV-OC43).
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Sergio Perero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
16
|
Chen X, Wang J, Xie A, Wang B, Wu J, Chen G, Xing T. Fabrication of Robust Superhydrophobic Polyester Fabrics with Photothermal Conversion and Oil-Water Separation Performance through Deposition of Natural Polyphenols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15817-15827. [PMID: 37877472 DOI: 10.1021/acs.langmuir.3c02508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Superhydrophobic polyester (PET) fabrics were created by increasing fabric surface roughness and decreasing surface energy through interactions between natural polyphenols, ferrous sulfate heptahydrate, and hexadecyltrimethoxysilane. The superhydrophobic fabric can be obtained with different natural polyphenols, including tannic acid, ferulic acid, gallic acid, guaiacol, and caffeic acid. Durability tests were carried out on the superhydrophobic PET fabric, investigating resistance to washing, rubbing, UV aging, acids, alkalis, and organic reagents. The results demonstrate the stability and versatility of modified PET in complex environments. The modified superhydrophobic PET fabric exhibited exceptional oil-water separation and self-cleaning properties, exhibiting a water contact angle of 161.3° and a sliding angle of 4°. In addition, the modified fabric demonstrated a remarkable photothermal conversion efficiency, with the surface temperature increasing from 29.1 to 72 °C in 300 s, and it maintained a degree of photothermal conversion capability even upon completion of four cycles. This study offers novel perspectives on extending the utilization of natural polyphenols for constructing durable, robust, and multifunctional superhydrophobic fabrics.
Collapse
Affiliation(s)
- Xinpeng Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Jiapeng Wang
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Ailing Xie
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Boan Wang
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Jiabao Wu
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
18
|
Heide A, Wiebe P, Sabantina L, Ehrmann A. Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes. Polymers (Basel) 2023; 15:3951. [PMID: 37836000 PMCID: PMC10575079 DOI: 10.3390/polym15193951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Electrospun nanofiber mats have a high specific surface area and very small pores which can be tailored by the spinning process. They are thus highly suitable as filters for small particles and molecules, such as organic dyes. On the other hand, they are usually very thin and thus have low mechanical properties. As a potential reinforcement, mycelium of Pleurotus ostreatus was grown on poly(acrylonitrile) nanofiber mats and thermally solidified after fully covering the nanofiber mats. This study investigates whether the filtration efficiency of the nanofiber mats is altered by the mycelium growing through it and whether the mechanical properties of the nanofibrous filters can be improved in this way. The study shows fast and reliable growth of the mycelium on the nanofiber mats and high filtration efficiency for astra blue and chlorophyll, while indigo carmine showed only very low filtration efficiency of up to 20%. For chlorophyll and safranin, membranes with mycelium showed higher filtration than pure nanofiber mats. In diffusion cell tests, especially astra blue was strongly adsorbed on the membranes with mycelium.
Collapse
Affiliation(s)
- Angela Heide
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Philip Wiebe
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| |
Collapse
|
19
|
Nithya R, Thirunavukkarasu A, Hemavathy RV, Sivashankar R, Kishore KA, Sabarish R. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:969. [PMID: 37466735 DOI: 10.1007/s10661-023-11491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023]
Abstract
Air pollution has become the most important environmental and human health threat as it is accounting for about 7 million deaths across the globe every year. Particulate matter (PM) derived from the combustion of fossil fuels, biomass, and other agricultural residues pollutes the atmospheric air which affects the quality of the environment and poses a great threat to human health. Ecological imbalance, climatic variation, and cardiovascular and respiratory problems among humans are significant extortions due to PM pollution. Scientific approaches were initiated to limit the levels of PM in the atmospheric air and the use of nanofiber mats has received wide attention as these possess versatile properties including nanoscale-sized pore structure, homogeneity in their size distribution with high specific surface area, and low basis weight. To exploit their filtration potential towards wide classes of pollutants and also to enhance the capturing efficacy, functionalized nanofibers are currently in practice with tailor-made modifications on the surface. The present review provides a comprehensive report on the different fabrication processes of functionalized nanofibers along with the controlling factors affecting the efficacy of the gas separation process. Also, it provides technical insights on the mass transfer aspects of PM filtration by elucidation their mechanism which can provide vital information on the rate-controlling diffusive flux(es). Conclusively, the practical challenges encountered in the large-scale air filtration systems such as filter cleaning, flow-rate regulation, pressure drop, and extent of reusability are discussed, and the review has identified potential gaps in the current research and can be considered for the prospective research in the area of PM separation process.
Collapse
Affiliation(s)
- Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India
| | | | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Kola Anand Kishore
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Radoor Sabarish
- Department of Materials and Production engineering, King Mongkut's University of Technology, North Bangkok, Thailand
| |
Collapse
|
20
|
Tabatabaei N, Faridi-Majidi R, Boroumand S, Norouz F, Rahmani M, Rezaie F, Fayazbakhsh F, Faridi-Majidi R. Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Trans Nanobioscience 2023; 22:685-701. [PMID: 35724284 PMCID: PMC10620960 DOI: 10.1109/tnb.2022.3181745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.
Collapse
|
21
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
22
|
Organic solvent-free constructing of stable zeolitic imidazolate framework functional layer enhanced by halloysite nanotubes and polyvinyl alcohol on polyvinylidene fluoride hollow fiber membranes for treating dyeing wastewater. J Colloid Interface Sci 2023; 636:378-387. [PMID: 36638576 DOI: 10.1016/j.jcis.2023.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
In this study, zeolitic imidazolate framework (ZIF-8)/polyvinylidene fluoride (PVDF) loose nanofiltration (NF) hollow fiber membranes were fabricated by constructing ZIF-8 functional layer on the PVDF supporting membranes based on the vacuum-assisted assembly process. The ZIF-8 synthesis was completed in a water system, and the synthesized ZIF-8 suspension was directly added to polyvinyl alcohol (PVA) and halloysite nanotubes (HNTs) aqueous solution system without drying to prepare the casting solution, which could solve the agglomeration and poor dispersion problem of ZIF-8 particles. In addition, the embedded HNTs and the loaded PVA among the ZIF-8 layer could improve the bonding strength between the ZIF-8 layer and the supporting membranes. After constructing ZIF-8 functional layer, the pore size of supporting membranes decreased from more than 300 nm to several nanometers. Furthermore, the water contact angle reduced from 91.1° to 54.2°. Applied to treat dye wastewater, the prepared ZIF-8/PVDF membranes maintained high dye rejection (˃99.0 %) for Congo red (CR), but low salt rejection for NaCl (about 2 %). In addition, the flux could reach 21.6 L m-2h-1 after continuous filtration 360 min, exhibiting a potential for treating the dye/salt wastewater. In particular, there were no organic solvents used in the work, which provided a promising idea for solvent-free fabrication of loose NF membranes.
Collapse
|
23
|
Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes (Basel) 2023. [DOI: 10.3390/pr11030838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rotating disk photocatalytic reactor is a kind of photocatalytic wastewater treatment technique with a high application potential, but the light energy utilization rate and photo quantum efficiency still need to be improved. Taking photogenerated electrons as the starting point, the following contents are reviewed in this work: (1) Light-harvesting excitation of photogenerated electrons. Based on the rotating disk thin solution film photocatalytic reactor, the photoanodes with light capture structures are reviewed from the macro perspective, and the research progress of light capture structure catalysts based on BiOCl is also reviewed from the micro perspective. (2) Macroscope transfer of photogenerated electrons. The research progress of photo fuel cell based on rotating disk reactors is reviewed. The system can effectively convert the chemical energy in organic pollutants into electrical energy through the macroscopic transfer of photogenerated electrons. (3) Multi-level utilization of photogenerated electrons. The photogenerated electrons transferred to the cathode can also generate H2O2 with oxygen or H2 with H+, and the reduction products can also be further utilized to deeply mineralize organic pollutants or reduce the nitrate in water. This short review will provide theoretical guidance for the further application of photocatalytic techniques in wastewater treatment.
Collapse
|
24
|
Tao L, Wang P, Zhang T, Ding M, Liu L, Tao N, Wang X, Zhong J. Preparation of Multicore Millimeter-Sized Spherical Alginate Capsules to Specifically and Sustainedly Release Fish Oil. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Jensen MG, O'Shaughnessy PT, Shaffer M, Yu S, Choi YY, Christiansen M, Stanier CO, Hartley M, Huddle J, Johnson J, Bibby K, Myung NV, Cwiertny DM. Simple fabrication of an electrospun polystyrene microfiber filter that meets N95 filtering facepiece respirator filtration and breathability standards. J Appl Polym Sci 2023; 140:e53406. [PMID: 37034442 PMCID: PMC10078598 DOI: 10.1002/app.53406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 μm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.
Collapse
Affiliation(s)
- Madeline G. Jensen
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
| | | | - Marlee Shaffer
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Sooyoun Yu
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Yun Young Choi
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Megan Christiansen
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Charles O. Stanier
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Michael Hartley
- Department of Hospital AdministrationUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| | | | | | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Nosang V. Myung
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - David M. Cwiertny
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
26
|
Qamar MA, Javed M, Shahid S, Shariq M, Fadhali MM, Ali SK, Khan MS. Synthesis and applications of graphitic carbon nitride (g-C 3N 4) based membranes for wastewater treatment: A critical review. Heliyon 2023; 9:e12685. [PMID: 36660457 PMCID: PMC9842699 DOI: 10.1016/j.heliyon.2022.e12685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.
Collapse
Affiliation(s)
- Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan,Corresponding author.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammed M. Fadhali
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia,Department of Physics, Faculty of Science, Ibb University, Ibb, 70270, Yemen
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd. Shakir Khan
- Department of Physics, College of Science, Al- Zulfi, Majmaah University, Al- Majmaah, 11952, Saudi Arabia
| |
Collapse
|
27
|
Deng Y, Zhu M, Lu T, Fan Q, Ma W, Zhang X, Chen L, Min H, Xiong R, Huang C. Hierarchical fiber with granular-convex structure for highly efficient PM2.5 capture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Hanif MA, Shin H, Chun D, Kim HG, Kwac LK, Kim YS. Photocatalytic VOCs Degradation Efficiency of Polypropylene Membranes by Incorporation of TiO 2 Nanoparticles. MEMBRANES 2022; 13:50. [PMID: 36676857 PMCID: PMC9860631 DOI: 10.3390/membranes13010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A class of serious environmental contaminants related to air, namely volatile organic compounds (VOCs), has currently attracted global attention. The present study aims to remove harmful VOCs using as-prepared polypropylene membrane + TiO2 nanoparticles (PPM + TiO2 NPs) via the photocatalytic gas bag A method under UV light irradiation. Here, formaldehyde was used as the target VOC. The PPM + TiO2 NPs material was systematically characterized using various microscopic and spectroscopic techniques, including field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy, and contact angle measurements. These results confirm the successful preparation of PPM + TiO2 NPs, which can be applied to the degradation of VOCs. Photocatalytic degradation of formaldehyde gas reached 70% within 1 h of UV illumination. The energy bandgap and photoluminescence intensity reductions are responsible for the improved photocatalytic activity. These characteristics increase the charge transport while decreasing the recombination of electron-hole pairs.
Collapse
Affiliation(s)
- Md. Abu Hanif
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Hyokyeong Shin
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Danbi Chun
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Hong Gun Kim
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Republic of Korea
| | - Lee Ku Kwac
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Republic of Korea
| | - Young Soon Kim
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
29
|
Grasso G, Zane D, Foglia S, Dragone R. Application of Electrospun Water-Soluble Synthetic Polymers for Multifunctional Air Filters and Face Masks. Molecules 2022; 27:8753. [PMID: 36557885 PMCID: PMC9784125 DOI: 10.3390/molecules27248753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The worsening of air quality is an urgent human health issue of modern society. The outbreak of COVID-19 has made the improvement of air quality even more imperative, both for the general achievement of major health gains and to reduce the critical factors in the transmission of airborne diseases. Thus, the development of solutions for the filtration of airborne pollutants is pivotal. Electrospinning has gained wide attention as an effective fabrication technique for preparing ultrafine fibers which are specifically tailored for air filtration. Nevertheless, the utilization of harmful organic solvents is the major barrier for the large-scale applicability of electrospinning. The use of water-soluble synthetic polymers has attracted increasing attention as a 'green' solution in electrospinning. We reported an overview of the last five years of the scientific literature on the use of water-soluble synthetic polymers for the fabrication of multifunctional air filters layers. Most of recent studies have focused on polyvinyl alcohol (PVA). Various modifications of electrospun polymers have been also described. The use of water-soluble synthetic polymers can contribute to the scalability of electrospinning and pave the way to innovative applications. Further studies will be required to fully harness the potentiality of these 'greener' electrospinning processes.
Collapse
Affiliation(s)
- Gerardo Grasso
- Istituto per lo Studio dei Materiali Nanostrutturati Sede Sapienza, Consiglio Nazionale delle Ricerche, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Zane
- Istituto per lo Studio dei Materiali Nanostrutturati Sede Sapienza, Consiglio Nazionale delle Ricerche, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Foglia
- Istituto per lo Studio dei Materiali Nanostrutturati Sede Sapienza, Consiglio Nazionale delle Ricerche, P. le Aldo Moro 5, 00185 Rome, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Roberto Dragone
- Istituto per lo Studio dei Materiali Nanostrutturati Sede Sapienza, Consiglio Nazionale delle Ricerche, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Liu JY, Sheng MS, Geng YH, Zhang ZT, Wang TT, Fei L, Lacoste JD, Huo JZ, Zhang F, Ding B. In-situ encapsulation of oil soluble carbon nanoclusters in ZIF-8 and applied as bifunctional recyclable stable sensing material of nitrofurazone and lysine and fluorescent ink. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Shao Z, Chen H, Wang Q, Kang G, Wang X, Li W, Liu Y, Zheng G. High-performance multifunctional electrospun fibrous air filter for personal protection: A review. Sep Purif Technol 2022; 302:122175. [PMID: 36168392 PMCID: PMC9492398 DOI: 10.1016/j.seppur.2022.122175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
With the increasingly serious air pollution and the rampant coronavirus disease 2019 (COVID–19), preparing high–performance air filter to achieve the effective personal protection has become a research hotspot. Electrospun nanofibrous membrane has become the first choice of air filter because of its small diameter, high specific surface area and porosity. However, improving the filtration performance of the filter only cannot meet the personal needs: it should be given more functions based on high filtration performance to maximize the personal benefits, called, multifunctional, which can also be easily realized by electrospinning technology, and has attracted much attention. In this review, the filtration mechanism of high–performance electrospun air filter is innovatively summarized from the perspective of membrane. On this basis, the specific preparation process, advantages and disadvantages are analyzed in detail. Furthermore, other functions required for achieving maximum personal protection benefits are introduced specifically, and the existing high–performance electrospun air filter with multiple functions are summarized. Finally, the challenges, limitations, and development trends of manufacturing high–performance air filter with multiple functions for personal protection are presented.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Huatan Chen
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Guoyi Kang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifang Liu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Elizondo-Villarreal N, Verástegui-Domínguez L, Rodríguez-Batista R, Gándara-Martínez E, Alcorta-García A, Martínez-Delgado D, Rodríguez-Castellanos EA, Vázquez-Rodríguez F, Gómez-Rodríguez C. Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238328. [PMID: 36499817 PMCID: PMC9735538 DOI: 10.3390/ma15238328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (Fe3O4) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating's anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.
Collapse
Affiliation(s)
- Nora Elizondo-Villarreal
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Luz Verástegui-Domínguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Raúl Rodríguez-Batista
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Eleazar Gándara-Martínez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Aracelia Alcorta-García
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Dora Martínez-Delgado
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | | | - Francisco Vázquez-Rodríguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Cristian Gómez-Rodríguez
- Faculty of Engineering, University of Veracruz (Coatzacoalcos), Av. Universidad km 7.5 Col. Santa Isabel, Coatzacoalcos 96535, Mexico
| |
Collapse
|
33
|
Bioinspired Electropun Fibrous Materials Based on Poly-3-Hydroxybutyrate and Hemin: Preparation, Physicochemical Properties, and Weathering. Polymers (Basel) 2022; 14:polym14224878. [PMID: 36433006 PMCID: PMC9692885 DOI: 10.3390/polym14224878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development of innovative fibrous materials with valuable multifunctional properties based on biodegradable polymers and modifying additives presents a challenging direction for modern materials science and environmental safety. In this work, high-performance composite fibrous materials based on semicrystalline biodegradable poly-3-hydroxybutyrate (PHB) and natural iron-containing porphyrin, hemin (Hmi) were prepared by electrospinning. The addition of Hmi to the feed PHB mixture (at concentrations above 3 wt.%) is shown to facilitate the electrospinning process and improve the quality of the electrospun PHB/Hmi materials: the fibers become uniform, their average diameter decreases down to 1.77 µm, and porosity increases to 94%. Structural morphology, phase composition, and physicochemical properties of the Hmi/PHB fibrous materials were studied by diverse physicochemical methods, including electronic paramagnetic resonance, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, elemental analysis, differential scanning calorimetry, Fourier-transformed infrared spectroscopy, mechanical analysis, etc. The proposed nonwoven Hmi/PHB composites with high porosity, good mechanical properties, and retarded biodegradation due to high antibacterial potential can be used as high-performance and robust materials for biomedical applications, including breathable materials for wound disinfection and accelerated healing, scaffolds for regenerative medicine and tissue engineering.
Collapse
|
34
|
Bian Y, Zhang C, Wang H, Cao Q. Degradable Nanofiber for Eco-friendly Air Filtration: Progress and Perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Larki M, Enayati M, Rostamabadi H. Basil seed gum promotes the electrospinnability of WPI for co-encapsulation of ZnO nanoparticles and curcumin. Carbohydr Polym 2022; 296:119966. [DOI: 10.1016/j.carbpol.2022.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
|
36
|
Renkler NZ, Cruz-Maya I, Bonadies I, Guarino V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers (Basel) 2022; 14:polym14194249. [PMID: 36236197 PMCID: PMC9572386 DOI: 10.3390/polym14194249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes—from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.
Collapse
|
37
|
Druvari D, Tzoumani I, Piperigkou Z, Tzaferi K, Tselentis D, Vlamis-Gardikas A, Karamanos NK, Bokias G, Kallitsis JK. Development of Environmentally Friendly Biocidal Coatings Based on Water-soluble Copolymers for Air-cleaning Filters. ACS OMEGA 2022; 7:35204-35216. [PMID: 36211061 PMCID: PMC9535736 DOI: 10.1021/acsomega.2c04427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Air pollution by pathogens has posed serious concern on global health during the last decades, especially since the breakout of the last pandemic. Therefore, advanced high-efficiency techniques for air purification are highly on demand. However, in air-filtering devices, the prevention of secondary pollution that may occur on the filters remains a challenge. Toward this goal, in the present work, we demonstrate a facile and eco-friendly process for the biocidal treatment of commercial high-efficiency particulate air filters. The antibacterial filters were successfully prepared through spray coating of aqueous solutions based on biocidal water-soluble polymers, poly(sodium 4-styrene sulfonate-co-cetyl trimethylammonium 4-styrene sulfonate-co-glycidyl methacrylate) [P(SSNa24-co-SSAmC1656-co-GMA20)] and poly(2-dimethylaminoethyl)methacrylate. Significantly, an optimized green route was developed for the synthesis of the used polymers in aqueous conditions and their stabilization through cross-linking reaction, leading to biocidal air filters with long-lasting activity. The developed coatings presented strong and rapid antibacterial activity against Staphylococcus aureus (in 5 min) and Escherichia coli (in 15 min). Moreover, the cytotoxicity test of the polymeric materials toward Α549 lung adenocarcinoma cells indicated very low toxicity as they did not affect either the cell growth or cell morphology. The above-mentioned results together with the scalable and easy-to-produce green methodology suggest that these materials can be promising candidates as filter coatings for use on air-purification devices.
Collapse
Affiliation(s)
- Denisa Druvari
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- Metricon
S.A., Athinon 65, Ag.
Georgios, GR-26504 Rio-Patras, Greece
| | - Ioanna Tzoumani
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Zoi Piperigkou
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | | - Nikos K. Karamanos
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
- Biochemical
Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry,
Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgios Bokias
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| | - Joannis K. Kallitsis
- Department
of Chemistry, University of Patras, GR-26504 Patras, Greece
- FORTH/ICE-HT, Stadiou Str., P.O.
Box 1414, GR-26504 Rio-Patras, Greece
| |
Collapse
|
38
|
Yang B, Chang X, Ding X, Ma X, Zhang M. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J Colloid Interface Sci 2022; 623:196-204. [DOI: 10.1016/j.jcis.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023]
|
39
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
40
|
Cui W, Fan T, Li Y, Wang X, Liu X, Lu C, Ramakrishna S, Long YZ. Robust functional Janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Zhang X, Liu J, Liu X, Liu C, Chen Q. HEPA filters for airliner cabins: State of the art and future development. INDOOR AIR 2022; 32:e13103. [PMID: 36168223 DOI: 10.1111/ina.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 μm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.
Collapse
Affiliation(s)
- Xin Zhang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xuan Liu
- China Railway Design Corporation, Tianjin, China
| | - Chaojun Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Zhejiang Goldensea Environment Technology Co. Ltd., Zhejiang, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
42
|
Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Deng Y, Lu T, Cui J, Ma W, Qu Q, Zhang X, Zhang Y, Zhu M, Xiong R, Huang C. Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Ma R, Lu X, Wu C, Zhang S, Zheng S, Ren K, Gu J, Wang H, Shen H. Performance design of a highly anti-fouling porous membrane with dual pH-responsiveness. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
A Water-Soluble Epoxy-Based Green Crosslinking System for Stabilizing PVA Nanofibers. Molecules 2022; 27:molecules27134177. [PMID: 35807420 PMCID: PMC9267985 DOI: 10.3390/molecules27134177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
With the ever-growing concern about environmental conservation, green production and water-based nanofibers have attracted more and more interest from both academic and industrial fields; nevertheless, the stabilization process of water-based nanofibers is primarily relying on the application of organic solvent-based crosslinking agents. In this work, we develop a green approach to fabricate water-resistant polyvinyl alcohol (PVA) nanofibers by using a water-based epoxy compound, N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH), as the crosslinker. This EH/sodium carbonate/sodium bicarbonate (CBS) solution system can break down large aggregates of PVA molecules into small ones and promote the uniform distribution of EH in the solution, resulting in the improved stability of crosslinked PVA nanofibers. We firstly report that the uniform dispersion of crosslinking agents in the electrospinning solution plays a vital role in improving the stability of spinning solutions and the water resistance of crosslinked PVA nanofibers by comparing crosslinking performances between water-based epoxy and conventional water-based blocked isocyanate (BI). This work could open up a novel strategy and green approach for the stabilization of water-based nanofibers.
Collapse
|
47
|
Su Q, Wei Z, Zhu C, Wang X, Zeng W, Wang S, Long S, Yang J. Multilevel structured PASS nanofiber filter with outstanding thermal stability and excellent mechanical property for high-efficiency particulate matter removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128514. [PMID: 35217345 DOI: 10.1016/j.jhazmat.2022.128514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023]
Abstract
Particulate matter (PM) pollution from industrialization poses a great threat to people's health. Although fiber-based filters are used effectively to capture PM, the traditional filters with large diameter suffer from low filtration efficiency, high pressure drop and low temperature resistance. In this study, multilayer poly arylene sulfide sulfone (M-PASS) composite filter was designed and fabricated via electrospinning technology. The M-PASS composite filter is sandwich-structure. Due to the unique structure and composition, the M-PASS filter exhibited outstanding removal efficiency of 99.97 ± 0.0050%, extremely low air resistance of 44.3 ± 0.7 Pa, excellent quality factor (QF) of 0.19 ± 0.0019 Pa-1, and desirable mechanical strength of 7.0 ± 0.2 MPa. Furthermore, the as-prepared M-PASS filter can remain outstanding filtration performance at 200.0 ℃ due to the high thermal stability of PASS and the removal efficiency was still above 95.2 ± 0.4% after long-term filtration test. These results demonstrate that the structure of filter is the important one for air filtration and the M-PASS nanofiber filters have great potential in PM removal, especially under high temperature conditions.
Collapse
Affiliation(s)
- Qing Su
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China.
| | - Chuanren Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Wei Zeng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China
| |
Collapse
|
48
|
Wang Q, Liu JY, Wang TT, Liu YY, Zhang LX, Huo JZ, Ding B. Solvo-thermal synthesis of a unique cluster-based nano-porous zinc(II) luminescent metal-organic framework for highly sensitive detection of anthrax biomarker and dichromate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121132. [PMID: 35286888 DOI: 10.1016/j.saa.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this work a flexible multi-dentate 4,4'-(1H-1,2,4-triazole-1-yl) methylene-bis(benzonic acid) (H2L) ligand has been employed, a unique cluster-based nano-porous luminescent zinc(II) metal-organic framework {[Zn(μ6-L)]·(DMAC)2}n (1) (DMAC = Dimethylacetamide) has been isolated under solvo-thermal conditions. The H2L ligand adopts hexa-dentate coordination modes via one triazole nitrogen atom and four aromatic carboxylate oxygen atoms, which bridge the neighboring six-coordinated ZnII centers, leading to a three-dimensional (3D) nano-porous metal organic framework. A PLATON program analysis suggests the total potential solvent area volume is 2028.9 Å3, which occupy 62.5% percent of the unit cell volume (3248.4 Å3). PXRD Patterns of the as-synthesized samples 1 have been determined confirming the purity of the bulky samples. Photo-luminescent properties indicate strong fluorescent emissions of 1 at the room temperature. Further photo-luminescent measurements show that 1 can exhibit highly sensitive real-time luminescence sensing of anthrax biomarker dipicolinic acid (DPA) with high quenching efficiency (KSV = 1.48 × 105 M-1) and low detection limit (0.298 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive luminescence sensing for Cr2O72- ions in aqueous solutions with high quenching efficiency KSV = 1.22 × 104 L·mol-1 and low detection limit (0.023 μM (S/N = 3)). Therefore 1 can be used a unique multi-functional 3D cluster-based metal organic material in sensitive detection and effective detection of environment pollutants and biomarker molecules.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
49
|
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. NANOMATERIALS 2022; 12:nano12101707. [PMID: 35630932 PMCID: PMC9146209 DOI: 10.3390/nano12101707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.
Collapse
|
50
|
Yang Y, Sun H, Zhao X, Xian D, Han X, Wang B, Wang S, Zhang M, Zhang C, Ye X, Ni Y, Tong Y, Tang Q, Liu Y. High-Mobility Fungus-Triggered Biodegradable Ultraflexible Organic Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105125. [PMID: 35257518 PMCID: PMC9069197 DOI: 10.1002/advs.202105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Indexed: 05/31/2023]
Abstract
Biodegradable organic field-effect transistors (OFETs) have drawn tremendous attention for potential applications such as green electronic skins, degradable flexible displays, and novel implantable devices. However, it remains a huge challenge to simultaneously achieve high mobility, stable operation and controllable biodegradation of OFETs, because most of the widely used biodegradable insulating materials contain large amounts of hydrophilic groups. Herein, it is firstly proposed fungal-degradation ultraflexible OFETs based on the crosslinked dextran (C-dextran) as dielectric layer. The crosslinking strategy effectively eliminates polar hydrophilic groups and improves water and solvent resistance of dextran dielectric layer. The device with spin-coated 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor and C-dextran dielectric exhibits the highest mobility up to 7.72 cm2 V-1 s-1 , which is higher than all the reported degradable OFETs. Additionally, the device still maintains high performance regardless of in an environment humidity up to 80% or under the extreme bending radius of 0.0125 mm. After completion of their mission, the device can be controllably biodegraded by fungi without any adverse environmental effects, promoting the natural ecological cycles with the concepts of "From nature, for nature". This work opens up a new avenue for realizing high-performance biodegradable OFETs, and advances the process of the "green" electrical devices in practical applications.
Collapse
Affiliation(s)
- Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Hongying Sun
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Da Xian
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| |
Collapse
|