1
|
Huang TY, Laysandra L, Chen NCR, Prasetyo F, Chiu YC, Yeh LH, Wu KCW. MOF composites for revolutionizing blue energy harvesting and next-gen soft electronics. Adv Colloid Interface Sci 2025; 340:103444. [PMID: 39999516 DOI: 10.1016/j.cis.2025.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials with highly ordered and crystalline structures, which have earned tremendous attention in the academic community in recent years owing to their high tunability in porosity and pore structure. By integrating MOFs with soft colloids or polymers to form MOF composites, the rigidity and brittle nature of MOFs can be compensated for, thus achieving synergistic effects for a wide variety of applications. In particular, the past decade has seen the advancement of MOF composites in the budding fields of blue energy harvesting and soft electronics, which have received growing interest in the past 5 years. This review focuses on the applications of MOF composites in these two fields, and starts by examining the nanoarchitectures of MOFs, followed by the fabrication of MOF composites. Furthermore, topical advances of MOF composites in blue energy harvesting and soft electronics are reviewed and summarized, and their challenges and future opportunities are discussed as the final touch. This article provides comprehensive review and valuable insights into the development of MOF composites, which may open up new avenues for blue energy harvesting and soft electronics to solve the imminent energy crisis and to advance the wearable technology in healthcare.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Norman C-R Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| | - Fery Prasetyo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli District, Taoyuan 32003, Taiwan; Department of Chemical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
| |
Collapse
|
2
|
Wang S, Wang S, Zhang L, Wang P, Liu H. Constructing and characterization of cyclodextrin metal organic framework and soybean hull polysaccharide polymer composite carriers: Enhancing curcumin delivery. Food Chem 2025; 468:142315. [PMID: 39667228 DOI: 10.1016/j.foodchem.2024.142315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
This study aims to create composite carriers by combining cyclodextrin metal organic frameworks (CD-MOFs) with soybean hull polysaccharide (SHP) polymers for enhanced performance. A cubic structured composite carrier was successfully synthesized, exhibiting potential for delivering functional factors. Interaction between cyclodextrin (CD) and SHP was predominantly driven by hydrogen bonding forces, as evidenced by Fourier transform infrared spectroscope (FTIR), Raman spectroscopy. Characterization methods such as Powder X-ray diffraction (XRD), Differential scanning calorimetry (DSC), and FTIR confirmed successful encapsulation of Curcumin (Cur) within γ-CD-MOF@SHP. At 35 °C, with a Cur to carrier mass ratio of 1:3, loading efficiency improved after 24 h of immersion. SHP demonstrated a protective effect on Cur, reducing release in the stomach while maximizing release in the intestine, thus enhancing Cur utilization. Additionally, γ-CD-MOF composites were shown to stabilize functional factors and regulate their release. Overall, the combination of MOFs and polymers holds promise for functional factor delivery.
Collapse
Affiliation(s)
- Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China.
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| |
Collapse
|
3
|
Redwine GEB, Braunecker WA, Gennett T. Polymer Encapsulated Framework Materials for Enhanced Gas Storage and Separations. ACS MATERIALS AU 2025; 5:268-298. [PMID: 40093827 PMCID: PMC11907295 DOI: 10.1021/acsmaterialsau.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 03/19/2025]
Abstract
Within the broader field of energy storage, polymer-encapsulated framework (PEF) materials have witnessed remarkable growth in recent years, with transformative implications for diverse applications. This comprehensive review discusses in detail the latest advancements in the design, synthesis, and applications of PEFs in gas storage and separations. Following a thorough survey of existing literature, the article delves into mechanistic considerations and foundational principles governing PEF synthesis. Emphasis is placed on covalent and coordinative covalent grafting methods, physical blending, nonsolvent utilization, and various vapor deposition techniques. The discussion critically evaluates the advantages and disadvantages of these synthesis approaches, considering factors such as grafting density, coating thickness, and other physical properties relevant to processability and stability in comparison to traditional framework materials. Special attention is given to the impact of polymer coatings on gas adsorption analysis. Finally, notable accomplishments and advancements in the PEF field, including mixed matrix membrane (MMM) technology, improvements in framework form factors, and enhanced chemical and mechanical stability are summarized. This review concludes by offering valuable perspective for researchers, highlighting gaps and challenges that confront the current state-of-the-art in PEF materials, paving the way for future innovations that are poised to help address global energy challenges.
Collapse
Affiliation(s)
- Grace E B Redwine
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
| | - Wade A Braunecker
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Department of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Christensen CSQ, Hansen N, Motadayen M, Lock N, Henriksen ML, Quinson J. A review of metal-organic frameworks and polymers in mixed matrix membranes for CO 2 capture. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:155-186. [PMID: 39968168 PMCID: PMC11833178 DOI: 10.3762/bjnano.16.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Polymeric membranes offer an appealing solution for sustainable CO2 capture, with potential for large-scale deployment. However, balancing high permeability and selectivity is an inherent challenge for pristine membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic frameworks (MOFs) have gained recognition as MMM fillers for CO2 capture. Here, a review of the current state, recent advancements, and challenges in the fabrication and engineering of MMMs with MOFs for selective CO2 capture is proposed. Key considerations and promising research directions to fully exploit the gas separation potential of MOF-based MMMs in CO2 capture applications are highlighted.
Collapse
Affiliation(s)
- Charlotte Skjold Qvist Christensen
- Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
- Centre for Water Technology (WATEC), Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Nicholas Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mahboubeh Motadayen
- Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark
| | - Nina Lock
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Martin Lahn Henriksen
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| | - Jonathan Quinson
- Department of Biological and Chemical Engineering, Aarhus University, Aabogade 40, 8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Seong J, Nam KJ, An H, Yu S, Shin JH, Kim KC, Kang SG, Reddy KSSVP, Hong DY, Kim SJ, Lee JS. Highly Permeable Mixed Matrix Membranes for Gas Separation via Dual Defect-Engineered Zeolitic Imidazolate Framework-8. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401594. [PMID: 38860544 DOI: 10.1002/smll.202401594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Defect engineering of metal-organic frameworks (MOFs) is a promising strategy for tailoring the interfacial characteristics between MOFs and polymers, aiming to create high-performance mixed matrix membranes (MMMs). This study introduces a new approach using dual defective alkylamine (AA)-modulated zeolitic imidazolate framework-8 (DAZIF-8), to develop high-flux MMMs. Tributylamine (TBA) and triethylamine (TEA) monodentate ligands coordinate with zinc ions in varying compositions. A mixture of Zn(CH3COO)2·2H2O:2-methylimidazole (Mim):AA in a 1:1.75:5 molar ratio facilitates high-yield coordination between Zn and multiple organic ligands, including Zn-Mim, Zn-TEA, and Zn-TBA (>80%). Remarkably, DAZIF-8 containing 3 mol% TBA and 2 mol% TEA exhibits exceptional characteristics, such as a Brunauer-Emmett-Teller surface area of 1745 m2 g-1 and enhanced framework rigidity. Furthermore, dual Zn-AA coordination sites on the framework's outer surface enhance compatibility with the polyimide (PI) matrix through electron donor-acceptor interactions, enabling the fabrication of high-loading MMMs with excellent mechanical durability. Importantly, the PI/DAZIF-8 (60/40 w/w) MMM demonstrates an unprecedented 759% enhancement in ethylene (C2H4) permeability (281 Barrer) with a moderate ethylene/ethane (C2H4/C2H6) selectivity of 2.95 compared to the PI, surpassing the polymeric upper limit for C2H4/C2H6 separation.
Collapse
Affiliation(s)
- Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ju Ho Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Gu Kang
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - K S S V Prasad Reddy
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Do-Young Hong
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
7
|
Zeng Q, Guo Y, Zhao L, Wang T, Zhang L, Fan F, Fu Y. Preparation of Free-Standing Defect-Free ZIF-8/PVA Membranes via Confined Reaction at the Quasi-Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40243-40249. [PMID: 39028833 DOI: 10.1021/acsami.4c08304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Developing a facile strategy to synthesize free-standing defect-free metal-organic framework (MOF) membranes with high separation selectivity and good mechanical stability is very appealing but challenging. Herein, by confining the reaction of metal and ligand at the quasi-interface, a representative membrane composed of a continuous ZIF-8 layer and poly(vinyl alcohol) (PVA) was fabricated. The continuous ZIF-8 layer endowed the membrane with high separation efficiency, while PVA acted as a filler to eliminate the defection, synergistically achieving high selective ion transport and good mechanical stability. The continuous defect-free ZIF-8/PVA membrane showed excellent separation performance of selective ion transport with high Li+ permeance of 17.83 mol·m-2·h-1 as well as decent Li+/Mg2+ and Li+/Ca2+ selectivities of 24.60 and 244.58, respectively. The separation performance of the ZIF-8/PVA membrane remained stable after 10% strain, indicating its good mechanical stability. This work will promote the development of MOF-based membranes in practical applications.
Collapse
Affiliation(s)
- Qingqi Zeng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Yan Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Lin Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang110819, P. R. China
| |
Collapse
|
8
|
Mohsenpour Tehrani M, Chehrazi E. Metal-Organic-Frameworks Based Mixed-Matrix Membranes for CO 2 Separation: An Applicable-Conceptual Approach. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32906-32929. [PMID: 38907700 DOI: 10.1021/acsami.4c06914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.
Collapse
Affiliation(s)
- Melika Mohsenpour Tehrani
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Ehsan Chehrazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
9
|
Wang X, Qi H, Shao Y, Zhao M, Chen H, Chen Y, Ying Y, Wang Y. Extrusion Printing of Surface-Functionalized Metal-Organic Framework Inks for a High-Performance Wearable Volatile Organic Compound Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400207. [PMID: 38655847 PMCID: PMC11220709 DOI: 10.1002/advs.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Wearable sensors hold immense potential for real-time and non-destructive sensing of volatile organic compounds (VOCs), requiring both efficient sensing performance and robust mechanical properties. However, conventional colorimetric sensor arrays, acting as artificial olfactory systems for highly selective VOC profiling, often fail to meet these requirements simultaneously. Here, a high-performance wearable sensor array for VOC visual detection is proposed by extrusion printing of hybrid inks containing surface-functionalized sensing materials. Surface-modified hydrophobic polydimethylsiloxane (PDMS) improves the humidity resistance and VOC sensitivity of PDMS-coated dye/metal-organic frameworks (MOFs) composites. It also enhances their dispersion within liquid PDMS matrix, thereby promoting the hybrid liquid as high-quality extrusion-printing inks. The inks enable direct and precise printing on diverse substrates, forming a uniform and high particle-loading (70 wt%) film. The printed film on a flexible PDMS substrate demonstrates satisfactory flexibility and stretchability while retaining excellent sensing performance from dye/MOFs@PDMS particles. Further, the printed sensor array exhibits enhanced sensitivity to sub-ppm VOC levels, remarkable resistance to high relative humidity (RH) of 90%, and the differentiation ability for eight distinct VOCs. Finally, the wearable sensor proves practical by in situ monitoring of wheat scab-related VOC biomarkers. This study presents a versatile strategy for designing effective wearable gas sensors with widespread applications.
Collapse
Affiliation(s)
- Xiao Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Hao Qi
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yuzhou Shao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Mingming Zhao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Huayun Chen
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Yun Chen
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yibin Ying
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| |
Collapse
|
10
|
He M, Chen Y, Lu W, Guo L, Hu K, Han X, Vitorica-Yrezabal I, Dejoie C, Fitch AN, Schröder M, Yang S. Nanosheets of a Layered Metal-Organic Framework for Separation of CO 2/CH 4 using Mixed Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32524-32532. [PMID: 38869615 PMCID: PMC11212018 DOI: 10.1021/acsami.4c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Mixed matrix membranes represent an important technology for gas separations. Nanosheets of metal-organic framework (MOF) materials of high aspect ratio and size-selective gas transport properties have the potential to promote the efficient mixing of components to form membranes for gas separation. Herein, we report a bottom-up synthesis of extended sheets of kagomé (kgm) topology, kgmt-Bu, via the linkage of [Cu2(O2CR)4] paddlewheels with 5-tert-butylisophthalic acid. The growth of the layered structure can be controlled by the choice of solvent and modulator. Nanosheets of kgmt-Bu of average thickness of 20 nm and aspect ratio of 40 to 50 can be obtained, and the sieving effect of the channels in kgmt-Bu boost the efficient separation of CO2 over CH4. A mixed matrix membrane comprising kgmt-Bu nanosheets with Matrimid shows a 32% enhancement in CO2/CH4 selectivity compared with the membrane incorporating the MOF in the particulate form.
Collapse
Affiliation(s)
- Meng He
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Yinlin Chen
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Lixia Guo
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| | - Kui Hu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Xue Han
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Catherine Dejoie
- The
European Synchrotron Radiation Facility, 71 Avenue des Martyrs CS40220 Grenoble Cedex 9 38043, France
| | - Andrew N. Fitch
- The
European Synchrotron Radiation Facility, 71 Avenue des Martyrs CS40220 Grenoble Cedex 9 38043, France
| | - Martin Schröder
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Jo JH, Kim KJ, An EJ, Lee J, Jae H, Roh D, Chi WS. Ionic Cross-Linked MOF-Polymer Mixed-Matrix Membranes for Suppressing Interfacial Defects and Plasticization Behavior. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38656187 DOI: 10.1021/acsami.3c19071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using N,N'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H2 permeability of 1640 Barrer and CO2 permeability of 1981 Barrer and slightly decreased H2/CH4, H2/N2, CO2/CH4 and CO2/N2 selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H2 and CO2 permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.
Collapse
Affiliation(s)
- Jin Hui Jo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Ki Jung Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Ji An
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jieun Lee
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyunmo Jae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Dongkyu Roh
- Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Won Seok Chi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Usman J, Abba SI, Baig N, Abu-Zahra N, Hasan SW, Aljundi IH. Design and Machine Learning Prediction of In Situ Grown PDA-Stabilized MOF (UiO-66-NH 2) Membrane for Low-Pressure Separation of Emulsified Oily Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16271-16289. [PMID: 38514254 DOI: 10.1021/acsami.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2-CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2-CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2-CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.
Collapse
Affiliation(s)
- Jamilu Usman
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sani I Abba
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nidal Abu-Zahra
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53201, United States
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Isam H Aljundi
- Interdisciplinary Research Centre for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
13
|
Liu Y, Xue B, Chen J, Lai Y, Yin P. The Coordination Nanocages-Integrated Polymer Brush Networks for Flexible Microporous Membranes with Exceptional H 2 /CO 2 Separation Performance. Macromol Rapid Commun 2023; 44:e2300477. [PMID: 37814593 DOI: 10.1002/marc.202300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/07/2023] [Indexed: 10/11/2023]
Abstract
The emergence of polymers with intrinsic microporosity provides solutions for flexible gas separation membranes with both high gas permeability and selectivity. However, their applications are significantly hindered by the costly synthetic efforts, limited availability of chemical systems, and narrow window of microporosity sizes. Herein, flexible mixed matrix membranes with tunable intrinsic microporosity can be facilely fabricated from the coordination assembly of polymer brushes and coordination nanocages. Polymer brushes bearing isophthalic acid side groups can coordinate with Cu2+ to assemble into polymer networks crosslinked by 2 nm nanocages. The semi-flexible feature of the polymer brush and the high crosslinking density of the network prevent the network from collapsing during solvent removal and the obtained aerogels demonstrate hierarchical structure with dual porosity from the crosslinked polymer network and coordination nanocage, respectively. The porosity can be facilely tuned via the amount of Cu2+ by regulating the network crosslinking density and nanocage loadings, and finally, optimized gas separation that surpasses Robeson upper bound for H2 /CO2 can be achieved. The coordination-driven assembly protocol paves a new avenue for the cost-effective synthesis of polymers with intrinsic microporosity and the fabrication of flexible gas separation membranes.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
14
|
Adot Veetil K, Husna A, Kabir MH, Jeong I, Choi O, Hossain I, Kim TH. Developing Mixed Matrix Membranes with Good CO 2 Separation Performance Based on PEG-Modified UiO-66 MOF and 6FDA-Durene Polyimide. Polymers (Basel) 2023; 15:4442. [PMID: 38006167 PMCID: PMC10674161 DOI: 10.3390/polym15224442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The use of mixed matrix membranes (MMMs) comprising metal-organic frameworks (MOFs) for the separation of CO2 from flue gas has gained recognition as an effective strategy for enhancing gas separation efficiency. When incorporating porous materials like MOFs into a polymeric matrix to create MMMs, the combined characteristics of each constituent typically manifest. Nevertheless, the inadequate dispersion of an inorganic MOF filler within an organic polymer matrix can compromise the compatibility between the filler and matrix. In this context, the aspiration is to develop an MMM that not only exhibits optimal interfacial compatibility between the polymer and filler but also delivers superior gas separation performance, specifically in the efficient extraction of CO2 from flue gas. In this study, we introduce a modification technique involving the grafting of poly(ethylene glycol) diglycidyl ether (PEGDE) onto a UiO-66-NH2 MOF filler (referred to as PEG-MOF), aimed at enhancing its compatibility with the 6FDA-durene matrix. Moreover, the inherent CO2-philic nature of PEGDE is anticipated to enhance the selectivity of CO2 over N2 and CH4. The resultant MMM, incorporating 10 wt% of PEG-MOF loading, exhibits a CO2 permeability of 1671.00 Barrer and a CO2/CH4 selectivity of 22.40. Notably, these values surpass the upper bound reported by Robeson in 2008.
Collapse
Affiliation(s)
- Kavya Adot Veetil
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Asmaul Husna
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Md. Homayun Kabir
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Insu Jeong
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ook Choi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (K.A.V.); (A.H.); (M.H.K.); (I.J.); (O.C.); (I.H.)
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
15
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
16
|
Hindricks KDJ, Erdmann J, Marten C, Herrmann T, Behrens P, Schaate A. Synthesis and photochemical modification of monolayer thin MOF flakes for incorporation in defect free polymer composites. RSC Adv 2023; 13:27447-27455. [PMID: 37711374 PMCID: PMC10498359 DOI: 10.1039/d3ra04530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Metal-organic frameworks (MOFs) with benzophenone linker molecules are characterized by their ability to undergo photochemical postsynthetic modification. While this approach opens up almost unlimited possibilities for tailoring materials to specific applications, the processability of the large particles is still lacking. In this work, we present a new approach to fabricate micro flakes of the stable Zr-bzpdc-MOF (bzpdc = benzophenone-4-4'-dicarboxylate) with a thickness of only a few monolayers. The crystalline and nanoporous flakes form dispersions in acetone that are stable for months. Embedding the flakes in polymer composites was investigated as one of many possible applications. Zr-bzpdc-MOF micro flakes were decorated with poly(dimethylsiloxane) (PDMS) via a photochemical postsynthetic modification and incorporated into silicon elastomers. The PDMS functionalization allows covalent cross-linking between the MOF and the polymer while maintaining the porosity of the MOF. The resulting hybrid materials provide defect-free interfaces and show preferential adsorption of CO2 over CH4, making them attractive for gas separation or sensing applications. The work should serve as a basis for bringing bzpdc-MOFs into real-world applications - in polymeric membranes, but also beyond.
Collapse
Affiliation(s)
- Karen D J Hindricks
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
| | - Jessica Erdmann
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
| | - Celine Marten
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
| | - Timo Herrmann
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| | - Peter Behrens
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover Callinstr. 9 30167 Hannover Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines) Welfengarten 1A 30167 Hannover Germany
- Laboratory of Nano and Quantum Engineering Schneiderberg 39 30167 Hannover Germany
| |
Collapse
|
17
|
Wang L, Huang J, Li Z, Han Z, Fan J. Review of Synthesis and Separation Application of Metal-Organic Framework-Based Mixed-Matrix Membranes. Polymers (Basel) 2023; 15:polym15081950. [PMID: 37112097 PMCID: PMC10142373 DOI: 10.3390/polym15081950] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous crystalline materials assembled from organic ligands and metallic secondary building blocks. Their special structural composition gives them the advantages of high porosity, high specific surface area, adjustable pore size, and good stability. MOF membranes and MOF-based mixed-matrix membranes prepared from MOF crystals have ultra-high porosity, uniform pore size, excellent adsorption properties, high selectivity, and high throughput, which contribute to their being widely used in separation fields. This review summarizes the synthesis methods of MOF membranes, including in situ growth, secondary growth, and electrochemical methods. Mixed-matrix membranes composed of Zeolite Imidazolate Frameworks (ZIF), University of Oslo (UIO), and Materials of Institute Lavoisier (MIL) frameworks are introduced. In addition, the main applications of MOF membranes in lithium-sulfur battery separators, wastewater purification, seawater desalination, and gas separation are reviewed. Finally, we review the development prospects of MOF membranes for the large-scale application of MOF membranes in factories.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Research Institute, Jilin University, Yibin 644500, China
| | - Jingzhe Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun 130022, China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
18
|
Figueroa-Quintero L, Villalgordo-Hernández D, Delgado-Marín JJ, Narciso J, Velisoju VK, Castaño P, Gascón J, Ramos-Fernández EV. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. SMALL METHODS 2023; 7:e2201413. [PMID: 36789569 DOI: 10.1002/smtd.202201413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials with countless potential applications. Most of these rely on their porous structure, tunable composition, and the possibility of incorporating and expanding their functions. Although functionalization of the inner surface of MOF crystals has received considerable attention in recent years, methods to functionalize selectively the outer crystal surface of MOFs are developed to a lesser extent, despite their importance. This article summarizes different types of post-synthetic modifications and possible applications of modified materials such as: catalysis, adsorption, drug delivery, mixed matrix membranes, and stabilization of porous liquids.
Collapse
Affiliation(s)
- Leidy Figueroa-Quintero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - David Villalgordo-Hernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - José J Delgado-Marín
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| | - Vijay Kumar Velisoju
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jorge Gascón
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante Universidad de Alicante, E-03080, Alicante, Spain
| |
Collapse
|
19
|
Wang D, Li T. Toward MOF@Polymer Core-Shell Particles: Design Principles and Potential Applications. Acc Chem Res 2023; 56:462-474. [PMID: 36745822 DOI: 10.1021/acs.accounts.2c00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusCompositing MOFs with polymers brings out the best properties of both worlds. The solubility and excellent mechanical properties of polymers endow the brittle, powdery MOFs with enhanced processability, thereby enriching their functions as solid sorbents, filters, membranes, catalysts, drug delivery vehicles, and so forth. While most MOF-polymer composites are random mixtures of two materials with little control over their fine structures, MOF@polymer core-shell particles have recently emerged as a new platform for precise composite design. The well-defined polymer coating can keep the rich pore characteristics of the MOF intact while furnishing the MOF with new properties such as improved dispersibility in various media, tunable surface energy, enhanced chemical stability, and regulated guest diffusion. Nevertheless, the structural and chemical complexity of MOFs poses a grand challenge to the development of a generalizable and feasible strategy for constructing MOF@polymer. Examples in the literature that showcase the presence of a well-defined polymer shell on the MOF with fully reserved porosity are rare. Moreover, methods for coating MOFs with condensation polymers (e.g., polyimide, polysulfone) are severely underexplored, despite their clear potential as membrane materials. In this Account, we present our group's effort over the past 4 years on the synthesis and applications of MOF@polymer composites. We first described a highly generalizable surface polymerization method that utilizes the rapid physisorption of a random copolymer (RCP) to carry initiating groups to the MOF surfaces. Subsequent controlled radical polymerization led to the formation of a uniform methacrylate or styrenic polymer on the MOF with tunable thickness and composition. To utilize the properties of condensation polymers, we pioneered the covalent grafting of polyimide (PI) brushes to UiO-66-NH2 surfaces. In addition, to circumvent the need for a covalent anchoring group, we further developed an MOF surface grafting method based on mechanical linkage. Instead of connecting to the ligand, polyimide (PI) oligomer was linked to a functionalized linear polymer physically entangled within an MOF, thus realizing surface grafting with PI. Alternatively, PIs, polysulfone (PSF), and polycarbonate (PC) can also be grafted to various MOF surfaces through a metal-organic nanocapsule (MONC)-mediated method using a combination of electrostatic interaction and coordination bonds. To find a rapid and low-cost surface coating method suitable for commercialization, a new approach called non-solvent-induced surface-aimed deposition (NISAP) was developed. The action of the solvent phase separation drives dianhydrides and polyamines to the MOF surface, thus realizing accelerated polymerization and the rapid formation of a polymer coating on the MOF. Finally, we provided an overview of the unique properties and potential applications of MOF@polymer composites, including improved stability, MMMs, porous liquids (PLs), and immobilizing homogeneous catalysts. We hope that this Account can inspire more researchers to further develop and optimize the synthetic strategies for MOF@polymer and uncover its full application potential.
Collapse
Affiliation(s)
- Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China 201210
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China 201210
| |
Collapse
|
20
|
Min HJ, Kang M, Bae YS, Blom R, Grande CA, Kim JH. Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Dai Y, Niu Z, Luo W, Wang Y, Mu P, Li J. A review on the recent advances in composite membranes for CO2 capture processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Han G, Studer RM, Lee M, Rodriguez KM, Teesdale JJ, Smith ZP. Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Fan F, Zeng Q, Zhang Z, Zhang L, Zhang X, Wang T, Fu Y. In situ fabrication of bendable epitaxial metal-organic framework films via spraying. Chem Commun (Camb) 2022; 58:11123-11126. [PMID: 36106383 DOI: 10.1039/d2cc03889g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epitaxial metal-organic framework (MOF) films have shown huge potential for use in separation applications. Herein, bendable epitaxial MOF films are fabricated via spraying. The synthesized MOF films show excellent oil-in-water emulsion separation performance even after being bent for multiple times at high curvatures.
Collapse
Affiliation(s)
- Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Qingqi Zeng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Zhihui Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| |
Collapse
|
24
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
25
|
The prospects for radiation technology in mitigating carbon footprint. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Pore engineering of MOFs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Ahn NY, Lee J, Yeo W, Park H, Nam J, Kim M, Seo M. Patchwork Metal-Organic Frameworks by Radical-Mediated Heterografting of Star Polymers for Surface Modification. Inorg Chem 2022; 61:10365-10372. [PMID: 35759754 DOI: 10.1021/acs.inorgchem.2c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a synthetic methodology for decorating a surface of metal-organic frameworks (MOFs) with polymers through postsynthetic modification. Well-defined polymers with reversibly deactivated radical species at their chain end were reacted with vinyl-functionalized MOFs in the presence of a radical initiator. The radical addition forms a C-C bond between the polymer end with the functional group at the MOF ligand. We used sterically bulky star polymers containing electron-deficient maleimide chain ends, which facilitated modification of the external surface, yielding polymer-grafted MOF composite particles. A patchy MOF particle can also be obtained by simultaneously grafting two polymers and jammed at the immiscible liquid-liquid interface. We further show that the selective removal of a sacrificial polymer would partially expose the surface of MOFs to external environment, which hinders the uptake of macromolecular guests above the critical hydrodynamic size. Overall, four polymer@MOF composites have successfully been achieved through the present postsynthetic patchworks on MOFs with star polymers and selective etching process.
Collapse
Affiliation(s)
- Nam Young Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wonjune Yeo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyojin Park
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiyun Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,KAIST Institute of Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Goh SH, Lau HS, Yong WF. Metal-Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107536. [PMID: 35224843 DOI: 10.1002/smll.202107536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The booming of global environmental awareness has driven the scientific community to search for alternative sustainable approaches. This is accentuated in the 13th sustainable development goal (SDG13), climate action, where urgent efforts are salient in combating the drastic effects of climate change. Membrane separation is one of the indispensable gas purification technologies that effectively reduces the carbon footprint and is energy-efficient for large-scale integration. Metal-organic frameworks (MOFs) are recognized as promising fillers embedded in mixed matrix membranes (MMMs) to enhance gas separation performance. Tremendous research studies on MOFs-based MMMs have been conducted. Herein, this review offers a critical summary of the MOFs-based MMMs developed in the past 3 years. The basic models to estimate gas transport, preparation methods, and challenges in developing MMMs are discussed. Subsequently, the application and separation performance of a variety of MOFs-based MMMs including those of advanced MOFs materials are summarized. To accommodate industrial needs and resolve commercialization hurdles, the latest exploration of MOF materials for a harsh operating condition is emphasized. Along with the contemplation on the outlook, future perspective, and opportunities of MMMs, it is anticipated that this review will serve as a stepping stone for the coming MMMs research on sustainable and benign environmental application.
Collapse
Affiliation(s)
- Shu Hua Goh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
31
|
Shu L, Peng Y, Yao R, Song H, Zhu C, Yang W. Flexible Soft-Solid Metal-Organic Framework Composite Membranes for H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2022; 61:e202117577. [PMID: 35103369 DOI: 10.1002/anie.202117577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 01/03/2023]
Abstract
The development of a facile strategy to construct defect-free and flexible metal-organic framework (MOF)-based membranes with high selectivity and good scalability holds great appeal. Here we report the fabrication of soft-solid MOF composite membranes on polyvinylidene fluoride substrates. A representative membrane comprised of quasi-vertically grown lamellar Zn2 (Bim)4 (Bim=benzimidazolate) and lateral ultrathin polyamide film adhering to the MOF side facets. The straight interlayer galleries within unwrapped Zn2 (Bim)4 acted as predominant pathways, while the polyamide served the function of defect elimination, synergistically inducing an unprecedented H2 /CO2 selectivity of 1084 which set a new record for MOF-based membranes. Separation performance was held constant after membrane rolling up into a tube with a diameter of 3 mm or folding and unfolding at 90° for 50 times. ZIF-67 and ZIF-8 composite membranes based on this strategy also realized extremely high H2 /CO2 separation accuracies. These results, which demonstrate the intrinsic molecular sieving capability of MOFs, will promote the development of MOF-based membranes in practical separation applications.
Collapse
Affiliation(s)
- Lun Shu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yuan Peng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Rui Yao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hongling Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
32
|
Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Shu L, Peng Y, Yao R, Song H, Zhu C, Yang W. Flexible Soft‐Solid Metal–Organic Framework Composite Membranes for H
2
/CO
2
Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lun Shu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuan Peng
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Rui Yao
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Hongling Song
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Weishen Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
35
|
Mixed Matrix Membranes for Efficient CO 2 Separation Using an Engineered UiO-66 MOF in a Pebax Polymer. Polymers (Basel) 2022; 14:polym14040655. [PMID: 35215567 PMCID: PMC8880452 DOI: 10.3390/polym14040655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Mixed matrix membranes (MMMs) have attracted significant attention for overcoming the limitations of traditional polymeric membranes for gas separation through the improvement of both permeability and selectivity. However, the development of defect-free MMMs remains challenging due to the poor compatibility of the metal–organic framework (MOF) with the polymer matrix. Thus, we report a surface-modification strategy for a MOF through grafting of a polymer with intrinsic microporosity onto the surface of UiO-66-NH2. This method allows us to engineer the MOF–polymer interface in the MMMs using Pebax as a support. The insertion of a PIM structure onto the surface of UiO-66-NH2 provides additional molecular transport channels and enhances the CO2 transport by increasing the compatibility between the polymer and fillers for efficient gas separation. As a result, MMM with 1 wt% loading of PIM-grafted-MOF (PIM-g-MOF) exhibited very promising separation performance, with CO2 permeability of 247 Barrer and CO2/N2 selectivity of 56.1, which lies on the 2008 Robeson upper bound. Moreover, this MMM has excellent anti-aging properties for up to 240 days and improved mechanical properties (yield stress of 16.08 MPa, Young’s modulus of 1.61 GPa, and 596.5% elongation at break).
Collapse
|
36
|
Wong KC, Goh PS, Ismail AF, Kang HS, Guo Q, Jiang X, Ma J. The State-of-the-Art Functionalized Nanomaterials for Carbon Dioxide Separation Membrane. MEMBRANES 2022; 12:186. [PMID: 35207107 PMCID: PMC8879035 DOI: 10.3390/membranes12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Nanocomposite membrane (NCM) is deemed as a practical and green separation solution which has found application in various fields, due to its potential to delivery excellent separation performance economically. NCM is enabled by nanofiller, which comes in a wide range of geometries and chemical features. Despite numerous advantages offered by nanofiller incorporation, fabrication of NCM often met processing issues arising from incompatibility between inorganic nanofiller and polymeric membrane. Contemporary, functionalization of nanofiller which modify the surface properties of inorganic material using chemical agents is a viable approach and vigorously pursued to refine NCM processing and improve the odds of obtaining a defect-free high-performance membrane. This review highlights the recent progress on nanofiller functionalization employed in the fabrication of gas-separative NCMs. Apart from the different approaches used to obtain functionalized nanofiller (FN) with good dispersion in solvent and polymer matrix, this review discusses the implication of functionalization in altering the structure and chemical properties of nanofiller which favor interaction with specific gas species. These changes eventually led to the enhancement in the gas separation efficiency of NCMs. The most frequently used chemical agents are identified for each type of gas. Finally, the future perspective of gas-separative NCMs are highlighted.
Collapse
Affiliation(s)
- Kar Chun Wong
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Hooi Siang Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Qingjie Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| | - Xiaoxia Jiang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingjing Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| |
Collapse
|
37
|
Moreton JC, Low JX, Penticoff KC, Cohen SM, Benz L. An X-ray Photoelectron Spectroscopy Study of Postsynthetic Exchange in UiO-66. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1589-1599. [PMID: 35029998 DOI: 10.1021/acs.langmuir.1c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postsynthetic exchange (PSE) is a method that is widely used to change the composition of metal-organic frameworks (MOFs) by replacing connecting linkers or metal nodes after the framework has been synthesized. However, few techniques can probe the nature and distribution of exchanged species following PSE. Herein, we show that X-ray photoelectron spectroscopy can be used to compare the relative concentrations of exchanged ligands at the surface and interior regions of MOF particles. Specifically, PSE of iodobenzene dicarboxylate ligands results in a gradient distribution from surface to bulk in UiO-66 nanoparticles that depends on PSE time. X-ray photoelectron spectroscopy also reveals differences between the surface chemistry of the PSE product and that of the direct synthesis product.
Collapse
Affiliation(s)
- Jessica C Moreton
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jin Xiang Low
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| | - Katrina C Penticoff
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Lauren Benz
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, United States
| |
Collapse
|
38
|
Kwon O, Kim M, Choi E, Bae JH, Yoo S, Won JC, Kim YH, Shin JH, Lee JS, Kim DW. High-aspect ratio zeolitic imidazolate framework (ZIF) nanoplates for hydrocarbon separation membranes. SCIENCE ADVANCES 2022; 8:eabl6841. [PMID: 34985959 PMCID: PMC8730619 DOI: 10.1126/sciadv.abl6841] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal-organic frameworks with high aspect ratios have the potential to yield high-performance gas separation membranes. We demonstrate the scalable synthesis of high–aspect ratio zeolitic imidazolate framework (ZIF)–8 nanoplates via a direct template conversion method in which high aspect ratio–layered Zn hydroxide sheets [Zn5(NO3)2(OH)8] were used as the sacrificial precursor. Successful phase conversion occurs as a result of the collaboration of low template stability and delayed delivery of 2-methylimidazole in weakly interacting solvents, particularly using acetone. When the ZIF-8 nanoplates with an average aspect ratio of 20 were shear aligned in the 6FDA-DAM polymer matrix by bar coating, the separation performance for propylene/propane far surpassed that of the previously reported mixed matrix and polymeric membranes, showing a propylene permeability of 164 Barrer and selectivity of 33.4 at 40 weight % loadings.
Collapse
Affiliation(s)
- Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minsu Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eunji Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jun Hyuk Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sungmi Yoo
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Chan Won
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yun Ho Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ju Ho Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
39
|
Ahmadipouya S, Ahmadijokani F, Molavi H, Rezakazemi M, Arjmand M. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
|
41
|
Liu Y, Cai L, Ma L, Li M, Yang J, Chen K, Yin P. Modulating Polymer Dynamics via Supramolecular Interaction with Ultrasmall Nanocages for Recyclable Gas Separation Membranes with Intrinsic Microporosity. NANO LETTERS 2021; 21:9021-9029. [PMID: 34714086 DOI: 10.1021/acs.nanolett.1c02379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The engineering of mixed-matrix membranes is severely hindered by the trade-off between mechanical performance and effective utilization of inorganic fillers' microporosity. Herein, we report a feasible approach for optimal gas separation membranes through the fabrication of coordination nanocages with poly(4-vinylpyridine) (P4VP) via strong supramolecular interactions, enabling the homogeneous dispersion of nanocages in polymer matrixes with long-term structural stability. Meanwhile, suggested from dynamics studies, the strong attraction between P4VP and nanocages slows down polymer dynamics and rigidifies the polymer chains, leading to frustrated packing and lowered densities of the polymer matrix. This effect allows the micropores of nanocages to be accessible to external gas molecules, contributing to the intrinsic microporosity of the nanocomposites and the simultaneous enhancement of permselectivities. The facile strategy for supramolecular synthesis and polymer dynamics attenuation paves avenues to rational design of functional hybrid membranes for gas separation applications.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Litao Ma
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Mu Li
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
42
|
Wang J, Xu Y, Qu H, Ma H, Chang R, Ma J. A Highly Permeable Mixed Matrix Membrane Containing a Vertically Aligned Metal-Organic Framework for CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50441-50450. [PMID: 34636540 DOI: 10.1021/acsami.1c16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delicately regulating the distribution morphology of a filler is an effective strategy to promote the separation performance of mixed matrix membranes (MMMs). Herein, we describe a highly permeable metal-organic framework (MOF)-based MMM comprising vertically aligned ZIF-8 (V-ZIF-8) and polysulfone (PSF). The V-ZIF-8 is distributed uniformly within the PSF matrix. With this unique distribution morphology of ZIF-8, the shortest gas transport pathways are formed in the membrane. Meanwhile, the molecular-sieving pores of ZIF-8 can allow CO2 to pass through and crowding out N2. The obtained V-ZIF-8/PSF membrane shows a high CO2 permeability of 89.7 Barrer and a CO2/N2 selectivity of 30.0 that is stable over a period of 50 h. The CO2 permeability is enhanced about 11.8 times than that of the pure PSF membrane. The results prove that the vertically aligned distribution morphology of an MOF in a polymer matrix is an effective method to improve the separation performance of a membrane, providing a new concept for designing more advanced membranes.
Collapse
Affiliation(s)
- Jia Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yinghui Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ran Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jing Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
43
|
Pokharel J, Gurung A, Baniya A, He W, Chen K, Pathak R, Lamsal BS, Ghimire N, Zhou Y. MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Preparation of butadiene-bridged polymethylsiloxane (BBPMS)/ethyl cellulose (EC) hybrid membranes for gas separation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Salcedo-Abraira P, Vilela SMF, Ureña N, Salles F, Várez A, Horcajada P. Ion-Exchanged UPG-1 as Potential Electrolyte for Fuel Cells. Inorg Chem 2021; 60:11803-11812. [PMID: 34319707 DOI: 10.1021/acs.inorgchem.1c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-exchange membrane fuel cells are an attractive green technology for energy production. However, one of their major drawbacks is instability of the electrolytes under working conditions (i.e., temperature and humidity). Some metal-organic frameworks (MOFs) have recently emerged as promising alternative electrolyte materials because of their higher stability (compared with the organic polymers currently used as electrolytes), proton conductivity, and outstanding porosity and versatility. Here, we present ionic exchange in a microporous zirconium phosphonate, UPG-1, as an efficient strategy to enhance its conductivity and cyclability. Thus, labile protons of the hybrid structure were successfully replaced by different alkali cations (Li+, Na+, and K+), leading to 2 orders of magnitude higher proton conductivity than the pristine UPG-1 (up to 2.3 × 10-2 S·cm-1, which is comparable with those of the commercial electrolytes). Further, the proton conductivity was strongly influenced by the MOF hydrophilicity and the polarization strength of the cation, as suggested by molecular simulation. Finally, a mixed-matrix membrane containing the best-performing material (the potassium-exchanged one) was successfully prepared, showing moderate proton conductivity (up to 8.51 × 10-3 S·cm-1).
Collapse
Affiliation(s)
- Pablo Salcedo-Abraira
- Advanced Porous Materials Unit, IMDEA Energy, Avenida Ramón de la Sagra 3, Móstoles, Madrid E-28935, Spain
| | - Sérgio M F Vilela
- Advanced Porous Materials Unit, IMDEA Energy, Avenida Ramón de la Sagra 3, Móstoles, Madrid E-28935, Spain
| | - Nieves Ureña
- Department of Materials Science and Engineering and Chemical Engineering, IAAB, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, Madrid E-28911, Spain
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Alejandro Várez
- Department of Materials Science and Engineering and Chemical Engineering, IAAB, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, Madrid E-28911, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy, Avenida Ramón de la Sagra 3, Móstoles, Madrid E-28935, Spain
| |
Collapse
|
46
|
Gan N, Sun Q, Zhao L, Zhang S, Suo Z, Wang X, Li H. Hierarchical core-shell nanoplatforms constructed from Fe 3O 4@C and metal-organic frameworks with excellent bilirubin removal performance. J Mater Chem B 2021; 9:5628-5635. [PMID: 34109969 DOI: 10.1039/d1tb00586c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hemoperfusion has become the third-generation treatment strategy for patients suffering from hyperbilirubinemia, but adsorbents used for bilirubin removal mostly face intractable problems, such as unsatisfactory adsorption performance and poor hemocompatibility. Metal-organic frameworks (MOFs) are promising adsorbents for hemoperfusion due to their high specific surface areas and easily modified organic ligands. However, their microporous properties and separation have hampered their application. Here, a novel hierarchical core-shell nanoplatform (named Double-PEG) with tailored binding sites and pore sizes based on Fe3O4@C and Uio66-NH2 was constructed. Notably, Double-PEG showed excellent bilirubin uptake of up to 1738.30 mg g-1 and maintained excellent bilirubin removal efficiency in simulated biological solutions. A study on the adsorption mechanism showed that the adsorption of Double-PEG towards bilirubin tended to be chemical adsorption and in accordance with the Langmuir model. Besides, the good separability, recyclability, cytotoxicity and hemocompatibility of Double-PEG show great potential in hemoperfusion therapy. The finding of this study may provide a novel insight into the application of MOF materials in the field of hemoperfusion.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
47
|
Li S, Zhang S, Dai D, Li T. Facile One-Step Metal-Organic Framework Surface Polymerization Method. Inorg Chem 2021; 60:11750-11755. [PMID: 34139840 DOI: 10.1021/acs.inorgchem.1c00949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple one-step approach that only uses commercially available small-molecule reagents was developed for the construction of metal-organic framework (MOF)@polymer core-shell composite particles. Here, the MOF particles were incorporated into a typical reversible addition-fragmentation chain-transfer (RAFT) polymerization solution containing a solvent, a chain-transfer agent, an initiator, and a monomer mixture with at least one hydrogen-bond-donating monomer such as 2-hydroxyethyl methacrylate or acrylic acid. The elongation of polymer chains during polymerization gradually increases MOF/polymer interfacial interaction and eventually results in the adsorption of a random copolymer onto the MOF surface through hydrogen-bond cross-linking and MOF/polymer interfacial interaction. The continuous growth of the polymer leads to a uniform polymer coating on the MOF. Benefiting from the tacky polymer surface, these well-defined MOF@polymer composite particles can be further assembled into highly ordered monolayer composite thin films either alone or with an additional polymer matrix through the Langmuir-Blodgett technique.
Collapse
Affiliation(s)
- Siqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songwei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dejun Dai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
48
|
Li C, Liu J, Zhang K, Zhang S, Lee Y, Li T. Coating the Right Polymer: Achieving Ideal Metal-Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angew Chem Int Ed Engl 2021; 60:14138-14145. [PMID: 33856717 DOI: 10.1002/anie.202104487] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/07/2022]
Abstract
This work describes the first generalizable method to modify various metal-organic framework (MOF) surfaces with polyimide, polysulfone, polycarbonate, and polymer of intrinsic microporosity-1 (PIM-1). The method first utilizes electrostatic adsorption to rapidly decorate positively charged MOF surfaces with a layer of negatively charged metal-organic nanocapsule, PgC5 Cu. After mixing with the polymer, the copper open metal sites on PgC5 Cu can coordinatively crosslink the polar functional groups on the surface polymer upon thermal activation thereby resulting in the immobilization of a uniform sub-10 nm polymer coating. We quantitatively analyzed the distribution of free path spacing between MOF particles and demonstrated that when the surface polymer matches the matrix polymer, the MOF dispersion was not only visually improved but also found to align perfectly with a theoretically predicted ideal dispersion model where no aggregation driving force was present.
Collapse
Affiliation(s)
- Conger Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Junhong Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Kexin Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Songwei Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Yongjin Lee
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China.,Department of Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tao Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| |
Collapse
|
49
|
Li C, Liu J, Zhang K, Zhang S, Lee Y, Li T. Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Conger Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Junhong Liu
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Kexin Zhang
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Songwei Zhang
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| | - Yongjin Lee
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
- Department of Chemical Engineering Inha University Incheon 22212 Republic of Korea
| | - Tao Li
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China
| |
Collapse
|
50
|
Wang H, Ni Y, Dong Z, Zhao Q. A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|