1
|
Li Y, Wang D, Feng Y, Chen X, Chen X, Liu C, Li Y, Suo L, Zhang R, Zhang X, Liu B, Wang F, Liang S, Kong L, Fu Q, Ren T, Wang T. Fluid drawing printing 3D conductive structures for flexible circuit manufacturing. MICROSYSTEMS & NANOENGINEERING 2025; 11:81. [PMID: 40355423 PMCID: PMC12069710 DOI: 10.1038/s41378-025-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 05/14/2025]
Abstract
Three-dimensional (3D) conductive structures significantly reduce flexible circuit complexity and enhance circuit integration. Direct extrusion printing technology offers the advantages of various material applicability and high flexibility for fabricating filamentary interconnects. The printing resolution is, however, highly dependent on the needle size. A micro-printing method was proposed based on fluid drawing to fabricate freestanding 3D conductive structures. The delicate structure is drawn out under the tension when printing. The printing material is a high-viscosity ink composed of silver nanoparticles (AgNPs) and polyvinylpyrrolidone (PVP). The viscosity is controlled by evaporating the ink's solvent for drawing prints. This unique printing method utilizes a single needle, controlled by precise air pressure and speed, to construct 3D filamentary structures with varied wire widths. The 3D conductive structures exhibit superior structural retention and enhanced conductivity by thermal treatment. The drawing printing method has been successfully implemented on flexible circuits, including light-emitting diode (LED) arrays, thermal imaging displays, and multivibrator circuits. This work establishes a novel paradigm for flexible electronics manufacturing through fluid-drawing printing, achieving unprecedented customization and compatibility in fabricating 3D interconnects.
Collapse
Affiliation(s)
- Yikang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, 116024, Dalian, China.
- Liaoning Huanghai Laboratory, 116024, Dalian, China.
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China.
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
- Liaoning Huanghai Laboratory, 116024, Dalian, China
| | - Xiangji Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Xu Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Yanteng Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Liujia Suo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
- Liaoning Huanghai Laboratory, 116024, Dalian, China
| | - Xiaopeng Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, 116024, Dalian, China
| | - Ben Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Fengshu Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Shiwen Liang
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China
| | - Lingjie Kong
- Ningbo Institute of Dalian University of Technology, 315000, Ningbo, China
| | - Qiang Fu
- Ningbo Sunny Opotech Co., Ltd, 315400, Ningbo, China
| | - Tongqun Ren
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Tiesheng Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
- Liaoning Huanghai Laboratory, 116024, Dalian, China.
| |
Collapse
|
2
|
Guo S, Agarwal T, Song S, Sarkar K, Zhang LG. Development of novel multi-responsive 4D printed smart nanocomposites with polypyrrole coated iron oxides for remote and adaptive transformation. MATERIALS HORIZONS 2025. [PMID: 40099416 DOI: 10.1039/d4mh01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Four-dimensional (4D) printing, a state-of-the-art additive manufacturing technology, enables the creation of objects capable of changing shape, properties, or functionality over time in response to external stimuli. However, the lack of effective remote control and reliance on a single actuation method pose significant challenges, limiting its applications in various fields. This study aims to address these limitations by developing a novel multi-responsive nanocomposite. By coating near-infrared light (NIR)-responsive polypyrrole (PPy) onto the surface of magnetic iron oxide (Fe2O3) nanoparticles (NPs), multi-responsive PPy@Fe2O3 NPs were synthesized. Doping PPy@Fe2O3 into a thermo-responsive shape memory polymer (SMP) matrix created a nanocomposite with excellent NIR and magnetic responsiveness, enabling dynamic, remote-controlled shape transformation of printed objects with precise timing and positioning using NIR and a magnetic field. Using the nanocomposite, a proof-of-concept semi-tubular construct was fabricated to evaluate its controllable transformation capability and assess the potential for modulating neural stem cell (NSC) behaviors. Furthermore, three proof-of-concept smart robots with distinct features were designed and fabricated for cargo delivery in diverse scenarios and different purposes. Importantly, all complex operations of these robots were remotely controlled using NIR illumination and an external magnetic field. This novel approach demonstrates significant progress in addressing the key challenges of remote control and actuation in 4D printing, highlighting its potential for enhanced versatility and functionality across various applications.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.
| | - Shuaiqi Song
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
3
|
Tang D, Qu R, Xiang H, He E, Hu H, Ma Z, Liu G, Wei Y, Ji J. Highly Stretchable Composite Conductive Fibers (SCCFs) and Their Applications. Polymers (Basel) 2024; 16:2710. [PMID: 39408423 PMCID: PMC11478555 DOI: 10.3390/polym16192710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Stretchable composite conductive fibers (SCCFs) exhibit remarkable conductivity, stretchability, breathability, and biocompatibility, making them ideal candidates for wearable electronics and bioelectronics. The exploitation of SCCFs in electronic devices requires a careful balance of many aspects, including material selection and process methodologies, to address the complex challenges associated with their electrical and mechanical properties. In this review, we elucidate the conductive mechanism of SCCFs and summarize strategies for integrating various conductors with stretchable fibers, emphasizing the primary challenges in fabricating highly conductive fibers. Furthermore, we explore the multifaceted applications of SCCFs-based frameworks in wearable electronic devices. This review aims to emphasize the significance of SCCFs and offers insights into their conductive mechanisms, material selection, manufacturing technologies, and performance improvement. Hopefully, it can guide the innovative development of SCCFs and broaden their application potential.
Collapse
Affiliation(s)
- Diane Tang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Ruixiang Qu
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Huacui Xiang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Hanshi Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Zhijun Ma
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Guojun Liu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jiujiang Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| |
Collapse
|
4
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
6
|
Zheng Y, Du Y, Chen L, Mao W, Pu Y, Wang S, Wang D. Recent advances in shape memory polymeric nanocomposites for biomedical applications and beyond. Biomater Sci 2024; 12:2033-2040. [PMID: 38517138 DOI: 10.1039/d4bm00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Shape memory polymers (SMPs), which initiate shape transformation in response to environmental stimuli, have attracted significant attention in both academic research and technological innovation. The combination of functional nanomaterials and SMPs has led to the emergence of a variety of shape memory polymeric nanocomposites (SMPNs) with multifunctional properties. This has injected new vitality and vigor into fields such as tissue engineering, biomedicine, optical sensing, aerospace and mechanical engineering. In this review article, we present a brief introduction to the fundamentals of SMPs and SMPNs, followed by a discussion of the recent advances in their multifunctional applications in biomedical manufacturing, drug delivery devices, mechanical sensing, micro-engines, etc. The opportunities and challenges in the future development of SMPs are also discussed.
Collapse
Affiliation(s)
- Yifan Zheng
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yudi Du
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ling Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou 324000, China
| | - Yuan Pu
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Dan Wang
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Yan S, Zhang F, Luo L, Wang L, Liu Y, Leng J. Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0234. [PMID: 37941913 PMCID: PMC10629366 DOI: 10.34133/research.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
Shape memory polymers (SMPs) and their composites (SMPCs) are smart materials that can be stably deformed and then return to their original shape under external stimulation, thus having a memory of their shape. Three-dimensional (3D) printing is an advanced technology for fabricating products using a digital software tool. Four-dimensional (4D) printing is a new generation of additive manufacturing technology that combines shape memory materials and 3D printing technology. Currently, 4D-printed SMPs and SMPCs are gaining considerable research attention and are finding use in various fields, including biomedical science. This review introduces SMPs, SMPCs, and 4D printing technologies, highlighting several special 4D-printed structures. It summarizes the recent research progress of 4D-printed SMPs and SMPCs in various fields, with particular emphasis on biomedical applications. Additionally, it presents an overview of the challenges and development prospects of 4D-printed SMPs and SMPCs and provides a preliminary discussion and useful reference for the research and application of 4D-printed SMPs and SMPCs.
Collapse
Affiliation(s)
- Shiyu Yan
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics,
Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150000, People’s Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| |
Collapse
|
8
|
Zhou Y, Chen J, Liu X, Xu J. Three/Four-Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. Int J Mol Sci 2023; 24:13691. [PMID: 37761994 PMCID: PMC10531236 DOI: 10.3390/ijms241813691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Compared to traditional methods, three/four-dimensional (3D/4D) printing technologies allow rapid prototyping and mass customization, which are ideal for preparing nano/microstructures of soft polymer materials. Poly (lactic acid) (PLA) is a biopolymer material widely used in additive manufacturing (AM) because of its biocompatibility and biodegradability. Unfortunately, owing to its intrinsically poor nucleation ability, a PLA product is usually in an amorphous state after industrial processing, leading to some undesirable properties such as a barrier property and low thermal resistance. Crystallization mediation offers a most practical way to improve the properties of PLA products. Herein, we summarize and discuss 3D/4D printing technologies in the processing of PLA nano/microstructures, focusing on crystallization principles and practical applications including bio-inspired structures, flexible electronics and biomedical engineering mainly reported in the last five years. Moreover, the challenges and prospects of 3D/4D printing technologies in the fabrication of high-performance PLA materials nano/microstructures will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (J.C.); (X.L.)
| |
Collapse
|
9
|
Luo X, Cheng H, Wu X. Nanomaterials Reinforced Polymer Filament for Fused Deposition Modeling: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2980. [PMID: 37514370 PMCID: PMC10383500 DOI: 10.3390/polym15142980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
For the past years, fused deposition modeling (FDM) technology has received increased attention in the applications of industrial manufacturing fields, particularly for rapid prototyping, small batch production and highly customized products, owing to the merits of low-cost, user-friendliness and high design freedom. To further expand the application potential and promote the performance of the as-manufactured products, many efforts have been spent on the development of suitable materials for FDM applications. In recent years, the involvement of nanomaterials in the FDM-based polymer matrix, which has been demonstrated with great opportunities to enhance the performance and versatility of FDM printed objects, has attracted more and more research interest and the trend is expected to be more pronounced in the next few years. This paper attempts to provide a timely review regarding the current research advances in the use of nanomaterials to reinforce polymer filaments for the FDM technique. Polymer composite filaments based on nanomaterials such as carbon nanotubes, nanoclay, carbon fibers, graphene, metal nanoparticles and oxides are discussed in detail regarding their properties and applications. We also summarized the current research challenges and outlooked the future research trends in this field. This paper aims at providing a useful reference and guidance for skilled researchers and also beginners in related fields. Hopefully, more research advances can be stimulated in the coming years.
Collapse
Affiliation(s)
- Xinchun Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hailong Cheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xin Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
10
|
Wan C, Wu Z, Ren M, Tang M, Gao Y, Shang X, Li T, Xia Z, Yang Z, Mao S, Zhou M, Ling W, Li J, Huo W, Huang X. In Situ Formation of Conductive Epidermal Electrodes Using a Fully Integrated Flexible System and Injectable Photocurable Ink. ACS NANO 2023. [PMID: 37191638 DOI: 10.1021/acsnano.3c01902] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In situ fabrication of wearable devices through coating approaches is a promising solution for the fast deployment of wearable devices and more adaptable devices for different sensing demands. However, heat, solvent, and mechanical sensitivity of biological tissues, along with personal compliance, pose strict requirements for coating materials and methods. To address this, a biocompatible and biodegradable light-curable conductive ink and an all-in-one flexible system that conducts in situ injection and photonic curing of the ink as well as monitoring of biophysiological information have been developed. The ink can be solidified through spontaneous phase changes and photonic cured to achieve a high mechanical strength of 7.48 MPa and an excellent electrical conductivity of 3.57 × 105 S/m. The flexible system contains elastic injection chambers embedded with specially designed optical waveguides to uniformly dissipate visible LED light throughout the chambers and rapidly cure the ink in 5 min. The resulting conductive electrodes offer intimate skin contact even with the existence of hair and work stably even under an acceleration of 8 g, leading to a robust wearable system capable of working under intense motion, heavy sweating, and varied surface morphology. Similar concepts may lead to various rapidly deployable wearable systems that offer excellent adaptability to different monitoring demands for the health tracking of large populations.
Collapse
Affiliation(s)
- Chunxue Wan
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Miaoning Ren
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Mingchao Tang
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
| | - Yu Gao
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Tianyu Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiqiang Xia
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhen Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sui Mao
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Mingxing Zhou
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiameng Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenxing Huo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing, 314033, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China
| |
Collapse
|
11
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Digital manufacturing of personalised footwear with embedded sensors. Sci Rep 2023; 13:1962. [PMID: 36737477 PMCID: PMC9898262 DOI: 10.1038/s41598-023-29261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The strong clinical demand for more accurate and personalized health monitoring technologies has called for the development of additively manufactured wearable devices. While the materials palette for additive manufacturing continues to expand, the integration of materials, designs and digital fabrication methods in a unified workflow remains challenging. In this work, a 3D printing platform is proposed for the integrated fabrication of silicone-based soft wearables with embedded piezoresistive sensors. Silicone-based inks containing cellulose nanocrystals and/or carbon black fillers were thoroughly designed and used for the direct ink writing of a shoe insole demonstrator with encapsulated sensors capable of measuring both normal and shear forces. By fine-tuning the material properties to the expected plantar pressures, the patient-customized shoe insole was fully 3D printed at room temperature to measure in-situ gait forces during physical activity. Moreover, the digitized approach allows for rapid adaptation of the sensor layout to meet specific user needs and thereby fabricate improved insoles in multiple quick iterations. The developed materials and workflow enable a new generation of fully 3D printed soft electronic devices for health monitoring.
Collapse
|
13
|
Jekal S, Kim MS, Kim DH, Noh J, Kim HY, Kim J, Yi H, Oh WC, Yoon CM. Fabrication of Flexible All-Solid-State Asymmetric Supercapacitor Device via Full Recycling of Heated Tobacco Waste Assisted by PLA Gelation Template Method. Gels 2023; 9:97. [PMID: 36826267 PMCID: PMC9956904 DOI: 10.3390/gels9020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In this study, a flexible all-solid-state asymmetric supercapacitor (FASC) device has been successfully fabricated via full recycling of heated tobacco waste (HTW). Tobacco leaves and cellulose acetate tubes have been successfully carbonized (HTW-C) and mixed with metal oxides (MnO2 and Fe3O4) to obtain highly active materials for supercapacitors. Moreover, poly(lactic acid) (PLA) filters have been successfully dissolved in an organic solvent and mixed with the as-prepared active materials using a simple paste mixing method. In addition, flexible MnO2- and Fe3O4-mixed HTW-C/PLA electrodes (C-MnO2/PLA and C-Fe3O4/PLA) have been successfully fabricated using the drop-casting method. The as-synthesized flexible C-MnO2/PLA and C-Fe3O4/PLA electrodes have exhibited excellent electrical conductivity of 378 and 660 μS cm-1, and high specific capacitance of 34.8 and 47.9 mF cm-2 at 1 mA cm-2, respectively. A practical FASC device (C-MnO2/PLA//C-Fe3O4/PLA) has been assembled by employing the C-MnO2/PLA as the positive electrode and C-Fe3O4/PLA as the negative electrode. The as-prepared FASC device showed a remarkable capacitance of 5.80 mF cm-2 at 1 mA cm-2. Additionally, the FASC device manifests stable electrochemical performance under harsh bending conditions, verifying the superb flexibility and sustainability of the device. To the best of our knowledge, this is the first study to report complete recycling of heated tobacco waste to prepare the practical FASC devices. With excellent electrochemical performance, the experiments described in this study successfully demonstrate the possibility of recycling new types of biomass in the future.
Collapse
Affiliation(s)
- Suk Jekal
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Min-Sang Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Dong-Hyun Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jungchul Noh
- McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ha-Yeong Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jiwon Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Hyeonseok Yi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Chang-Min Yoon
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| |
Collapse
|
14
|
Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
16
|
Wei W, Liu J, Huang J, Cao F, Qian K, Yao Y, Li W. Recent advances and perspectives of shape memory polymer fibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|
18
|
Fu L, Gao T, Zhao W, Liu L, Hu S, Shi Z, Huang J. Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics. Macromol Biosci 2022; 22:e2100467. [PMID: 35083860 DOI: 10.1002/mabi.202100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Indexed: 11/07/2022]
Abstract
Fabrication of hydrogel composites embedded with aligned one-dimensional nanoparticles has shown substantial growth over the last five years. Direct ink printing technology (DIW) has been used in this work to create the alignment of the one-dimensional nanoparticles due to the shear gradient of the pesudoplastic precursor (2-hydroxyethyl methacrylate (HEMA) with thickening agents). Orderly distributed one-dimensional particles constructing anisotropic nanostructures endow the hydrogel composite with unique mechanical, electric, or electromechanical coupling properties. Quasi-static uniaxial tensile test, electric resistivity and piezoresistivity measurements have been conducted for investigating the mechanical, electric, and the electromechanical coupling properties of the hydrogel composites, respectively. Based on the experimental results, it can be speculated that the developed printing process is able to fabricate hydrogel composites with programmable anisotropic mechanical, electric, and electromechanical properties. The products pumped out from this work has the potential of being substrate for soft devices, and may have great impact on the fields of flexible bioelectronics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Linzheng Fu
- School of Mechanical and Electronic Engineering, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tinghao Gao
- School of Mechanical and Electronic Engineering, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Weiwei Zhao
- School of Mechanical and Electronic Engineering, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Li Liu
- School of Mechanical and Electronic Engineering, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sanmin Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhijun Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
19
|
Zhao Y, Hao L, Zhang X, Tan S, Li H, Zheng J, Ji G. A Novel Strategy in Electromagnetic Wave Absorbing and Shielding Materials Design: Multi‐Responsive Field Effect. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100077] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yue Zhao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Lele Hao
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Xindan Zhang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Haohang Li
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211100 P. R. China
| |
Collapse
|
20
|
Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1934016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jigar Patdiya
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| |
Collapse
|
21
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
22
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: https:/doi.org/10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
23
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: 10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
24
|
Zheng Y, Huang X, Chen J, Wu K, Wang J, Zhang X. A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. MATERIALS 2021; 14:ma14143911. [PMID: 34300829 PMCID: PMC8307564 DOI: 10.3390/ma14143911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Carbon material is widely used and has good electrical and thermal conductivity. It is often used as a filler to endow insulating polymer with electrical and thermal conductivity. Three-dimensional printing technology is an advance in modeling and manufacturing technology. From the forming principle, it offers a new production principle of layered manufacturing and layer by layer stacking formation, which fundamentally simplifies the production process and makes large-scale personalized production possible. Conductive carbon materials combined with 3D printing technology have a variety of potential applications, such as multi-shape sensors, wearable devices, supercapacitors, and so on. In this review, carbon black, carbon nanotubes, carbon fiber, graphene, and other common conductive carbon materials are briefly introduced. The working principle, advantages and disadvantages of common 3D printing technology are reviewed. The research situation of 3D printable conductive carbon materials in recent years is further summarized, and the performance characteristics and application prospects of these conductive carbon materials are also discussed. Finally, the potential applications of 3D printable conductive carbon materials are concluded, and the future development direction of 3D printable conductive carbon materials has also been prospected.
Collapse
Affiliation(s)
- Yanling Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Xu Huang
- School of Mechanical & Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;
| | - Jialiang Chen
- National Garment and Accessories Quality Supervision Testing Center (Fujian), Fujian Provincial Key Laboratory of Textiles Inspection Technology, Fujian Fiber Inspection Center, Fuzhou 350026, China;
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
| | - Jianlei Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
- Correspondence: (J.W.); (X.Z.)
| | - Xu Zhang
- Innovation Center for Textile Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Correspondence: (J.W.); (X.Z.)
| |
Collapse
|
25
|
Kausar A. Shape memory poly(methyl methacrylate) nanocomposites: design and methodical trends. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1930046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
26
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|
27
|
Zhang J, Liu X, Zao W, Feng H, Hou Y, Huo A. High-Temperature-Aging Induced Sequential Recovery of Shape Memory Nitrile Butadiene Rubber Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10376-10387. [PMID: 33605719 DOI: 10.1021/acsami.0c20528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sacrificial bonds in natural materials have inspired the preparation of shape memory polymer (SMP), which can be prepared through the construction of dual cross-linking networks in a polymer matrix. With the rise of 4D printing technology, fine control over the shape recovery of SMPs, especially control over the recovery time, is urgently needed. In this study, the high-temperature aging method is adopted to tune the shape recovery time of dual cross-linked SMPs. Shape memory acrylonitrile butadiene rubber composite (i.e., NBR-C) is prepared by introducing Zn2+-C≡N coordination bonding and sulfur covalent cross-linking networks into the rubber matrix and then thermal aging at 180 °C for various time frames. Aging increases the covalent cross-linking density, ruptures rubber chains, and generates imine structures. Moreover, the composition of the coordination bonding network becomes diversified because of the formation of coordination bonds between imines and Zn2+ ions. The mechanical "tough-brittle" transition of aged NBR-C is observed, and its glassy temperature increases with aging time, which in turn changes the shape recovery time at the same recovery temperature. On the basis of these findings, the special shape memory rubber components with sequential recovery are fabricated by partially aging the NBR-C strings. This methodology provides novel solutions for the preparation of sequential SMP products without programming heating design or using redundant chemical materials. We believe that this work will be able to help promote comprehensive research of SMPs and widen applications of SMPs in the industry.
Collapse
Affiliation(s)
- Jihua Zhang
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| | - Xiaoyan Liu
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| | - Weitao Zao
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| | - Huadong Feng
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| | - Yange Hou
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| | - Aijuan Huo
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P.R. China
| |
Collapse
|
28
|
Xia Y, He Y, Zhang F, Liu Y, Leng J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000713. [PMID: 32969090 DOI: 10.1002/adma.202000713] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.
Collapse
Affiliation(s)
- Yuliang Xia
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Fenghua Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
29
|
Bai Y, Zhang J, Ju J, Liu J, Chen X. Shape memory microparticles with permanent shape reconfiguration ability and near infrared light responsiveness. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Behrens A, Stieghorst J, Doll T, Froriep UP. Laser-Facilitated Additive Manufacturing Enables Fabrication of Biocompatible Neural Devices. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20226614. [PMID: 33227962 PMCID: PMC7699266 DOI: 10.3390/s20226614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Current personalized treatment of neurological diseases is limited by availability of appropriate manufacturing methods suitable for long term sensors for neural electrical activities in the brain. An additive manufacturing process for polymer-based biocompatible neural sensors for chronic application towards individualized implants is here presented. To process thermal crosslinking polymers, the developed extrusion process enables, in combination with an infrared (IR)-Laser, accelerated curing directly after passing the outlet of the nozzle. As a result, no additional curing steps are necessary during the build-up. Furthermore, the minimal structure size can be achieved using the laser and, in combination with the extrusion parameters, provide structural resolutions desired. Active implant components fabricated using biocompatible materials for both conductive pathways and insulating cladding keep their biocompatible properties even after the additive manufacturing process. In addition, first characterization of the electric properties in terms of impedance towards application in neural tissues are shown. The printing toolkit developed enables processing of low-viscous, flexible polymeric thermal curing materials for fabrication of individualized neural implants.
Collapse
Affiliation(s)
- Ailke Behrens
- Cluster of Excellence Hearing4All, 30627 Hannover, Germany; (A.B.); (T.D.)
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Jan Stieghorst
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Theodor Doll
- Cluster of Excellence Hearing4All, 30627 Hannover, Germany; (A.B.); (T.D.)
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Ulrich P. Froriep
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5350-294
| |
Collapse
|
31
|
Thermal-oxidative aging behaviors of shape memory nitrile butadiene rubber composite with dual crosslinking networks. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Chu H, Yang W, Sun L, Cai S, Yang R, Liang W, Yu H, Liu L. 4D Printing: A Review on Recent Progresses. MICROMACHINES 2020; 11:E796. [PMID: 32842588 PMCID: PMC7570144 DOI: 10.3390/mi11090796] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.
Collapse
Affiliation(s)
- Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110016, China;
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
33
|
Zhang J, Wang C, Zao W, Feng H, Hou Y, Huo A. High-Performance Nitrile Butadiene Rubber Composites with Good Mechanical Properties, Tunable Elasticity, and Robust Shape Memory Behaviors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jihua Zhang
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Chao Wang
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Weitao Zao
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Huadong Feng
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Yange Hou
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| | - Aijuan Huo
- Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, P. R. China
| |
Collapse
|
34
|
Wan X, Luo L, Liu Y, Leng J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001000. [PMID: 32832355 PMCID: PMC7435246 DOI: 10.1002/advs.202001000] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Indexed: 05/19/2023]
Abstract
4D printing has attracted academic interest in the recent years because it endows static printed structures with dynamic properties with the change of time. The shapes, functionalities, or properties of the 4D printed objects could alter under various stimuli such as heat, light, electric, and magnetic field. Briefly, 4D printing is the development of 3D printing with the fourth dimension of time. Among the fabrication techniques that have been employed for 4D printing, the direct ink writing technique shows superiority due to its open source for various types of materials. Herein, the state-of-the-art achievements about the topic of 4D printing through direct ink writing are summarized. The types of materials, printing strategies, actuated methods, and their potential applications are discussed in detail. To date, most efforts have been devoted to shape-shifting materials, including shape memory polymers, hydrogels, and liquid crystal elastomers, showing great prospects in areas ranging from the biomedical field to robotics. Finally, the current challenges and outlook toward 4D printing based on direct ink writing are also pointed out to leave open a significant space for future innovation.
Collapse
Affiliation(s)
- Xue Wan
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lan Luo
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yanju Liu
- Department of Astronautical Science and MechanicsHarbin Institute of TechnologyHarbin150001P. R. China
| | - Jinsong Leng
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| |
Collapse
|
35
|
Chen D, Liu Q, Han Z, Zhang J, Song H, Wang K, Song Z, Wen S, Zhou Y, Yan C, Shi Y. 4D Printing Strain Self-Sensing and Temperature Self-Sensing Integrated Sensor-Actuator with Bioinspired Gradient Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000584. [PMID: 32670768 PMCID: PMC7341108 DOI: 10.1002/advs.202000584] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Indexed: 05/23/2023]
Abstract
Integrated sensor-actuators with exciting functionalities, such as action self-sensing, position self-sensing, posture self-sensing, or active sensing, are promising for applications in biomedical device, human-machine interaction, intelligent self-protection devices, and humanoid robots. Despite recent progress, it remains challenging to achieve a macroscopical integrated sensor-actuator in a material system with microstructures. To address this critical challenge, a 4D printing bioinspired microstructure strategy is reported to design a high-performance integrated sensor-actuator capable of simultaneous actuation and sensation. Decoupled thermal stimulation and strain sensation is achieved by combining nanocarbon black/polylactic acid composites with bioinspired gradient microgap structures. As a result, printed integrated sensor-actuators can actively touch objects triggered by thermal stimulation and self-sense the touching state through the resistance change. It is anticipated that the basic design principle underlying this behavior can be used to develop integrated sensor-actuators of various shapes and functionalities to meet desirable applications.
Collapse
Affiliation(s)
- Daobing Chen
- State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Qingping Liu
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin University JilinChangchun130022P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin University JilinChangchun130022P. R. China
| | - Junqiu Zhang
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin University JilinChangchun130022P. R. China
| | - HongLie Song
- Applied Mechanics LaboratoryDepartment of Engineering MechanicsTsinghua UniversityBeijing100083China
| | - Kejun Wang
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin University JilinChangchun130022P. R. China
| | - Zhengyi Song
- Key Laboratory of Bionic EngineeringMinistry of EducationJilin University JilinChangchun130022P. R. China
| | - Shifeng Wen
- State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Zhou
- Faculty of EngineeringChina University of GeosciencesWuhanHubei430074China
| | - Chunze Yan
- State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| |
Collapse
|
36
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
37
|
Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light. Polymers (Basel) 2020; 12:polym12030710. [PMID: 32210051 PMCID: PMC7182824 DOI: 10.3390/polym12030710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022] Open
Abstract
Shape memory polymers are attractive smart materials that have many practical applications and academic interest. Three-dimensional (3D) printable shape memory polymers are of great importance for the fabrication of soft robotic devices due to their ability to build complex 3D structures with desired shapes. We present a 3D printable shape memory polymer, with controlled melting and transition temperature, composed of methacrylated polycaprolactone monomers and N-Vinylcaprolactam reactive diluent. Tuning the ratio between the monomers and the diluents resulted in changes in melting and transition temperatures by 20, and 6 °C, respectively. The effect of the diluent addition on the shape memory behavior and mechanical properties was studied, showing above 85% recovery ratio, and above 90% fixity, when the concentration of the diluent was up to 40 wt %. Finally, we demonstrated multi-material printing of a 3D structure that can be activated locally, at two different temperatures, by two different stimuli; direct heating and light irradiation. The remote light activation was enabled by utilizing a coating of Carbon Nano Tubes (CNTs) as an absorbing material, onto sections of the printed objects.
Collapse
|
38
|
Miao JT, Ge M, Peng S, Zhong J, Li Y, Weng Z, Wu L, Zheng L. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40642-40651. [PMID: 31577114 DOI: 10.1021/acsami.9b14145] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory polymer (SMP)-based 4D printing combines the advantages of SMP and 3D printing to form active materials with delicate structure. Nowadays, studies of SMP-based 4D printing materials mainly focus on cross-linked (meth)acrylate of which the permanent shape cannot be changed for their covalent linkage, limiting the usage of 4D printing materials. In this paper, a novel (meth)acrylate monomer with an aldehyde group (2-(methacryloyloxy)ethyl 4-formylbenzoate, MEFB) and hyperbranched cross-linker (HPASi) are synthesized to build (meth)acrylate systems (IEMSis) with dynamic imine bonds for 4D printing. The flexible chain structure of HPASi significantly enhances the toughness of IEMSis, which is 33-97-fold higher than that of the one without HPASi (IEM). The addition of HPASi also endows IEMSis good shape memory properties, and the shape fixity and shape recovery ratios of them are 97.5-97.6 and 91.4-93.7%, respectively. At the same time, IEMSis can undergo a stress relaxation process by dynamic exchanges of imine bonds under relatively mild conditions without a catalyst to acquire an ability of permanent shape reconfiguration. The shape retention ratio of IEMSi3 is 84.3%. In addition, the 4D-printed structures displayed here indicate that these 4D printing systems have a myriad of potential applications including aerospace structures, soft robotic grippers, smart electron switches, and intelligent packaging, while the reconfigurability shown by IEMSi3 will expand the scope of application fields of 4D printing materials.
Collapse
Affiliation(s)
- Jia-Tao Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Meiying Ge
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Shuqiang Peng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jie Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Yuewei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , People's Republic of China
- Fujian Universities and Colleges Engineering Research Center of Soft Plastic Packaging Technology for Food , Fuzhou 350300 , People's Republic of China
| |
Collapse
|
39
|
Shi S, Chen Y, Jing J, Yang L. Preparation and 3D-printing of highly conductive polylactic acid/carbon nanotube nanocomposites via local enrichment strategy. RSC Adv 2019; 9:29980-29986. [PMID: 35531510 PMCID: PMC9072133 DOI: 10.1039/c9ra05684j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023] Open
Abstract
A novel local enrichment strategy was adopted to fabricate the highly conductive carbon nanotube/polylactic acid 3D-printed parts.
Collapse
Affiliation(s)
- Shaohong Shi
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Yinghong Chen
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Jingjing Jing
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Lu Yang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|