1
|
Ge Q, Zeng Q, Li S, Ji S. Improving the washability of conductive textiles by constructing a dually crosslinked polyvinyl alcohol network with silver nanowires. NANOSCALE 2025; 17:11520-11529. [PMID: 40237029 DOI: 10.1039/d5nr01022e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Conductive textiles, as an important platform for developing wearable electronic devices, often face challenges related to washing to remove dirt while retaining conductivity. It is still a great challenge to manufacture textiles with high conductivity, washability and uniformity in an efficient and economical way. Polyvinyl alcohol (PVA) containing numerous hydroxyl groups allowing easy modification and crosslinking is a promising candidate for conductive textile construction. Herein, a stable composite ink with PVA as the matrix and silver nanowires (AgNWs) as the conductive filler for screen printing on textile surfaces is proposed. The composite conductive network endows the fabric with the highest conductivity up to 2087 S cm-1 and a low percolation threshold of 0.025 mg cm-2 for AgNW mass loading. The printed conductive pattern shows high uniformity even for a line width as small as 500 μm on fabric. The resistance change of conductive textiles washed at 60 °C for 1 h is reduced from 500 000% to 40%, thanks to the cooperation of a physically and chemically dually crosslinked polymer network with a conductive AgNW network. The prepared outperforming conductive textiles and their potential for mass production of patterned fabric electrodes provide a basis for further development of smart fabrics and wearable electronics.
Collapse
Affiliation(s)
- Qianru Ge
- Auhui University, Hefei 230601, People's Republic of China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Qingyang Zeng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shuxin Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Shulin Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| |
Collapse
|
2
|
Mojtabazadeh H, Safaei-Ghomi J. High conductivity graphite paste for radio frequency identification tag with wireless hydrogen sensor based on CeO 2-Fe 2O 3-graphene oxide. RSC Adv 2025; 15:12773-12784. [PMID: 40264871 PMCID: PMC12013617 DOI: 10.1039/d5ra00587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Radio frequency identification (RFID) technology has made significant strides in recent years, opening up a world of possibilities for various industries. However, to achieve success, reliable and accurate real-time data is crucial. One exciting application of RFID technology is fast and wireless detection of gases. Hydrogen, in particular, is considered a clean fuel. However, it is highly flammable, and detecting it quickly and accurately is challenging in various industries. In this regard, our research focuses on developing a high-conductivity graphite paste for RFID tags integrated with a wireless hydrogen sensor based on nano-CeO2-Fe2O3-graphene oxide. In this work, we obtained a graphite paste using Ultra High Power (UHP) graphite electrodes with a high conductivity of 4.75 × 105 S cm-1 for non-metallic substrates and 4 × 106 S cm-1 with aluminum substrate. Furthermore, we incorporated a hydrogen gas detection sensor into the RFID tag utilizing graphene oxide and cerium oxide-iron oxide nanoparticles. The sensor demonstrated high sensitivity to low concentrations of H2 gas (1 ppm), with stable and repeatable performance. The wireless sensing response was evaluated through reflection coefficient (S 11) measurements, confirming effective impedance matching between the RFID chip and antenna. Through this research, we aim to promote the advancement of RFID technology by introducing a low-cost, battery-free sensing platform using graphite and nano-engineered materials, suitable for diverse industrial applications.
Collapse
Affiliation(s)
- Hossein Mojtabazadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| |
Collapse
|
3
|
Ju L, Yu B, Chen H, Xiao Z, Xiang W, Zhan J, Zhang C, Liu Z, Tao L, Lu W. Multilevel Printed Wearable Radio-Frequency Intelligent Identification Platform for Object Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49856-49867. [PMID: 39230937 DOI: 10.1021/acsami.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
As a noncontact target recognition technique, radio-frequency identification (RFID) technology demonstrates attractive potential in constructing human-machine interaction (HMI) systems. However, the current development of RFID technologies in HMI systems is hampered by critical challenges in manufacturing high-performance RFID readers with superior flexibility and wearing comfort. Hence, we propose a multilevel printing strategy to overcome the difficulties in manufacturing high-performance large-scale microwave systems. Compared to traditional processes, the RFID system fabricated by the hybrid additive manufacturing technique exhibits equivalent electromagnetic performance and has obvious advantages in terms of manufacturing cost and environmental friendliness. A printed reconfigurable antenna with intelligent radiation mode is seamlessly integrated with the reader circuit via a "one-step" printing technology. Additionally, through chemical doping and artificial intelligence (AI) prediction, we have developed a modified polydimethylsiloxane (PDMS) encapsulation to miniaturize the system volume and enhance reliability. Electromagnetic and mechanical measurements demonstrated that our flexible RFID platform offers superior reliability and stability during long-term daily use. The RFID platform possesses exceptional capabilities in target positioning and accurate identification, demonstrating unique potential in noncontact sensing and recognition, which are highly demanded by flexible and wearable HMI systems.
Collapse
Affiliation(s)
- Lu Ju
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Buyun Yu
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Zhida Xiao
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Wei Xiang
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Junlin Zhan
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Chao Zhang
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
| | - Zhenguo Liu
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Li Tao
- School of Materials Science and Engineering, Center of 2D Materials, Southeast University, Nanjing 210096, China
| | - Weibing Lu
- State Key Laboratory of Millimeter Waves School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security Southeast University, Nanjing 210096, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
4
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
5
|
Farraj Y, Kanner A, Magdassi S. E-Textile by Printing an All-through Penetrating Copper Complex Ink. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21651-21658. [PMID: 37075249 PMCID: PMC10165605 DOI: 10.1021/acsami.3c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wearable electronics is an emerging field in academics and industry, in which electronic devices, such as smartwatches and sensors, are printed or embedded within textiles. The electrical circuits in electronics textile (e-textile) should withstand many cycles of bending and stretching. Direct printing of conductive inks enables the patterning of electrical circuits; however, while using conventional nanoparticle-based inks, printing onto the fabric results in a thin layer of a conductor, which is not sufficiently robust and impairs the reliability required for practical applications. Here, we present a new process for fabricating robust stretchable e-textile using a thermodynamically stable, solution-based copper complex ink, which is capable of full penetrating the fabric. After printing on knitted stretchable fabrics, they were heated, and the complex underwent an intermolecular self-reduction reaction. The continuously formed metallic copper was used as a seed layer for electroless plating (EP) to form highly conductive circuits. It was found that the stretching direction has a significant role in resistivity. This new approach enables fabricating e-textiles with high stretchability and durability, as demonstrated for wearable gloves, toward printing functional e-textile.
Collapse
Affiliation(s)
- Yousef Farraj
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Aviad Kanner
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
6
|
Yang M, Ye Z, Ren Y, Farhat M, Chen PY. Recent Advances in Nanomaterials Used for Wearable Electronics. MICROMACHINES 2023; 14:603. [PMID: 36985010 PMCID: PMC10053072 DOI: 10.3390/mi14030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mohamed Farhat
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Shukla D, Liu Y, Zhu Y. Eco-friendly screen printing of silver nanowires for flexible and stretchable electronics. NANOSCALE 2023; 15:2767-2778. [PMID: 36661027 PMCID: PMC9930198 DOI: 10.1039/d2nr05840e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 μm and conductivity as high as 6.70 × 106 S m-1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Chandrasekaran S, Jayakumar A, Velu R. A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4251. [PMID: 36500874 PMCID: PMC9740290 DOI: 10.3390/nano12234251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Printable electronics is emerging as one of the fast-growing engineering fields with a higher degree of customization and reliability. Ironically, sustainable printing technology is essential because of the minimal waste to the environment. To move forward, we need to harness the fabrication technology with the potential to support traditional process. In this review, we have systematically discussed in detail the various manufacturing materials and processing technologies. The selection criteria for the assessment are conducted systematically on the manuscript published in the last 10 years (2012-2022) in peer-reviewed journals. We have discussed the various kinds of printable ink which are used for fabrication based on nanoparticles, nanosheets, nanowires, molecular formulation, and resin. The printing methods and technologies used for printing for each technology are also reviewed in detail. Despite the major development in printing technology some critical challenges needed to be addressed and critically assessed. One such challenge is the coffee ring effect, the possible methods to reduce the effect on modulating the ink environmental condition are also indicated. Finally, a summary of printable electronics for various applications across the diverse industrial manufacturing sector is presented.
Collapse
Affiliation(s)
- Sridhar Chandrasekaran
- Center for System Design, Department of Electronics and Communication Engineering, Chennai Institute of Technology, Kundrathur, Chennai 600069, India
| | - Arunkumar Jayakumar
- Green Vehicle Technology Research Centre, Department of Automobile Engineering, SRM-Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajkumar Velu
- Additive Manufacturing Research Laboratory (AMRL), Indian Institute of Technology Jammu, Jammu 181221, Jammu & Kashmir, India
| |
Collapse
|
9
|
Gaubert V, Vauche G, Weimmerskirch-Aubatin J, Corbier C, Boddaert X, Delattre R, Djenizian T. Toward autonomous wearable triboelectric systems integrated on textiles. iScience 2022; 25:105264. [PMCID: PMC9636050 DOI: 10.1016/j.isci.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the major requirements of smart textiles is to achieve the integration of an energy source for powering embedded electronic systems. In this context, textile triboelectric nanogenerators (T-TENGs) are particularly well suited to imperceptibly play this role in the core of textiles, making them highly appealing for the development of future autonomous systems. This article reviews the wide range of topics related to T-TENGs technology starting from triboelectric generation (textile device and behavior modeling) up to the complete integration of power transfer (rectifier) circuits on textiles. The modeling part deals with the current mathematical models of the triboelectric charge transfer in order to highlight efficient power transfer circuits. Then the materials and architectures used to fabricate different types of T-TENGs are described. Finally, the methods and technologies to seamlessly integrate the power transfer circuit into textiles are discussed: from realizing electrically conductive tracks through to integrating electronic component on textiles.
Collapse
Affiliation(s)
- Valentin Gaubert
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, 13541 Gardanne, France
| | - Gaëtan Vauche
- Saint-Etienne Jean Monnet University, Roanne Technology University Institute, University of Lyon, LASPI (EA3059), 42334 Roanne, France
| | | | - Christophe Corbier
- Saint-Etienne Jean Monnet University, Roanne Technology University Institute, University of Lyon, LASPI (EA3059), 42334 Roanne, France
| | - Xavier Boddaert
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, 13541 Gardanne, France
| | - Roger Delattre
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, 13541 Gardanne, France
| | - Thierry Djenizian
- Mines Saint-Etienne, Center of Microelectronics in Provence, Department of Flexible Electronics, 13541 Gardanne, France,Al-Farabi Kazakh National University, Center of Physical-Chemical Methods of Research and Analysis, Tole bi str., 96A., Almaty, Kazakhstan,Corresponding author
| |
Collapse
|
10
|
Camargo JR, Fernandes-Junior WS, Azzi DC, Rocha RG, Faria LV, Richter EM, Muñoz RAA, Janegitz BC. Development of New Simple Compositions of Silver Inks for the Preparation of Pseudo-Reference Electrodes. BIOSENSORS 2022; 12:761. [PMID: 36140146 PMCID: PMC9497032 DOI: 10.3390/bios12090761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Silver materials are known to present excellent properties, such as high electrical and thermal conductivity as well as chemical stability. Silver-based inks have drawn a lot of attention for being compatible with various substrates, which can be used in the production uniform and stable pseudo-reference electrodes with low curing temperatures. Furthermore, the interest in the use of disposable electrodes has been increasing due to the low cost and the possibility of their use in point-of-care and point-of-need situations. Thus, in this work, two new inks were developed using Ag as conductive material and colorless polymers (nail polish (NP) and shellac (SL)), and applied to different substrates (screen-printed electrodes, acetate sheets, and 3D-printed electrodes) to verify the performance of the proposed inks. Measurements attained with open circuit potential (OCP) attested to the stability of the potential of the pseudo-reference proposed for 1 h. Analytical curves for β-estradiol were also obtained using the devices prepared with the proposed inks as pseudo-references electrodes, which presented satisfactory results concerning the potential stability (RSD < 2.6%). These inks are simple to prepare and present great alternatives for the development of pseudo-reference electrodes useful in the construction of disposable electrochemical systems.
Collapse
Affiliation(s)
- Jéssica R. Camargo
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Wilson S. Fernandes-Junior
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| | - Déborah C. Azzi
- ADB Pesquisa e Desenvolvimento, Araras 13600-140, SP, Brazil
| | - Raquel G. Rocha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Lucas V. Faria
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Eduardo M. Richter
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Rodrigo A. A. Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, SP, Brazil
| |
Collapse
|
11
|
Bio-acceptability of wearable sensors: a mechanistic study towards evaluating ionic leaching induced cellular inflammation. Sci Rep 2022; 12:10782. [PMID: 35750697 PMCID: PMC9232592 DOI: 10.1038/s41598-022-13810-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
The recent need for remote health wellness monitoring has led to the extensive use of wearable sensors. Owing to their increased use, these sensors are required to exhibit both functionality and safety to the user. A major component in the fabrication of these sensors and their associated circuitry is the use of metallic/organic conductive inks. However, very less is known about the interfacial and molecular interactions of these inks with biological matter as they can result in an inflammatory reaction to the user. Significant efforts are thus needed to explore and improve the bio-acceptability of such conductive ink-based wearable sensors. The present study investigates the biocompatibility of encapsulated and non-encapsulated wearable electrochemical sensors used for sensing uric acid as a biomarker for wound healing fabricated using screen-printing technique. Ionic release of metallic ions was investigated first to understand the susceptibility of the conductive inks towards ionic leaching when in contact with a fluid. Time-lapse investigation using ICPS (inductive couple plasma spectroscopy) shows a high concentration (607.31 ppb) of leached silver (Ag+) ions from the non-encapsulated sensors. The cell viability data suggests a 2.5-fold improvement in the sensor biocompatibility for an encapsulated sensor. While the carbon ink shows negligible effect on cell viability, the silver ink elicits significant decrease (< 50%) in cell viability at concentrations higher than 2 mg ml-1. The toxicity pathway of these sensors was further determined to be through the generation of reactive oxygen species resulting in over 20% apoptotic cell death. Our results show that the lower biocompatibility of the non-encapsulated sensor attributes to the higher leaching of Ag+ ions from the printed inks which elicits several different inflammatory pathways. This work highlights the importance biocompatibility evaluation of the material used in sensor fabrication to develop safe and sustainable sensors for long-term applications.
Collapse
|
12
|
Conductive Layers on a Shrinkable PET Film by Flexographic Printing. MATERIALS 2022; 15:ma15103649. [PMID: 35629675 PMCID: PMC9142902 DOI: 10.3390/ma15103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
In this study, the extremely important and difficult topic of flexographic printing on a heat-shrinkable substrate was taken up. Six commercially available, electrically conductive inks based on silver, copper and graphite nanoparticles were selected and tested upon their applicability for printing on the temperature-sensitive PET material. As a printing substrate, the one-direction heat-shrinkable PET film, with a maximum shrinkage of 78%, was selected. All of the examined inks were subjected to the printing process throughout three different anilox line screens. The tested inks, along with the electric paths printed with them, were subjected to various tests. The main parameters were evaluated, such as printability combined with the rheology tests and ink adhesion to the examined PET substrate together with the electrical conductivity before and after the shrinkage.
Collapse
|
13
|
Tian B, Fang Y, Liang J, Zheng K, Guo P, Zhang X, Wu Y, Liu Q, Huang Z, Cao C, Wu W. Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107298. [PMID: 35150063 DOI: 10.1002/smll.202107298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Electronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink. The as-fabricated e-textiles spray-coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq-1 , high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e-textiles can be explored as strain sensors and ultralow voltage-driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e-textiles for human motion detection and body-temperature management. The printed e-textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.
Collapse
Affiliation(s)
- Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Yuhui Fang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Panwang Guo
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Zhida Huang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Changyong Cao
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
15
|
Liu H, Zhong X, He X, Li Y, Zhou N, Ma Z, Zhu D, Ji H. Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55656-55665. [PMID: 34758625 DOI: 10.1021/acsami.1c15268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Textile-based stretchable electronic devices are one of the best candidates for future wearable applications, as they can simultaneously provide high compliance and wearing comfort to the human body. Stretchable conductive textile is the fundamental building block for constructing high-performance textile-based stretchable electronic devices. Here, we report a simple strategy for the fabrication of stretchable conductive fabric using commercial knitted cloth as a substrate. Briefly, we coated the fibers of the fabric with a thin layer of poly(styrene-block-butadiene-block-styrene) (SBS) by dip-coating. Then, silver nanoparticles (AgNPs) were loaded on the fabric by sequential absorption and in situ reduction. After loading AgNPs, the conductivity of the fabric could be as high as ∼800 S/m, while its maximal strain at break was higher than 540%. Meanwhile, such fabric also possesses excellent permeability, robust endurance to repeated stretching, long-time washing, and mechanical rubbing or tearing. We further approve that the fabric is less cytotoxic to mammalian skin and antibacterial to microbial, making it safe for on-skin applications. With these multifarious advantages, the fabric developed here is promising for on-skin wearable applications. As a proof-of-concept, we demonstrate its use as an electrode for collecting electrocardiograph signals and electrothermal therapy.
Collapse
Affiliation(s)
- Haojun Liu
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China
| | - Xin He
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Yushan Li
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Ningjing Zhou
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Zhijun Ma
- State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
- Zhejiang Lab, Research Center of Intelligent Sensing, South China University of Technology, Wenyi West Road No. 1818, Hangzhou 311121, P. R. China
| | - Dezhi Zhu
- School of Mechanical and Automobile Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China
| |
Collapse
|
16
|
Simegnaw AA, Malengier B, Rotich G, Tadesse MG, Van Langenhove L. Review on the Integration of Microelectronics for E-Textile. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5113. [PMID: 34501200 PMCID: PMC8434590 DOI: 10.3390/ma14175113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable. In this review work, three levels of integration of the microelectronics into/onto the textile structures are discussed, the textile-adapted, the textile-integrated, and the textile-based integration. The textile-integrated and the textile-adapted e-textiles have failed to efficiently meet being flexible and washable. To overcome the above problems, researchers studied the integration of microelectronics into/onto textile at fiber or yarn level applying various mechanisms. Hence, a new method of integration, textile-based, has risen to the challenge due to the flexibility and washability advantages of the ultimate product. In general, the aim of this review is to provide a complete overview of the different interconnection methods of electronic components into/onto textile substrate.
Collapse
Affiliation(s)
- Abdella Ahmmed Simegnaw
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.R.); (L.V.L.)
- Ethiopian Institute of Textile and Fashion Technologies, Bahir Dar University, Bahir Dar 6000, Ethiopia;
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.R.); (L.V.L.)
| | - Gideon Rotich
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.R.); (L.V.L.)
- Clothing and Textile, School of Engineering and Technology, South Eastern Kenya University, Kwa Vonza 90215, Kenya
| | - Melkie Getnet Tadesse
- Ethiopian Institute of Textile and Fashion Technologies, Bahir Dar University, Bahir Dar 6000, Ethiopia;
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (G.R.); (L.V.L.)
| |
Collapse
|
17
|
Screen Printing Carbon Nanotubes Textiles Antennas for Smart Wearables. SENSORS 2021; 21:s21144934. [PMID: 34300678 PMCID: PMC8309715 DOI: 10.3390/s21144934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023]
Abstract
Electronic textiles have become a dynamic research field in recent decades, attracting attention to smart wearables to develop and integrate electronic devices onto clothing. Combining traditional screen-printing techniques with novel nanocarbon-based inks offers seamless integration of flexible and conformal antenna patterns onto fabric substrates with a minimum weight penalty and haptic disruption. In this study, two different fabric-based antenna designs called PICA and LOOP were fabricated through a scalable screen-printing process by tuning the conductive ink formulations accompanied by cellulose nanocrystals. The printing process was controlled and monitored by revealing the relationship between the textiles' nature and conducting nano-ink. The fabric prototypes were tested in dynamic environments mimicking complex real-life situations, such as being in proximity to a human body, and being affected by wrinkling, bending, and fabric care such as washing or ironing. Both computational and experimental on-and-off-body antenna gain results acknowledged the potential of tunable material systems complimenting traditional printing techniques for smart sensing technology as a plausible pathway for future wearables.
Collapse
|
18
|
Kim J, Park S, Choe W. Surface plasma with an inkjet-printed patterned electrode for low-temperature applications. Sci Rep 2021; 11:12206. [PMID: 34108606 PMCID: PMC8190151 DOI: 10.1038/s41598-021-91720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
The global health crisis caused by the recent pandemic has led to increasing social demand for ‘new normal’ sanitizing and disinfecting facilities to fit our ‘new normal’ lives. Here, we introduce an inkjet-printed, thin-film plasma source applicable to dry disinfection processes. In contrast to conventional plasma reactors, the merits of plasma produced on a film include disposability, cost-effectiveness, and applicability to high-dimensional objects such as the human body. The developed flexible plasma film can be applied to a wide variety of shapes via origami—remaining plasma stable even when bent. However, electrode degradation has been a practical issue in the long-term operation of inkjet-printed plasma sources, which is troublesome from application perspectives. We focus on making the inkjet-printed electrode more plasma stress-resistant, thereby increasing its lifespan from a few minutes to two hours of continuous operation with optimal inkjet printing and passivation, thus increasing the practicality of the source. Considering the fact that ozone and nitrogen oxides are selectively produced by plasma, we implement a disposable pouch-type plasma source and examine its usefulness in extending the shelf life of food.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghoo Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy (KFE), 37 Dongjangsan-ro, Gunsan, Jeollabuk-do, 54004, Republic of Korea
| | - Wonho Choe
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Angelucci A, Cavicchioli M, Cintorrino IA, Lauricella G, Rossi C, Strati S, Aliverti A. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:814. [PMID: 33530403 PMCID: PMC7865961 DOI: 10.3390/s21030814] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Several wearable devices for physiological and activity monitoring are found on the market, but most of them only allow spot measurements. However, the continuous detection of physiological parameters without any constriction in time or space would be useful in several fields such as healthcare, fitness, and work. This can be achieved with the application of textile technologies for sensorized garments, where the sensors are completely embedded in the fabric. The complete integration of sensors in the fabric leads to several manufacturing techniques that allow dealing with both the technological challenges entailed by the physiological parameters under investigation, and the basic requirements of a garment such as perspiration, washability, and comfort. This review is intended to provide a detailed description of the textile technologies in terms of materials and manufacturing processes employed in the production of sensorized fabrics. The focus is pointed at the technical challenges and the advanced solutions introduced with respect to conventional sensors for recording different physiological parameters, and some interesting textile implementations for the acquisition of biopotentials, respiratory parameters, temperature and sweat are proposed. In the last section, an overview of the main garments on the market is depicted, also exploring some relevant projects under development.
Collapse
Affiliation(s)
- Alessandra Angelucci
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; (M.C.); (I.A.C.); (G.L.); (C.R.); (S.S.); (A.A.)
| | | | | | | | | | | | | |
Collapse
|
20
|
Koshi T, Nomura KI, Yoshida M. Electrical Characterization of a Double-Layered Conductive Pattern with Different Crack Configurations for Durable E-Textiles. MICROMACHINES 2020; 11:E977. [PMID: 33143146 PMCID: PMC7694075 DOI: 10.3390/mi11110977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022]
Abstract
For the conductive patterns of electronic textiles (e-textiles), it is still challenging to maintain low electrical resistance, even under large or cyclic tensile deformation. This study investigated a double-layered pattern with different crack configurations as a possible solution. Patterns with single crack growth exhibit a low initial resistance and resistance change rate. In contrast, patterns with multiple crack growth maintain their conductivity under deformation, where electrical failure occurs in those with single crack growth. We considered that a double-layered structure could combine the electrical characteristics of patterns with single and multiple crack growths. In this study, each layer was theoretically designed to control the crack configuration. Then, meandering copper patterns, silver ink patterns, and their double layers were fabricated on textiles as patterns with single and multiple crack growths and double-layered patterns, respectively. Their resistance changes under the single (large) and cyclic tensile deformations were characterized. The results confirmed that the double-layered patterns maintained the lowest resistance at the high elongation rate and cycle. The resistance change rates of the meandering copper and silver ink patterns were constant, and changed monotonically against the elongation rate/cycle, respectively. In contrast, the change rate of the double-layered patterns varied considerably when electrical failure occurred in the copper layer. The change rate after the failure was much higher than that before the failure, and on the same order as that of the silver ink patterns.
Collapse
Affiliation(s)
- Tomoya Koshi
- Sensing System Research Center (SSRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; (K.-i.N.); (M.Y.)
| | | | | |
Collapse
|
21
|
Photodynamic-active smart biocompatible material for an antibacterial surface coating. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112012. [PMID: 32919175 DOI: 10.1016/j.jphotobiol.2020.112012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023]
Abstract
Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.
Collapse
|
22
|
Koshi T, Nomura KI, Yoshida M. Resistance Reduction of Conductive Patterns Printed on Textile by Curing Shrinkage of Passivation Layers. MICROMACHINES 2020; 11:mi11060539. [PMID: 32466466 PMCID: PMC7346002 DOI: 10.3390/mi11060539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/30/2023]
Abstract
Directly printing conductive ink on textiles is simple and compatible with the conventional electronics manufacturing process. However, the conductive patterns thus formed often show high initial resistance and significant resistance increase due to tensile deformation. Achieving conductive patterns with low initial resistance and reduced deformation-induced resistance increase is a significant challenge in the field of electronic textiles (e-textiles). In this study, the passivation layers printed on conductive patterns, which are necessary for practical use, were examined as a possible solution. Specifically, the reduction of the initial resistance and deformation-induced resistance increase, caused by the curing shrinkage of passivation layers, were theoretically and experimentally investigated. In the theoretical analysis, to clarify the mechanism of the reduction of deformation-induced resistance increase, crack propagation in conductive patterns was analyzed. In the experiments, conductive patterns with and without shrinking passivation layers (polydimethylsiloxane) cured at temperatures of 20–120 °C were prepared, and the initial resistances and resistance increases due to cyclic tensile and washing in each case were compared. As a result, the initial resistance was reduced further by the formation of shrinking passivation layers cured at higher temperatures, and reduced to 0.45 times when the curing temperature was 120 °C. The cyclic tensile and washing tests confirmed a 0.48 and a 0.011 times reduction of resistance change rate after the 100th elongation cycle (10% in elongation rate) and the 10th washing cycle, respectively, by comparing the samples with and without shrinking passivation layers cured at 120 °C.
Collapse
|
23
|
Electronic Component Mounting for Durable E-Textiles: Direct Soldering of Components onto Textile-Based Deeply Permeated Conductive Patterns. MICROMACHINES 2020; 11:mi11020209. [PMID: 32085493 PMCID: PMC7074705 DOI: 10.3390/mi11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
For the improvement of the performance and function of electronic textiles (e-textiles), methods for electronic component mounting of textile circuits with electrical and mechanical durability are necessary. This manuscript presents a component mounting method for durable e-textiles, with a simpler implementation and increased compatibility with conventional electronics manufacturing processes. In this process, conductive patterns are directly formed on a textile by the printing of conductive ink with deep permeation and, then, components are directly soldered on the patterns. The stiffness of patterns is enhanced by the deep permeation, and the enhancement prevents electrical and mechanical breakages due to the stress concentration between the pattern and solder. This allows components to be directly mounting on textile circuits with electrical and mechanical durability. In this study, a chip resistor was soldered on printed patterns with different permeation depths, and the durability of the samples were evaluated by measuring the variation in resistance based on cyclic tensile tests and shear tests. The experiments confirmed that the durability was improved by the deep permeation, and that the samples with solder and deep permeation exhibited superior durability as compared with the samples based on commercially available elastic conductive adhesives for component mounting. In addition, a radio circuit was fabricated on a textile to demonstrate that various types of components can be mounted based on the proposed methods.
Collapse
|