1
|
Li Z, Jindal A, Strasser A, He Y, Zheng W, Graf D, Taniguchi T, Watanabe K, Balicas L, Dean CR, Qian X, Pasupathy AN, Rhodes DA. Twofold Anisotropic Superconductivity in Bilayer T_{d}-MoTe_{2}. PHYSICAL REVIEW LETTERS 2024; 133:216002. [PMID: 39642487 DOI: 10.1103/physrevlett.133.216002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/10/2024] [Indexed: 12/09/2024]
Abstract
Noncentrosymmetric two-dimensional superconductors with large spin-orbit coupling offer an opportunity to explore superconducting behaviors far beyond the Pauli limit. One such superconductor, few-layer T_{d}-MoTe_{2}, has large upper critical fields that can exceed the Pauli limit by up to 600%. However, the mechanisms governing this enhancement are still under debate, with theory pointing toward either spin-orbit parity coupling or tilted Ising spin-orbit coupling. Moreover, ferroelectricity concomitant with superconductivity has been recently observed in the bilayer, where strong changes to superconductivity can be observed throughout the ferroelectric transition pathway. Here, we report the superconducting behavior of bilayer T_{d}-MoTe_{2} under an in-plane magnetic field, while systematically varying magnetic field angle and out-of-plane electric field strength. We find that superconductivity in bilayer MoTe_{2} exhibits a twofold symmetry with an upper critical field maxima occurring along the b axis and minima along the a axis. The twofold rotational symmetry remains robust throughout the entire superconducting region and ferroelectric hysteresis loop. Our experimental observations of the spin-orbit coupling strength (up to 16.4 meV) agree with the spin texture and spin splitting from first-principles calculations, indicating that tilted Ising spin-orbit coupling is the dominant underlying mechanism.
Collapse
|
2
|
Jakob DS, Schwartz JJ, Pavlidis G, Grutter KE, Centrone A. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights. Anal Chem 2024; 96:16195-16202. [PMID: 39365177 DOI: 10.1021/acs.analchem.4c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Photothermal induced resonance (PTIR), also known as atomic force microscopy-infrared (AFM-IR), enables nanoscale IR absorption spectroscopy by transducing the local photothermal expansion and contraction of a sample with the tip of an atomic force microscope. PTIR spectra enable material identification at the nanoscale and can measure sample composition at depths >1 μm. However, implementation of quantitative, multivariate, nanoscale IR analysis requires an improved understanding of PTIR signal transduction and of the intensity dependence on sample characteristics and measurement parameters. Here, PTIR spectra measured on three-dimensional printed conical structures up to 2.5 μm tall elucidate the signal dependence on sample thickness for different IR laser repetition rates and pulse lengths. Additionally, we develop a model linking sample thermal expansion dynamics to cantilever excitation amplitudes that includes samples that do not fully thermalize between consecutive pulses. Remarkable qualitative agreement between experiments and theory demonstrates a monotonic increase in the PTIR signal intensity with thickness, with decreasing sensitivities at higher repetition rates, while signal intensity is nearly unaffected by laser pulse length. Although we observe slight deviations from linearity over the entire 2.5 μm thickness range, the signal's approximate linearity for bands of sample thicknesses up to ≈500 nm suggests that samples with comparably low topographic variations are most amenable to quantitative analysis. Importantly, we measure absorptive undistorted profiles in PTIR spectra for strongly absorbing modes, up to ≈1650 nm, and >2500 nm for other modes. These insights are foundational toward quantitative nanoscale PTIR analyses and material identification, furthering their impact across many applications.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey J Schwartz
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karen E Grutter
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Thomsen JD, Wang Y, Flyvbjerg H, Park E, Watanabe K, Taniguchi T, Narang P, Ross FM. Direct Visualization of Defect-Controlled Diffusion in van der Waals Gaps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403989. [PMID: 39097947 DOI: 10.1002/adma.202403989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Diffusion processes govern fundamental phenomena such as phase transformations, doping, and intercalation in van der Waals (vdW) bonded materials. Here, the diffusion dynamics of W atoms by visualizing the motion of individual atoms at three different vdW interfaces: hexagonal boron nitride (BN)/vacuum, BN/BN, and BN/WSe2, by recording scanning transmission electron microscopy movies is quantified. Supported by density functional theory (DFT) calculations, it is inferred that in all cases diffusion is governed by intermittent trapping at electron beam-generated defect sites. This leads to diffusion properties that depend strongly on the number of defects. These results suggest that diffusion and intercalation processes in vdW materials are highly tunable and sensitive to crystal quality. The demonstration of imaging, with high spatial and temporal resolution, of layers and individual atoms inside vdW heterostructures offers possibilities for direct visualization of diffusion and atomic interactions, as well as for experiments exploring atomic structures, their in situ modification, and electrical property measurements of active devices combined with atomic resolution imaging.
Collapse
Affiliation(s)
- Joachim Dahl Thomsen
- Division of Physical Sciences, College of Letters and Science, University of California, Los Angeles, CL 90095, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yaxian Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Henrik Flyvbjerg
- Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków, Poland
| | - Eugene Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Prineha Narang
- Division of Physical Sciences, College of Letters and Science, University of California, Los Angeles, CL 90095, USA
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Liu H, Zhao J, Ly TH. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS NANO 2024; 18:11573-11597. [PMID: 38655635 DOI: 10.1021/acsnano.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
6
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
7
|
Wang M, Perez-Morelo DJ, Ramer G, Pavlidis G, Schwartz JJ, Yu L, Ilic R, Centrone A, Aksyuk VA. Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor. SCIENCE ADVANCES 2023; 9:eadf7595. [PMID: 36921059 PMCID: PMC10017032 DOI: 10.1126/sciadv.adf7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Diego J. Perez-Morelo
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Georg Ramer
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Liya Yu
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Robert Ilic
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Vladimir A. Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
8
|
Koo Y, Lee H, Ivanova T, Kefayati A, Perebeinos V, Khestanova E, Kravtsov V, Park KD. Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. LIGHT, SCIENCE & APPLICATIONS 2023; 12:59. [PMID: 36864035 PMCID: PMC9981773 DOI: 10.1038/s41377-023-01087-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Tatiana Ivanova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Ali Kefayati
- Department of Electrical Engineering, University at Buffalo, New York, NY, 14260, USA
| | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo, New York, NY, 14260, USA
| | - Ekaterina Khestanova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia.
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
9
|
Borodin BR, Benimetskiy FA, Davydov VY, Eliseyev IA, Smirnov AN, Pidgayko DA, Lepeshov SI, Bogdanov AA, Alekseev PA. Indirect bandgap MoSe 2 resonators for light-emitting nanophotonics. NANOSCALE HORIZONS 2023; 8:396-403. [PMID: 36723266 DOI: 10.1039/d2nh00465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal dichalcogenides (TMDs) are promising for new generation nanophotonics due to their unique optical properties. However, in contrast to direct bandgap TMD monolayers, bulk samples have an indirect bandgap that restricts their application as light emitters. On the other hand, the high refractive index of these materials allows for effective light trapping and the creation of high-Q resonators. In this work, a method for the nanofabrication of microcavities from indirect TMD multilayer flakes, which makes it possible to achieve pronounced resonant photoluminescence enhancement due to the cavity modes, is proposed. Whispering gallery mode (WGM) resonators are fabricated from bulk indirect MoSe2 using resistless scanning probe lithography. A micro-photoluminescence (μ-PL) investigation revealed the WGM spectra of the resonators with an enhancement factor up to 100. The characteristic features of WGMs are clearly seen from the scattering experiments which are in agreement with the results of numerical simulations. It is shown that the PL spectra in the fabricated microcavities are contributed by two mechanisms demonstrating different temperature dependences. The indirect PL, which is quenched with the temperature decrease, and the direct PL which almost does not depend on the temperature. The results of the work show that the suggested approach has great prospects in nanophotonics.
Collapse
|
10
|
Zhao C, Yi X, Chen Q, Yan C, Wang S. Josephson Effect in NbS 2 van der Waals Junctions. J Phys Chem Lett 2022; 13:10811-10815. [PMID: 36378687 DOI: 10.1021/acs.jpclett.2c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
van der Waals (vdW) Josephson junctions can possibly accelerate the development of an advanced superconducting device that utilizes the unique properties of two-dimensional (2D) transition metal dichalcogenide (TMD) superconductors such as spin-orbit coupling and spin-valley locking. Here, we fabricate vertically stacked NbS2/NbS2 Josephson junctions using a modified all-dry transfer technique and characterize the device performance via systematic low-temperature transport measurements. The experimental results show that the superconducting transition temperature of the NbS2/NbS2 Josephson junction is 5.84 K, and the critical current density reaches 3975 A/cm2 at 2 K. Moreover, we extract a superconducting energy gap Δ = 0.58 meV, which is considerably smaller than that expected from the single band s-wave Bardeen-Cooper-Schrieffer (BCS) model (Δ = 0.89 meV).
Collapse
Affiliation(s)
- Chuanwen Zhao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xin Yi
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Qiao Chen
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Chengyu Yan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
11
|
Jakob DS, Centrone A. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution. Anal Chem 2022; 94:15564-15569. [PMID: 36321942 PMCID: PMC9798386 DOI: 10.1021/acs.analchem.2c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photothermal induced resonance (PTIR), an atomic force microscopy (AFM) analogue of IR spectroscopy also known as AFM-IR, is capable of nanoscale lateral resolution and finds broad applications in biology and materials science. Here, the spectral range of a top-illumination PTIR setup operating in contact-mode is expanded for the first time to the visible and near-IR spectral ranges. The result is a tool that yields absorption spectra and maps of electronic and vibrational features with spatial resolution down to ≈10 nm. In addition to the improved resolution, the setup enables light-polarization-dependent PTIR experiments in the visible and near-IR ranges for the first time. While previous PTIR implementations in the visible used total internal reflection illumination requiring challenging sample preparations on an optically transparent prism, the top illumination used here greatly simplifies sample preparation and will foster a broad application of this method.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Chuang HJ, Phillips M, McCreary KM, Wickramaratne D, Rosenberger MR, Oleshko VP, Proscia NV, Lohmann M, O'Hara DJ, Cunningham PD, Hellberg CS, Jonker BT. Emergent Moiré Phonons Due to Zone Folding in WSe 2-WS 2 Van der Waals Heterostructures. ACS NANO 2022; 16:16260-16270. [PMID: 36223545 DOI: 10.1021/acsnano.2c05204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bilayers of 2D materials offer opportunities for creating devices with tunable electronic, optical, and mechanical properties. In van der Waals heterostructures (vdWHs) where the constituent monolayers have different lattice constants, a moiré superlattice forms with a length scale larger than the lattice constant of either constituent material regardless of twist angle. Here, we report the appearance of moiré Raman modes from nearly aligned WSe2-WS2 vdWHs in the range of 240-260 cm-1, which are absent in both monolayers and homobilayers of WSe2 and WS2 and in largely misaligned WSe2-WS2 vdWHs. Using first-principles calculations and geometric arguments, we show that these moiré Raman modes are a consequence of the large moiré length scale, which results in zone-folded phonon modes that are Raman active. These modes are sensitive to changes in twist angle, but notably, they occur at identical frequencies for a given small twist angle away from either the 0-degree or 60-degree aligned heterostructure. Our measurements also show a strong Raman intensity modulation in the frequency range of interest, with near 0 and near 60-degree vdWHs exhibiting a markedly different dependence on excitation energy. In near 0-degree aligned WSe2-WS2 vdWHs, a nearly complete suppression of both the moiré Raman modes and the WSe2 A1g Raman mode (∼250 cm-1) is observed when exciting with a 532 nm CW laser at room temperature. Temperature-dependent reflectance contrast measurements demonstrate the significant Raman intensity modulation arises from resonant Raman effects.
Collapse
Affiliation(s)
- Hsun-Jen Chuang
- Naval Research Laboratory, Washington, D.C.20375, United States
- Nova Research, Inc., Washington, D.C.20375, United States
| | | | | | | | | | - Vladimir P Oleshko
- National Institute of Standard and Technology, Gaithersburg, Maryland20899, United States
| | - Nicholas V Proscia
- Naval Research Laboratory, Washington, D.C.20375, United States
- NRC Postdoc residing at U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Mark Lohmann
- Naval Research Laboratory, Washington, D.C.20375, United States
- American Society for Engineering Education, Washington, D.C.20036, United States
| | - Dante J O'Hara
- Naval Research Laboratory, Washington, D.C.20375, United States
| | | | | | - Berend T Jonker
- Naval Research Laboratory, Washington, D.C.20375, United States
| |
Collapse
|
13
|
Schwartz JJ, Pavlidis G, Centrone A. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy. Anal Chem 2022; 94:13126-13135. [PMID: 36099442 DOI: 10.1021/acs.analchem.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale infrared (IR) imaging and spectroscopy by using the tip of an atomic force microscope to transduce the local photothermal expansion and contraction of a sample. The signal transduction efficiency and spatial resolution of PTIR depend on a multitude of sample, cantilever, and illumination source parameters in ways that are not yet well understood. Here, we elucidate and separate the effects of laser pulse length, pulse shape, sample thermalization time (τ), interfacial thermal conductance, and cantilever detection frequency by devising analytical and numerical models that link a sample's photothermal excitations to the cantilever dynamics over a broad bandwidth (10 MHz). The models indicate that shorter laser pulses excite probe oscillations over broader bandwidths and should be preferred for measuring samples with shorter thermalization times. Furthermore, we show that the spatial resolution critically depends on the interfacial thermal conductance between dissimilar materials and improves monotonically, but not linearly, with increasing cantilever detection frequencies. The resolution can be enhanced for samples that do not fully thermalize between pulses (i.e., laser repetition rates ≳ 1/3τ) as the probed depth becomes smaller than the film thickness. We believe that the insights presented here will accelerate the adoption and impact of PTIR analyses across a wide range of applications by informing experimental designs and measurement strategies as well as by guiding future technical advances.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States.,Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Georges Pavlidis
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Lee HY, Sarkar S, Reidy K, Kumar A, Klein J, Watanabe K, Taniguchi T, LeBeau JM, Ross FM, Gradečak S. Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers. Nat Commun 2022; 13:5000. [PMID: 36008409 PMCID: PMC9411575 DOI: 10.1038/s41467-022-32708-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Extraordinary optoelectronic properties of van der Waals (vdW) heterostructures can be tuned via strain caused by mechanical deformation. Here, we demonstrate strong and localized luminescence in the ultraviolet region from interface bubbles between stacked multilayers of hexagonal boron nitride (hBN). Compared to bubbles in stacked monolayers, bubbles formed by stacking vdW multilayers show distinct mechanical behavior. We use this behavior to elucidate radius- and thickness-dependent bubble geometry and the resulting strain across the bubble, from which we establish the thickness-dependent bending rigidity of hBN multilayers. We then utilize the polymeric material confined within the bubbles to modify the bubble geometry under electron beam irradiation, resulting in strong luminescence and formation of optical standing waves. Our results open a route to design and modulate microscopic-scale optical cavities via strain engineering in vdW materials, which we suggest will be relevant to both fundamental mechanical studies and optoelectronic applications.
Collapse
Affiliation(s)
- Hae Yeon Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Soumya Sarkar
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Abinash Kumar
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Julian Klein
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA
| | - Silvija Gradečak
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02141, USA. .,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore.
| |
Collapse
|
15
|
Wang M, Ramer G, Perez-Morelo DJ, Pavlidis G, Schwartz JJ, Yu L, Ilic R, Aksyuk VA, Centrone A. High Throughput Nanoimaging of Thermal Conductivity and Interfacial Thermal Conductance. NANO LETTERS 2022; 22:4325-4332. [PMID: 35579622 DOI: 10.1021/acs.nanolett.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal properties of materials are often determined by measuring thermalization processes; however, such measurements at the nanoscale are challenging because they require high sensitivity concurrently with high temporal and spatial resolutions. Here, we develop an optomechanical cantilever probe and customize an atomic force microscope with low detection noise ≈1 fm/Hz1/2 over a wide (>100 MHz) bandwidth that measures thermalization dynamics with ≈10 ns temporal resolution, ≈35 nm spatial resolution, and high sensitivity. This setup enables fast nanoimaging of thermal conductivity (η) and interfacial thermal conductance (G) with measurement throughputs ≈6000× faster than conventional macroscale-resolution time-domain thermoreflectance acquiring the full sample thermalization. As a proof-of-principle demonstration, 100 × 100 pixel maps of η and G of a polymer particle are obtained in 200 s with a small relative uncertainty (<10%). This work paves the way to study fast thermal dynamics in materials and devices at the nanoscale.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Georg Ramer
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Diego J Perez-Morelo
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey J Schwartz
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Liya Yu
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Robert Ilic
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vladimir A Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
17
|
Ma X, Pavlidis G, Dillon E, Beltran V, Schwartz JJ, Thoury M, Borondics F, Sandt C, Kjoller K, Berrie BH, Centrone A. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Anal Chem 2022; 94:3103-3110. [PMID: 35138807 DOI: 10.1021/acs.analchem.1c04182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (μ-FTIR ≈ 102 μm3, O-PTIR ≈ 10-1 μm3, PTIR ≈ 10-5 μm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 μm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Collapse
Affiliation(s)
- Xiao Ma
- Institute for the Conservation of Cultural Heritage, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, China
| | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eoghan Dillon
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Victoria Beltran
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Jeffrey J Schwartz
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Mathieu Thoury
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Kevin Kjoller
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Barbara H Berrie
- Scientific Research Department, National Gallery of Art, 2000B South Club Drive, Landover, Maryland 20785, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Vasić B, Ralević U, Aškrabić S, Čapeta D, Kralj M. Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures. NANOTECHNOLOGY 2022; 33:155707. [PMID: 34972096 DOI: 10.1088/1361-6528/ac475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2and WS2layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while localI/Vcurves exhibit increased conductivity without undesired potential barriers.
Collapse
Affiliation(s)
- Borislav Vasić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Uroš Ralević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sonja Aškrabić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Davor Čapeta
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
McCreary KM, Phillips M, Chuang HJ, Wickramaratne D, Rosenberger M, Hellberg CS, Jonker BT. Stacking-dependent optical properties in bilayer WSe 2. NANOSCALE 2021; 14:147-156. [PMID: 34904621 DOI: 10.1039/d1nr06119d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The twist angle between the monolayers in van der Waals heterostructures provides a new degree of freedom in tuning material properties. We compare the optical properties of WSe2 homobilayers with 2H and 3R stacking using photoluminescence, Raman spectroscopy, and reflectance contrast measurements under ambient and cryogenic temperatures. Clear stacking-dependent differences are evident for all temperatures, with both photoluminescence and reflectance contrast spectra exhibiting a blue shift in spectral features in 2H compared to 3R bilayers. Density functional theory (DFT) calculations elucidate the source of the variations and the fundamental differences between 2H and 3R stackings. DFT finds larger energies for both A and B excitonic features in 2H than in 3R, consistent with experimental results. In both stacking geometries, the intensity of the dominant A1g Raman mode exhibits significant changes as a function of laser excitation wavelength. These variations in intensity are intimately linked to the stacking- and temperature-dependent optical absorption through resonant enhancement effects. The strongest enhancement is achieved when the laser excitation coincides with the C excitonic feature, leading to the largest Raman intensity under 514 nm excitation in 2H stacking and at 520 nm in 3R stacked WSe2 bilayers.
Collapse
|
21
|
Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic ( 10B) hexagonal boron nitride at room temperature. APL MATERIALS 2021; 9:10.1063/5.0061941. [PMID: 37720466 PMCID: PMC10502608 DOI: 10.1063/5.0061941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared ( 6.4 - 7.4 μ m ) HPhPs in large (up to 120 × 250 μ m 2 near-monoisotopic > 99 % B 10 ) hexagonal boron nitride (hBN) flakes. Wide ( ≈ 40 μ m ) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05 μ m - 1 resolution) enable precise measurements of HPhP lifetimes (up to ≈ 4.2 p s and propagation lengths (up to ≈ 25 and ≈ 17 μ m for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈ 99 % B 10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.
Collapse
Affiliation(s)
- Georges Pavlidis
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| | - Jeffrey J. Schwartz
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Joseph Matson
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Thomas Folland
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Song Liu
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - James H. Edgar
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Josh D. Caldwell
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrea Centrone
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
22
|
Mirabito T, Huet B, Redwing JM, Snyder DW. Influence of the Underlying Substrate on the Physical Vapor Deposition of Zn-Phthalocyanine on Graphene. ACS OMEGA 2021; 6:20598-20610. [PMID: 34396005 PMCID: PMC8359151 DOI: 10.1021/acsomega.1c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Graphene shows great promise not only as a highly conductive flexible and transparent electrode for fabricating novel device architectures but also as an ideal synthesis platform for studying fundamental growth mechanisms of various materials. In particular, directly depositing metal phthalocyanines (MPc's) on graphene is viewed as a compelling approach to improve the performance of organic photovoltaics and light-emitting diodes. In this work, we systematically investigate the ZnPc physical vapor deposition (PVD) on graphene either as-grown on Cu or as-transferred on various substrates including Si(100), C-plane sapphire, SiO2/Si, and h-BN. To better understand the effect of the substrate on the ZnPc structure and morphology, we also compare the ZnPc growth on highly crystalline single- and multilayer graphene. The experiments show that, for identical deposition conditions, ZnPc exhibits various morphologies such as high-aspect-ratio nanowires or a continuous film when changing the substrate supporting graphene. ZnPc morphology is also found to transition from a thin film to a nanowire structure when increasing the number of graphene layers. Our observations suggest that substrate-induced changes in graphene affect the adsorption, surface diffusion, and arrangement of ZnPc molecules. This study provides clear guidelines to control MPc crystallinity, morphology, and molecular orientations which drastically influence the (opto)electronic properties.
Collapse
Affiliation(s)
- Timothy Mirabito
- Applied
Research Laboratory (ARL), The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal
Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin Huet
- Applied
Research Laboratory (ARL), The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal
Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M. Redwing
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal
Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David W. Snyder
- Applied
Research Laboratory (ARL), The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Borodin BR, Benimetskiy FA, Alekseev PA. Study of local anodic oxidation regimes in MoSe 2. NANOTECHNOLOGY 2021; 32:155304. [PMID: 33395678 DOI: 10.1088/1361-6528/abd817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Scanning probe microscopy is widely known not only as a well-established research method but also as a set of techniques enabling precise surface modification. One such technique is local anodic oxidation (LAO). In this study, we investigate the LAO of MoSe2 transferred on an Au/Si substrate, focusing specifically on the dependence of the height and diameter of oxidized dots on the applied voltage and time of exposure at various humidities. Depending on the humidity, two different oxidation regimes were identified. The first, at a relative humidity (RH) of 60%-65%, leads to in-plane isotropic oxidation. For this regime, we analyze the dependence of the size of oxidized dots on the oxidation parameters and modify the classical equation of oxidation kinetics to account for the properties of MoSe2 and its oxide. In this regime, patterns with a maximum spatial resolution of 10 nm were formed on the MoSe2 surface. The second is the in-plane anisotropic oxidation regime that arises at a RH of 40%-50%. In this regime, oxidation leads to the formation of triangles oxidized inside the zigzag edges. Based on the mutual orientation of zigzag and armchair directions in successive oxidized layers, the stacking type and phase of MoSe2 flakes were determined. These results allow LAO to be considered not only as an ultra-high-resolution nanolithography method, but also as a method for investigating the crystal structure of materials with strong intrinsic anisotropy, such as transition metal dichalcogenides.
Collapse
Affiliation(s)
- Bogdan R Borodin
- Laboratory of Surface Optics, Ioffe Institute, Saint-Petersburg, Russia
| | - Fedor A Benimetskiy
- Department of Physics and Engineering, ITMO University, Saint-Petersburg, Russia
| | | |
Collapse
|
24
|
Sanchez DA, Dai Z, Lu N. 2D Material Bubbles: Fabrication, Characterization, and Applications. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Tsakonas C, Dimitropoulos M, Manikas AC, Galiotis C. Growth and in situ characterization of 2D materials by chemical vapour deposition on liquid metal catalysts: a review. NANOSCALE 2021; 13:3346-3373. [PMID: 33555274 DOI: 10.1039/d0nr07330j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2D materials (2DMs) have now been established as unique and attractive alternatives to replace current technological materials in a number of applications. Chemical vapour deposition (CVD), is undoubtedly the most renowned technique for thin film synthesis and meets all requirements for automated large-scale production of 2DMs. Currently most CVD methods employ solid metal catalysts (SMCat) for the growth of 2DMs however their use has been found to induce structural defects such as wrinkles, fissures, and grain boundaries among others. On the other hand, liquid metal catalysts (LMCat), constitute a possible alternative for the production of defect-free 2DMs albeit with a small temperature penalty. This review is a comprehensive report of past attempts to employ LMCat for the production of 2DMs with emphasis on graphene growth. Special attention is paid to the underlying mechanisms that govern crystal growth and/or grain consolidation and film coverage. Finally, the advent of online metrology which is particularly effective for monitoring the chemical processes under LMCat conditions is also reviewed and certain directions for future development are drawn.
Collapse
Affiliation(s)
- Christos Tsakonas
- University of Patras, Chemical Engineering Department, 26504 Patras, Greece.
| | | | | | - Costas Galiotis
- University of Patras, Chemical Engineering Department, 26504 Patras, Greece. and Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|
26
|
Schwartz JJ, Le ST, Krylyuk S, Richter CA, Davydov AV, Centrone A. Substrate-mediated hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2021; 10:10.1515/nanoph-2020-0640. [PMID: 36451975 PMCID: PMC9706547 DOI: 10.1515/nanoph-2020-0640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material's volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Son T. Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
27
|
Chen S, Son J, Huang S, Watanabe K, Taniguchi T, Bashir R, van der Zande AM, King WP. Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS 2 Devices. ACS OMEGA 2021; 6:4013-4021. [PMID: 33585777 PMCID: PMC7876835 DOI: 10.1021/acsomega.0c05934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) materials and heterostructures are promising candidates for nanoelectronics. However, the quality of material interfaces often limits the performance of electronic devices made from atomically thick 2D materials and heterostructures. Atomic force microscopy (AFM) tip-based cleaning is a reliable technique to remove interface contaminants and flatten heterostructures. Here, we demonstrate AFM tip-based cleaning applied to hBN-encapsulated monolayer MoS2 transistors, which results in electrical performance improvements of the devices. To investigate the impact of cleaning on device performance, we compared the characteristics of as-transferred heterostructures and transistors before and after tip-based cleaning using photoluminescence (PL) and electronic measurements. The PL linewidth of monolayer MoS2 decreased from 84 meV before cleaning to 71 meV after cleaning. The extrinsic mobility of monolayer MoS2 field-effect transistors increased from 21 cm2/Vs before cleaning to 38 cm2/Vs after cleaning. Using the results from AFM topography, photoluminescence, and back-gated field-effect measurements, we infer that tip-based cleaning enhances the mobility of hBN-encapsulated monolayer MoS2 by reducing interface disorder. Finally, we fabricate a MoS2 field-effect transistor (FET) from a tip-cleaned heterostructure and achieved a device mobility of 73 cm2/Vs. The results of this work could be used to improve the electrical performance of heterostructure devices and other types of mechanically assembled van der Waals heterostructures.
Collapse
Affiliation(s)
- Sihan Chen
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangyup Son
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siyuan Huang
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Rashid Bashir
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M. van der Zande
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William P. King
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Vincent T, Hamer M, Grigorieva I, Antonov V, Tzalenchuk A, Kazakova O. Strongly Absorbing Nanoscale Infrared Domains within Strained Bubbles at hBN-Graphene Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57638-57648. [PMID: 33314909 DOI: 10.1021/acsami.0c19334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene has great potential for use in infrared (IR) nanodevices. At these length scales, nanoscale features, and their interaction with light, can be expected to play a significant role in device performance. Bubbles in van der Waals heterostructures are one such feature, which have recently attracted considerable attention, thanks to their ability to modify the optoelectronic properties of two-dimensional (2D) materials through strain. Here, we use scattering-type scanning near-field optical microscopy (sSNOM) to measure the nanoscale IR response from a network of variously shaped bubbles in hexagonal boron nitride (hBN)-encapsulated graphene. We show that within individual bubbles there are distinct domains with strongly enhanced IR absorption. The IR domain boundaries coincide with ridges in the bubbles, which leads us to attribute them to nanoscale strain domains. We further validate the strain distribution in the graphene by means of confocal Raman microscopy and vector decomposition analysis. This shows intricate and varied strain configurations, in which bubbles of different shape induce more bi- or uniaxial strain configurations. This reveals pathways toward future strain-based graphene IR devices.
Collapse
Affiliation(s)
- Tom Vincent
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
| | - Matthew Hamer
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Irina Grigorieva
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Vladimir Antonov
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Alexander Tzalenchuk
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
| | - Olga Kazakova
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| |
Collapse
|
29
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
30
|
Pavlovetc IM, Aleshire K, Hartland GV, Kuno M. Approaches to mid-infrared, super-resolution imaging and spectroscopy. Phys Chem Chem Phys 2020; 22:4313-4325. [PMID: 32064480 DOI: 10.1039/c9cp05815j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared "fingerprint" region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.
Collapse
Affiliation(s)
- Ilia M Pavlovetc
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kyle Aleshire
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gregory V Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Gasparutti I, Song SH, Neumann M, Wei X, Watanabe K, Taniguchi T, Lee YH. How Clean Is Clean? Recipes for van der Waals Heterostructure Cleanliness Assessment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7701-7709. [PMID: 31944093 DOI: 10.1021/acsami.9b18821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Van der Waals (vdW) heterostructures, artificial stacks of two-dimensional materials, present an exciting platform to explore new physical phenomena and unique applications. An important and increasingly recognized factor limiting the electrical and optical performance of heterostructure samples is the presence of interfacial contamination. In published work reporting various heterostructure fabrication methods, evidence for the cleanliness of samples is often presented as optical and atomic force microscopy images, typically exhibiting a completely flat topography. In this work, we demonstrate that such samples may nonetheless contain a uniformly thin layer of contaminants at the heterostructure interface. As alternatives, we propose two robust visualization methods that are highly sensitive to such residues, based on photoluminescence mapping and on selective solvent diffusion. The detection capability and straightforward implementation of these two imaging techniques make them powerful tools to assess and improve the cleanliness of a wide variety of fabrication techniques for heterostructures comprising any combination of vdW materials.
Collapse
Affiliation(s)
- Isabella Gasparutti
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Seung Hyun Song
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Department of Electronics Engineering , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| | - Michael Neumann
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Xu Wei
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
32
|
Yao K, Yanev E, Chuang HJ, Rosenberger MR, Xu X, Darlington T, McCreary KM, Hanbicki AT, Watanabe K, Taniguchi T, Jonker BT, Zhu X, Basov DN, Hone JC, Schuck PJ. Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS NANO 2020; 14:708-714. [PMID: 31891477 DOI: 10.1021/acsnano.9b07555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish one- and two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.
Collapse
Affiliation(s)
- Kaiyuan Yao
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Mechanical Engineering , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Emanuil Yanev
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hsun-Jen Chuang
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Matthew R Rosenberger
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xinyi Xu
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Thomas Darlington
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Physics , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Kathleen M McCreary
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Aubrey T Hanbicki
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
- Laboratory for Physical Sciences , College Park , Maryland 20740 , United States
| | - Kenji Watanabe
- National Institute for Materials Science , Tsukuba 305-0047 , Japan
| | | | - Berend T Jonker
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xiaoyang Zhu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - D N Basov
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - James C Hone
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - P James Schuck
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
33
|
Ramer G, Tuteja M, Matson JR, Davanco M, Folland TG, Kretinin A, Taniguchi T, Watanabe K, Novoselov KS, Caldwell JD, Centrone A. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. NANOPHOTONICS 2020; 9:10.1515/nanoph-2020-0048. [PMID: 33365225 PMCID: PMC7754710 DOI: 10.1515/nanoph-2020-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q-factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high-Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.
Collapse
Affiliation(s)
- Georg Ramer
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Mohit Tuteja
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Joseph R. Matson
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Marcelo Davanco
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| | - Thomas G. Folland
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrey Kretinin
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kostya S. Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK; Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
| | - Joshua D. Caldwell
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| |
Collapse
|