1
|
Zhao XY, Yu HY, Zhang HT. A twofold interpenetrated three-dimensional barium(II) metal-organic framework constructed from 2,2'-[terephthaloylbis(azanediyl)]diacetate: synthesis, structure, dihydrogen bonding and spectroscopic properties. Acta Crystallogr C Struct Chem 2025; 81:43-53. [PMID: 39755952 DOI: 10.1107/s205322962401235x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ4-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(C12H10N2O6)(H2O)3]·2H2O}n, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, H2L) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated BaII ions are bridged by two μ2-aqua ligands and two carboxylate μ2-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ2-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer. Two intramolecular dihydrogen bonds (DHBs) between the imine H atoms and the arene H atoms contribute to maintaining the 3D structure. In the crystal, two independent MOFs interpenetrate each other, thereby producing a twofold interpenetrated 3D architecture with a 4-connected PtS-X topology. Intermolecular hydrogen bonding and π-π interactions contribute to the stability of the twofold interpenetrated 3D architecture. The noncovalent interactions in the coordination polymer (CP) were further investigated by Hirshfeld surface analysis and the results show that the prominent interactions are H...O (39.6%) and H...H (34.4%), as well as Ba...O (9.8%), contacts. The 3D CP (I) exhibits a fluorescence emission with a quantum yield of 0.134.
Collapse
Affiliation(s)
- Xin Yi Zhao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Hai Yan Yu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Hong Tao Zhang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
2
|
Li J, Yin S, Zhou L, Nezamzadeh-Ejhieh A, Pan Y, Qiu L, Liu J, Zhou Z. Advances in the study of metal-organic frameworks and their biomolecule composites for osteoporosis therapeutic applications. Biomater Sci 2024; 12:5912-5932. [PMID: 39440387 DOI: 10.1039/d4bm01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
With the population aging, osteoporosis (OP) is becoming more and more common, seriously affecting patients' quality of life and their families, and how to prevent and treat osteoporosis has become a hot topic. However, the current conventional method of treating OP is oral anti-osteoporosis medication, which has drawbacks such as first-pass elimination and gastrointestinal adverse effects. At the same time, osteoporosis can lead to microbial infections and the need to promote angiogenesis for bone healing, among other needs that often cannot be met with conventional treatments, and there is a risk of resistance to oral antibiotics for microbial infections. Metal-organic frameworks (MOFs) having a high specific surface area, high porosity, controlled degradation, and variable composition; they can not only be used as a carrier to control drug release, but can also play multiple roles in the treatment of OP and microbial infections by releasing metal ions, etc., so they have inherent advantages for OP, which is a disease that requires long-term treatment. Therefore, this paper reviews the research progress of MOFs and their biomacromolecular composites in therapeutic applications for osteoporosis, categorized by MOF type, and briefly describes the mechanism of osteoporosis, and different synthesis methods of MOFs and MOF-based composites, and finally presents the main existing problems and future perspectives, aiming to make MOFs more helpful for OP treatment.
Collapse
Affiliation(s)
- Jiahui Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital, Dongguan, 523400, China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | | | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Longhai Qiu
- Department of Traumatology and Orthopaedic Surgery, Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
3
|
Zhao Z, Wang C, Liu A, Bai N, Jiang B, Mao Y, Ying T, Dong D, Yi C, Li D. Multiple applications of metal-organic frameworks (MOFs) in the treatment of orthopedic diseases. Front Bioeng Biotechnol 2024; 12:1448010. [PMID: 39295846 PMCID: PMC11408336 DOI: 10.3389/fbioe.2024.1448010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Pharmacologic treatment of orthopedic diseases is a common challenge for clinical orthopedic surgeons, and as an important step in the stepwise treatment of orthopedic diseases, it is often difficult to achieve satisfactory results with existing pharmacologic treatments. Therefore, it is increasingly important to find new ways to effectively improve the treatment pattern of orthopedic diseases as well as to enhance the therapeutic efficacy. It has been found that metal-organic frameworks (MOFs) possess the advantages of high specific surface area, high porosity, chemical stability, tunability of structure and biocompatibility. Therefore, MOFs are expected to improve the conventional traditional treatment modality for bone diseases. This manuscript reviewed the applications of MOFs in the treatment of common clinical bone diseases and look forward to its future development.
Collapse
Affiliation(s)
- Ziwen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chenxu Wang
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ning Bai
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bo Jiang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuanfu Mao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Ying
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Daming Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
4
|
Shahzadi S, Akhtar M, Arshad M, Ijaz MH, Janjua MRSA. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv 2024; 14:27575-27607. [PMID: 39228752 PMCID: PMC11369977 DOI: 10.1039/d4ra05183a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Carbon composites derived from Metal-Organic Frameworks (MOFs) have shown great promise as multipurpose materials for a range of electrochemical and environmental applications. Since carbon-based nanomaterials exhibit intriguing features, they have been widely exploited as catalysts or catalysts supports in the chemical industry or for energy or environmental applications. To improve the catalytic performance of carbon-based materials, high surface areas, variable porosity, and functionalization are thought to be essential. This study offers a thorough summary of the most recent developments in MOF-derived carbon composite synthesis techniques, emphasizing innovative approaches that improve the structural and functional characteristics of the materials. Their uses in electrochemical technologies, such as energy conversion and storage, and their function in environmental electrocatalysis for water splitting and pollutant degradation are also included in the debate. This review seeks to clarify the revolutionary effect of carbon composites formed from MOFs on sustainable technology solutions by analyzing current research trends and innovations, opening the door for further advancements in this rapidly evolving sector.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Mariam Akhtar
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Arshad
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Muhammad Hammad Ijaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | |
Collapse
|
5
|
Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. NANOTECHNOLOGY 2024; 35:145101. [PMID: 37992401 DOI: 10.1088/1361-6528/ad0ef4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.
Collapse
Affiliation(s)
- Mahdi Dousti
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sandomierski M, Jakubowski M, Ratajczak M, Voelkel A. Titanium modification using bioactive titanate layer with divalent ions and coordinated ciprofloxacin - Assessment of drug distribution using FT-IR imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123365. [PMID: 37696096 DOI: 10.1016/j.saa.2023.123365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The paper presents a new method of titanium alloy (Ti6Al4V) modification using bioactive titanate layers containing various divalent ions (Ca2+, Mg2+, Sr2+, Zn2+) and surface-coordinated ciprofloxacin. Due to the coordination of ciprofloxacin (antibiotic) on the surface of the alloy, it has great application potential. In the paper, the influence of a given cation on the effectiveness of drug sorption was determined. The most effective cation was zinc and the least effective was calcium. The distribution of the antibiotic on the alloy surface was determined using FT-IR imaging. The antibiotic was evenly distributed on alloys modified with magnesium, strontium and zinc titanates. In the case of calcium titanate, the analysis could not be performed because the amount of the drug was too small. The release profiles of ciprofloxacin indicate that it can be released for as long as 3 h for strontium and zinc titanates. The biocompatibility of the obtained materials is indicated by the results of the BSA adsorption, and HA growth test. The obtained results confirm that the proposed modification can be used in the modification of titanium implants. The big advantage of this layer is that ciprofloxacin is coordinated on the surface of the material and thus will not be removed during the surgical procedure. The creation of this type of layer may in the future allow for fewer perioperative infections, and thus fewer complications.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland.
| | - Marcel Jakubowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Ratajczak
- Institute of Building Engineering, Poznan University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
7
|
Vassaki M, Hadjicharalambous C, Turhanen PA, Demadis KD. Structural Diversity in Antiosteolytic Bisphosphonates: Deciphering Structure-Activity Trends in Ultra Long Controlled Release Phenomena. ACS APPLIED BIO MATERIALS 2023; 6:5563-5581. [PMID: 37982716 DOI: 10.1021/acsabm.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Bisphosphonate (BP)-based treatments have been extensively prescribed for bone-related conditions, particularly for osteoporosis. Their low bioavailability creates the need for prescribed dosage increase to reach therapeutic levels but generates a plethora of undesirable side effects. A viable approach to alleviating these issues is to design and exploit controlled release strategies. Herein, the controlled release profiles of 15 structurally characterized BPs (actual drugs and structural analogs) were thoroughly studied from tablets containing three (cellulose, lactose, and silica) or two (cellulose, and silica) excipients in human stomach-simulated pH conditions. The BPs were of two types, alkyl-BPs and amino-BPs. Alkyl-BPs included four derivatives of etidronate (acid, disodium, tetra-sodium, and monopotassium forms), medronic acid, and three analogs of etidronate, in which the -CH3 group was replaced by the moieties -H, -CH2CH2CH3, and -CH2CH2CH2CH2CH3. Amino-BPs included the commercial drugs pamidronate, alendronate, neridronate, and ibandronate, as well as three analog compounds. Release curves were constructed based on data taken from 1H NMR peak integration and were expressed as "% BP release" vs time. The controlled release profiles (initial release rate, plateau value, etc.) were correlated with certain structural features (number of hydrogen and metal-oxygen bonds), showing that the molecular and crystal lattice features of each BP profoundly influence its release characteristics. It was concluded that for all BPs, in general, the initial rate became lower as the total number of lattice interactions increased. For the alkyl-BPs elongation of the alkyl side chain seems to decelerate the release. Amino-BPs, in general, show slower release than the alkyl-BPs. No adverse effects of alkyl- and amino-BP drugs on NIH3T3 cell viability were noted.
Collapse
Affiliation(s)
- Maria Vassaki
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete GR-71003, Greece
| | | | - Petri A Turhanen
- University of Eastern Finland, School of Pharmacy, Biocenter Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland
| | - Konstantinos D Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete GR-71003, Greece
| |
Collapse
|
8
|
Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116960-116983. [PMID: 36456674 DOI: 10.1007/s11356-022-24176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
Collapse
Affiliation(s)
- Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Islamic Azad University, Rasht, Rasht Branch, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
- Alavi Educational and Cultural Complex, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohamad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India, Chennai, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Sandomierski M, Chojnacka M, Ratajczak M, Voelkel A. Zeolites with Divalent Ions as Carriers in the Delivery of Epigallocatechin Gallate. ACS Biomater Sci Eng 2023; 9:5322-5331. [PMID: 37540564 PMCID: PMC10498421 DOI: 10.1021/acsbiomaterials.3c00599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Epigallocatechin gallate (EGCG) is a compound with very high therapeutic potential in the treatment of osteoporosis and cancer. The disadvantages of this compound are its low stability and low bioavailability. Therefore, carriers for EGCG are sought to increase its use. In this work, new carriers are proposed, i.e., zeolites containing divalent ions of magnesium, calcium, strontium, and zinc in their structure. EGCG is retained on the carrier surface by strong interactions with divalent ions. Due to the presence of strong interactions, EGCG is released in a controlled manner from the carrier-ion-EGCG drug delivery system. The results obtained in this work confirm the effectiveness of the preparation of new carriers. EGCG is released from the carriers depending on the pH; hence, it can be used both in osteoporosis and in the treatment of cancer. The divalent ion used affects the sorption and release of the drug. The obtained results indicate the great potential of the proposed carriers and their advantage over the carriers described in the literature.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Martyna Chojnacka
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Ratajczak
- Institute
of Building Engineering, Poznan University
of Technology, ul. Piotrowo
5, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
10
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
11
|
Hou R, Guo Y, Yi Z, Zhang Z, Zhang C, Xu W. Construction and Structural Transformation of Metal-Organic Nanostructures Induced by Alkali Metals and Alkali Metal Salts. J Phys Chem Lett 2023; 14:3636-3642. [PMID: 37026779 DOI: 10.1021/acs.jpclett.3c00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic nanostructures are attractive in a variety of scientific fields, such as biomedicine, energy harvesting, and catalysis. Alkali-based metal-organic nanostructures have been extensively fabricated on surfaces based on pure alkali metals and alkali metal salts. However, their differences in the construction of alkali-based metal-organic nanostructures have been less discussed, and the influence on structural diversity remains elusive. In this work, from the interplay of scanning tunneling microscopy imaging and density functional theory calculations, we constructed Na-based metal-organic nanostructures by applying Na and NaCl as sources of alkali metals and visualized the structural transformations in real space. Moreover, a reverse structural transformation was achieved by dosing iodine into the Na-based metal-organic nanostructures, revealing the connections and differences between NaCl and Na in the structural evolutions, which provided fundamental insights into the evolution of electrostatic ionic interactions and the precise fabrication of alkali-based metal-organic nanostructures.
Collapse
Affiliation(s)
- Rujia Hou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuan Guo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zewei Yi
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhaoyu Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
12
|
Efficient removal and sensing of copper(II) ions by alkaline earth metal-based metal–organic frameworks. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Király N, Capková D, Gyepes R, Vargová N, Kazda T, Bednarčík J, Yudina D, Zelenka T, Čudek P, Zeleňák V, Sharma A, Meynen V, Hornebecq V, Straková Fedorková A, Almáši M. Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:234. [PMID: 36677987 PMCID: PMC9866501 DOI: 10.3390/nano13020234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Two new alkaline earth metal-organic frameworks (AE-MOFs) containing Sr(II) (UPJS-15) or Ba(II) (UPJS-16) cations and extended tetrahedral linker (MTA) were synthesized and characterized in detail (UPJS stands for University of Pavol Jozef Safarik). Single-crystal X-ray analysis (SC-XRD) revealed that the materials are isostructural and, in their frameworks, one-dimensional channels are present with the size of ~11 × 10 Å2. The activation process of the compounds was studied by the combination of in situ heating infrared spectroscopy (IR), thermal analysis (TA) and in situ high-energy powder X-ray diffraction (HE-PXRD), which confirmed the stability of compounds after desolvation. The prepared compounds were investigated as adsorbents of different gases (Ar, N2, CO2, and H2). Nitrogen and argon adsorption measurements showed that UPJS-15 has SBET area of 1321 m2 g-1 (Ar) / 1250 m2 g-1 (N2), and UPJS-16 does not adsorb mentioned gases. From the environmental application, the materials were studied as CO2 adsorbents, and both compounds adsorb CO2 with a maximum capacity of 22.4 wt.% @ 0 °C; 14.7 wt.% @ 20 °C and 101 kPa for UPJS-15 and 11.5 wt.% @ 0°C; 8.4 wt.% @ 20 °C and 101 kPa for UPJS-16. According to IAST calculations, UPJS-16 shows high selectivity (50 for CO2/N2 10:90 mixture and 455 for CO2/N2 50:50 mixture) and can be applied as CO2 adsorbent from the atmosphere even at low pressures. The increased affinity of materials for CO2 was also studied by DFT modelling, which revealed that the primary adsorption sites are coordinatively unsaturated sites on metal ions, azo bonds, and phenyl rings within the MTA linker. Regarding energy storage, the materials were studied as hydrogen adsorbents, but the materials showed low H2 adsorption properties: 0.19 wt.% for UPJS-15 and 0.04 wt.% for UPJS-16 @ -196 °C and 101 kPa. The enhanced CO2/H2 selectivity could be used to scavenge carbon dioxide from hydrogen in WGS and DSR reactions. The second method of applying samples in the area of energy storage was the use of UPJS-15 as an additive in a lithium-sulfur battery. Cyclic performance at a cycling rate of 0.2 C showed an initial discharge capacity of 337 mAh g-1, which decreased smoothly to 235 mAh g-1 after 100 charge/discharge cycles.
Collapse
Affiliation(s)
- Nikolas Király
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Dominika Capková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Albertov 8, CZ-128 43 Prague, Czech Republic
| | - Nikola Vargová
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Tomáš Kazda
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Jozef Bednarčík
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovakia
| | - Daria Yudina
- Department of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, SK-041 01 Košice, Slovakia
| | - Tomáš Zelenka
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Pavel Čudek
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, CZ-616 00 Brno, Czech Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh 123031, India
| | - Vera Meynen
- Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Virginie Hornebecq
- Centre National de la Recherche Scientifique (CNRS), Matériaux Divisé, Interfaces, Réactivité, Electrochimie (MADIREL), Centre de Saint Jérôme, Aix-Marseille University, Avenue Escadrille-Normandie-Niemen, F-133 97 Marseille, France
| | - Andrea Straková Fedorková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| |
Collapse
|
14
|
Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Chen M, Wang D, Li M, He Y, He T, Chen M, Hu Y, Luo Z, Cai K. Nanocatalytic Biofunctional MOF Coating on Titanium Implants Promotes Osteoporotic Bone Regeneration through Cooperative Pro-osteoblastogenesis MSC Reprogramming. ACS NANO 2022; 16:15397-15412. [PMID: 36106984 DOI: 10.1021/acsnano.2c07200] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An elevated bone microenvironmental reactive oxygen species (ROS) level is a hallmark of osteoporosis that often leads to the dysfunction of bone-related mesenchymal stem cells (MSCs), which would induce MSC senescence and severely undermine their osteoblastic potential. Herein, we report the in situ construction of bone microenvironment-responsive biofunctional metal-organic framework (bio-MOF) coating on the titanium surface through the coordination between p-xylylenebisphosphonate (PXBP) and Ce/Sr ions by a hydrothermal method. Taking advantage of the anchored Ce and Sr ions, the AHT-Ce/SrMOF implants demonstrate on-demand superoxide dismutase and catalase-like catalytic activities to decompose ROS in MSCs and restore their mitochondrial functions. In vitro analysis showed that the AHT-Ce/SrMOF implants substantially activated the AMP-activated protein kinase (AMPK) signaling pathway in MSCs and reduced the ROS levels. Meanwhile, MSCs grown on AHT-Ce/SrMOF implants displayed significantly higher expressions of the mitochondrial fission marker (DRP1), mitochondrial fusion marker (MFN2 and OPA1), and mitophagy marker (PINK1 and LC3) than those of the AHT-CeMOF and AHT-SrMOF groups, which indicated that the bio-MOF could amend mitochondrial function in MSCs to reverse senescence. In vivo evaluations showed that the bio-MOF-coated Ti implants could restore MSC function in the implant site and promote new bone formation, leading to improved osteointegration in osteoporotic rat. This study may improve implant-mediated fracture healing in the clinics.
Collapse
Affiliation(s)
- Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham 27705, North Carolina, United States
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
16
|
Li M, Yin S, Lin M, Chen X, Pan Y, Peng Y, Sun J, Kumar A, Liu J. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J Mater Chem B 2022; 10:5105-5128. [PMID: 35766423 DOI: 10.1039/d2tb00742h] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the development of society, traumatic bone defects caused by accidents, diseases and surgeries have become common, eventually resulting in an increase in bone defects. The treatment of bone defects is characterized by a long period of treatment, high cost and uncontrollable outcomes. Also, it results in complications such as infection and bone discontinuity. Hence, due to this situation, the physical, mental and financial aspects of the patient are severely affected. What's more, such outcomes pose a challenge to orthopaedic surgeons. As a result, bone therapy and bone repair have become a hot topic of interest. In repairing bone defects, materials other than autogenous bone are still unable to provide good biocompatibility, osteogenesis, osteoconductivity and osteoinduction properties at the same time. In addition, the scarcity of autologous bone sources has forced the search for new autologous bone replacement materials. Metal organic frameworks (MOFs) are a new class of developed functional materials that have been widely used in the biomedical field during the recent years due to their porous nature, large specific surface area and diverse structures. With the progress in the investigation into bone treatment and repair, more and more investigators are using MOFs in bone therapy and bone repair. With these viewpoints, in the present perspective, the use of MOFs in bone therapy and bone repair has been summarized, and an insight into the future of MOFs in bone therapy and bone repair has been provided.
Collapse
Affiliation(s)
- Minmin Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital of Guangdong Medical University, Dongguan, China
| | - Mingzi Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Xuelin Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| |
Collapse
|
17
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
18
|
Barbosa JS, Pinto M, Barreiro S, Fernandes C, Mendes RF, Lavrador P, Gaspar VM, Mano JF, Borges F, Remião F, Braga SS, Paz FAA. Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35469-35483. [PMID: 34284573 DOI: 10.1021/acsami.1c09121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Osteoporosis therapies leveraging bisphosphonates and mineral components (e.g., magnesium, calcium, and strontium) have been raising attention because of their potential for managing this ever-growing disease. The administration of multicomponent therapeutics (combined therapy) in elderly patients is complex and suffers from low patient adherence. Herein, we report an all-in-one combination of four antiosteoporotic components into a new family of coordination complexes: [M2(H4alen)4(H2O)2]·1.5H2O [where M2+ = Mg2+ (1), (Mg0.535Ca0.465)2+ (2) and (Mg0.505Ca0.450Sr0.045)2+ (3)]. These solid-state complexes were prepared, for the first time, through microwave-assisted synthesis. It is demonstrated that the compounds are capable of releasing their antiosteoporotic components, both in conditions that mimic the path along the gastrointestinal tract and in long periods under physiological conditions (pH ∼7.4). More importantly, when administered in low concentrations, the compounds did not elicit a cytotoxic effect toward liver, kidney, and osteoblast-like cell lines. Besides, it is important to highlight the unique coordination complex with four bone therapeutic components, [(Mg0.505Ca0.450Sr0.045)2(H4alen)4(H2O)2]·1.5H2O (3), which significantly promoted osteoblast metabolic activity up to ca. 1.4-fold versus the control group. These findings bring this type of compounds one-step closer to be considered as an all-in-one and more effective treatment for managing chronic bone diseases, prompting further research on their therapeutic properties.
Collapse
Affiliation(s)
- Jéssica S Barbosa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Pinto
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carlos Fernandes
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ricardo F Mendes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Lavrador
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana S Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
|
20
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Xian S, Lin Y, Wang H, Li J. Calcium-Based Metal-Organic Frameworks and Their Potential Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005165. [PMID: 33140577 DOI: 10.1002/smll.202005165] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) built on calcium metal (Ca-MOFs) represent a unique subclass of MOFs featuring high stability, low toxicity, and relatively low density. Ca-MOFs show considerable potential for molecular separations, electronic, magnetic, and biomedical applications, although they are not investigated as extensively as transition metal-based MOFs. Compared to MOFs made of other groups of metals, Ca-MOFs may be particularly advantageous for certain applications such as adsorption and storage of light molecules because of their gravimetric benefit, and drug delivery due to their high biocompatibility. This review intends to provide an overview on the recent development of Ca-MOFs, including their synthesis, crystal structures, important properties, and related applications. Various synthetic methods and techniques, types of building blocks, structure and porosity features, selected physical properties, and potential uses will be discussed and summarized. Representative examples will be illustrated for each type of important applications with a focus on their structure-property relations.
Collapse
Affiliation(s)
- Shikai Xian
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yuhan Lin
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
22
|
Shyngys M, Ren J, Liang X, Miao J, Blocki A, Beyer S. Metal-Organic Framework (MOF)-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:603608. [PMID: 33777907 PMCID: PMC7991400 DOI: 10.3389/fbioe.2021.603608] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of Metal-organic Frameworks (MOFs) and their evaluation for various applications is one of the largest research areas within materials sciences and chemistry. Here, the use of MOFs in biomaterials and implants is summarized as narrative review addressing primarely the Tissue Engineering and Regenerative Medicine (TERM) community. Focus is given on MOFs as bioactive component to aid tissue engineering and to augment clinically established or future therapies in regenerative medicine. A summary of synthesis methods suitable for TERM laboratories and key properties of MOFs relevant to biomaterials is provided. The use of MOFs is categorized according to their targeted organ (bone, cardio-vascular, skin and nervous tissue) and whether the MOFs are used as intrinsically bioactive material or as drug delivery vehicle. Further distinction between in vitro and in vivo studies provides a clear assessment of literature on the current progress of MOF based biomaterials. Although the present review is narrative in nature, systematic literature analysis has been performed, allowing a concise overview of this emerging research direction till the point of writing. While a number of excellent studies have been published, future studies will need to clearly highlight the safety and added value of MOFs compared to established materials for clinical TERM applications. The scope of the present review is clearly delimited from the general 'biomedical application' of MOFs that focuses mainly on drug delivery or diagnostic applications not involving aspects of tissue healing or better implant integration.
Collapse
Affiliation(s)
- Moldir Shyngys
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jia Ren
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoqi Liang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiechen Miao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sebastian Beyer
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering & Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
23
|
Barbosa JS, Mendes RF, Figueira F, Gaspar VM, Mano JF, Braga SS, Rocha J, Almeida Paz FA. Bone Tissue Disorders: Healing Through Coordination Chemistry. Chemistry 2020; 26:15416-15437. [DOI: 10.1002/chem.202004529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jéssica S. Barbosa
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
- Department of Chemistry LAQV-REQUIMTE University of Aveiro 3810-193 Aveiro Portugal
| | - Ricardo F. Mendes
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - João F. Mano
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Susana S. Braga
- Department of Chemistry LAQV-REQUIMTE University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
24
|
Lei L, Han J, Wen J, Yu Y, Ke T, Wu Y, Yang X, Chen L, Gou Z. Biphasic ceramic biomaterials with tunable spatiotemporal evolution for highly efficient alveolar bone repair. J Mater Chem B 2020; 8:8037-8049. [PMID: 32766660 DOI: 10.1039/d0tb01447h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alveolar bone defects, which are characterized by a relatively narrow space and location adjacent to the cementum, require promising substitute biomaterials for their regeneration. In this study, we introduced novel yolk-shell biphasic bio-ceramic granules with/without a customized porous shell and evaluated their biological effect together with structural transformation. Firstly, a self-made coaxial bilayer capillary system was applied for the fabrication of granules. Secondly, thorough morphological and physicochemical characterizations were performed in vitro. Subsequently, the granules were implanted into critical-size alveolar bone defects (10 × 4 × 3 mm) in New Zealand white rabbits, with Bio-Oss® as the positive control. Finally, at 2, 4, 8, and 16 weeks postoperatively, the alveolar bone specimens were harvested and assessed via radiological and histological examination. Our results showed that the yolk-shell biphasic bio-ceramic granules, especially those with porous shells, exhibited a tunable ion release performance, improved biodegradation behavior and satisfactory osteogenesis compared with the homogeneously hybrid and Bio-Oss® granules both in vitro and in vivo. This study provides the first evidence that novel yolk-shell bio-ceramic granules, on account of their adjustable porous microstructure, have great potential in alveolar bone repair.
Collapse
Affiliation(s)
- Lihong Lei
- Department of Stomatology, the Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou 310009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Queirós C, Silva AMG, de Castro B, Cunha-Silva L. From Discrete Complexes to Metal-Organic Layered Materials: Remarkable Hydrogen Bonding Frameworks. Molecules 2020; 25:E1353. [PMID: 32188122 PMCID: PMC7146137 DOI: 10.3390/molecules25061353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
A series of metal-organic coordination complexes based on alkaline-earth metal centers [Mg(II), Ca(II), and Ba(II)] and the ligand 5-aminoisophthalate (aip2-) revealed notable structural diversity, both in the materials' dimensionality and in their hydrogen bonding networks: [Mg(H2O)6]∙[Mg2(Haip)(H2O)10]∙(Haip)∙3(aip)∙10(H2O) (1) and [Mg(aip)(phen)(H2O)2]∙(H2O) (2) were isolated as discrete complexes (0D); [Ca(aip)(H2O)2]∙(H2O) (3), [Ca(aip)(phen)(H2O)2]∙(phen)∙(H2O) (4), and [Ba2(aip)2(phen)2(H2O)7]∙2(phen)∙2(H2O) (5) revealed metal-organic chain (1D) structures, while the [Ba(aip)(H2O)] (6) showed a metal-organic layered (2D) arrangement. Furthermore, most of these metal-organic coordination materials revealed interesting thermal stability properties, being stable at temperatures up to 450 °C.
Collapse
Affiliation(s)
| | | | | | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (C.Q.); (A.M.G.S.); (B.d.C.)
| |
Collapse
|