1
|
Shen Y, Shen Y, Bi X, Shen A, Wang Y, Ding F. Application of Nanoparticles as Novel Adsorbents in Blood Purification Strategies. Blood Purif 2024; 53:743-754. [PMID: 38740012 DOI: 10.1159/000539286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and good hemocompatibility shown during the treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES (i) The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. (ii) Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. (iii) Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in the treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. (vi) A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,
| | - Yuqi Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao Bi
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aiwen Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li S, Sharaf MG, Zhang L, Wishart DS, Tonelli M, Unsworth LD. Adsorption Dynamics of Uremic Toxins to Novel Modified Magnetic Nanoparticles. Macromol Biosci 2024; 24:e2300133. [PMID: 37728207 DOI: 10.1002/mabi.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/25/2023] [Indexed: 09/21/2023]
Abstract
Kidney dysfunction leads to the retention of metabolites in the blood compartment, some of which reach toxic levels. Uremic toxins are associated with the progression of kidney disease and other symptoms of kidney failure (i.e., nausea, itchiness, and hypertension). Toxin removal ameliorates symptoms and reduces further organ damage, but membrane-based methods are inadequate for this purpose. Engineered adsorbents may facilitate enhanced removal of retained toxins, especially those bound strongly by proteins. Poly 2-(methacryloyloxy)ethyl phosphorylcholine-co-β-cyclodextrin (p(MPC-co-PMβCD)) coated magnetic nanoparticles are synthesized, characterized for their physicochemical properties (Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis(TGA), gel permeation chromatography (GPC), and transmission electron microscope (TEM), and evaluated toxin adsorption from a complex solution for the first time to quantify the effects of film chemistry and incubation time on the adsorbed toxinome (the collection of toxins). Uremic toxins are bound by even "low-fouling" polymer films themselves; providing further insight into how small molecule interactions with "low-fouling" films may affect protein-surface interactions. These results suggest a dynamic interaction between toxins and surfaces that is not driven by solution concentration alone. This knowledge will help advance the design of novel adsorbent films for clearing uremic toxins.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
3
|
Fu X, Lei T, Chen C, Fu G. Construction and study of blood purification membrane modified with PDE inhibitor: Investigation of antiplatelet activity and hemocompatibility. Colloids Surf B Biointerfaces 2024; 234:113725. [PMID: 38157764 DOI: 10.1016/j.colsurfb.2023.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The recent "cell-based theory" of coagulation suggests that platelets serve as the site of coagulation factor reactions, making platelets an effective target for inhibiting membrane thrombosis. Unfortunately, there is limited research on how blood purification membranes affect platelet intracellular signaling. In this study, we modified polyethersulfone (PES) membranes with the platelet phosphodiesterase (PDE) inhibitor dipyridamole (DIP) and investigated the effects of the DIP/PES (DP) membranes on platelet adhesion, activation, aggregation, and secretion, as well as the role of the PDE-cyclic adenosine monophosphate (cAMP) intracellular signaling pathway. Additionally, we evaluated the hemocompatibility and preliminary in vivo safety of DP membranes. Our results demonstrate that the modified DP membranes effectively inhibited platelet adhesion, membrane CD62P expression, and plasma soluble P-selectin activation levels. Furthermore, we confirmed that DP membranes achieved platelet aggregation inhibition and reduced platelet factor 4 and β-thromoglobulin secretion levels by inhibiting platelet intracellular PDE-cAMP signaling. Moreover, the modified DP membranes exhibited good anticoagulant and red blood cell membrane stability and complement resistance and demonstrated preliminary biocompatibility in mouse experiments. Collectively, these findings highlight the potential application of DP dialysis membranes in blood purification for critically ill patients.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Ting Lei
- Powder Metallurgy Institute of Central South University, China
| | - Cong Chen
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Gan Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| |
Collapse
|
4
|
Seiti M, Giuri A, Corcione CE, Ferraris E. Advancements in tailoring PEDOT: PSS properties for bioelectronic applications: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213655. [PMID: 37866232 DOI: 10.1016/j.bioadv.2023.213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In the field of bioelectronics, the demand for biocompatible, stable, and electroactive materials for functional biological interfaces, sensors, and stimulators, is drastically increasing. Conductive polymers (CPs) are synthetic materials, which are gaining increasing interest mainly due to their outstanding electrical, chemical, mechanical, and optical properties. Since its discovery in the late 1980s, the CP Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) has become extremely attractive, being considered as one of the most capable organic electrode materials for several bioelectronic applications in the field of tissue engineering and regenerative medicine. Main examples refer to thin, flexible films, electrodes, hydrogels, scaffolds, and biosensors. Within this context, the authors contend that PEDOT:PSS properties should be customized to encompass: i) biocompatibility, ii) conductivity, iii) stability in wet environment, iv) adhesion to the substrate, and, when necessary, v) (bio-)degradability. However, consolidating all these properties into a single functional solution is not always straightforward. Therefore, the objective of this review paper is to present various methods for acquiring and improving PEDOT:PSS properties, with the primary focus on ensuring its biocompatibility, and simultaneously addressing the other functional features. The last section highlights a collection of designated studies, with a particular emphasis on PEDOT:PSS/carbon filler composites due to their exceptional characteristics.
Collapse
Affiliation(s)
- Miriam Seiti
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Antonella Giuri
- CNR-NANOTEC-Istituto di Nanotecnologia, Polo di Nanotecnologia, c/o Campus Ecotekne, via Monteroni, I-73100 Lecce, Italy
| | | | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, KU Leuven Campus De Nayer, Jan De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
5
|
Wei H, Li X, Li C, Wang K, Liu Z, Lu J, Liu B, He X. Improving the adsorption performance of urea by using polyhydroxy groups to modify two-dimensional Ti3C2Tx. CHEMOSPHERE 2023:139303. [PMID: 37369284 DOI: 10.1016/j.chemosphere.2023.139303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Wearable artificial kidney can provide continuous dynamic dialysis for uremia patients. For the sake of practical application, the critical step is to find an adsorbent that can effectively remove urea and have excellent biological compatibility. The layered Ti3C2Tx (DL-Ti3C2Tx) with high specific surface area and good dispersion was prepared by a two-step etching method. From the first principles calculation, urea can be adsorbed by different groups (-F, -O, -OH) on the surface of Ti3C2Tx, among which -OH has the greatest binding energy to urea. Therefore, DL-Ti3C2Tx was modified with different alkali solutions (KOH, NaOH, LiOH) to introduce -OH on the surface, which can increase the adsorption capacity of urea. The experimental results showed that DL-Ti3C2Tx (LiOH-Ti3C2Tx) after treated by LiOH had the highest urea adsorption efficiency, and the urea removal rate of LiOH-Ti3C2Tx was still higher than 92% when the urea concentration was 500 mg/L. In the Simulated dialysate, Ti3C2Tx treated with three kinds of alkali solutions still maintained a good adsorption efficiency for urea, and still had a certain adsorption capacity after recycling for four times. Biocompatibility experiments showed that Ti3C2Tx in different concentrations did not cause hemolysis of erythrocyte, and had no obvious damage to vascular endothelial cells. This study greatly improves the urea adsorption efficiency of MXene, which has a broad application prospect in the selection of adsorbent for wearable artificial kidney.
Collapse
Affiliation(s)
- Hong Wei
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Xiao Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China; Institute for Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Cong Li
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Kaidi Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhiping Liu
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Jiarui Lu
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Baixiong Liu
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.
| | - Xingyu He
- Faculy of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.
| |
Collapse
|
6
|
Chien YH, Ho MT, Feng CH, Yen JH, Chang YC, Lai CS, Louh RF. Fabrication of Glutaraldehyde Vapor Treated PVA/SA/GO/ZnO Electrospun Nanofibers with High Liquid Absorbability for Antimicrobial of Staphylococcus aureus. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050932. [PMID: 36903810 PMCID: PMC10004850 DOI: 10.3390/nano13050932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 05/12/2023]
Abstract
In this study, we aim to develop organic-inorganic hybrid nanofibers containing high moisture retention and good mechanical performance as an antimicrobial dressing platform. The main theme of this work focuses on several technical tasks including (a) the electrospinning process (ESP) to produce organic polyvinyl alcohol/sodium alginate (PVA/SA) nanofibers with an excellent diameter uniformity and fibrous orientation, (b) the fabrication of inorganic nanoparticles (NPs) as graphene oxide (GO) and ZnO NPs to be added to PVA/SA nanofibers for enhancement of the mechanical properties and an antibacterial function to Staphylococcus aureus (S. aureus), and then (c) the crosslinking process for PVA/SA/GO/ZnO hybrid nanofibers in glutaraldehyde (GA) vapor atmosphere to improve the hydrophilicity and moisture absorption of specimens. Our results clearly indicate that the uniformity nanofiber with 7 wt% PVA and 2 wt% SA condition demonstrates 199 ± 22 nm in diameter using an electrospinning precursor solution of 355 cP in viscosity by the ESP process. Moreover, the mechanical strength of nanofibers was enhanced by 17% after the handling of a 0.5 wt% GO nanoparticles addition. Significantly, the morphology and size of ZnO NPs can be affected by NaOH concentration, where 1 M NaOH was used in the synthesis of 23 nm ZnO NPs corresponding to effective inhibition of S. aureus strains. The PVA/SA/GO/ZnO mixture successfully performed an antibacterial ability with an 8 mm inhibition zone in S. aureus strains. Furthermore, the GA vapor as a crosslinking agent acting on PVA/SA/GO/ZnO nanofiber provided both swelling behavior and structural stability performance. The swelling ratio increased up to 1.406%, and the mechanical strength was 1.87 MPa after 48 h of GA vapor treatment. Finally, we successfully synthesized the hybrid nanofibers of GA-treated PVA/SA/GO/ZnO accompanied with high moisturizing, biocompatibility, and great mechanical properties, which will be a novel multi-functional candidate for wound dressing composites for patients receiving surgical operations and first aid treatments.
Collapse
Affiliation(s)
- Yi-Hsin Chien
- Department of Materials Science, Feng Chia University, Taichung 40724, Taiwan
| | - Meng-Tzu Ho
- Department of Materials Science, Feng Chia University, Taichung 40724, Taiwan
| | - Chin-Hsign Feng
- Division of Plastic Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jung-Hsign Yen
- Division of Plastic Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yi-Chan Chang
- Department of Materials Science, Feng Chia University, Taichung 40724, Taiwan
| | - Chih-Sheng Lai
- Division of Plastic Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Rong-Fuh Louh
- Department of Materials Science, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: ; Tel.: +886-424517250 (ext. 5314)
| |
Collapse
|
7
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
8
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Zhao H, Huang J, Huang L, Yang Y, Xiao Z, Chen Q, Huang Q, Ai K. Surface control approach for growth of cerium oxide on flower-like molybdenum disulfide nanosheets enables superior removal of uremic toxins. J Colloid Interface Sci 2022; 630:855-865. [DOI: 10.1016/j.jcis.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
10
|
Masereeuw R. The Dual Roles of Protein-Bound Solutes as Toxins and Signaling Molecules in Uremia. Toxins (Basel) 2022; 14:toxins14060402. [PMID: 35737063 PMCID: PMC9230939 DOI: 10.3390/toxins14060402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
In patients with severe kidney disease, renal clearance is compromised, resulting in the accumulation of a plethora of endogenous waste molecules that cannot be removed by current dialysis techniques, the most often applied treatment. These uremic retention solutes, also named uremic toxins, are a heterogeneous group of organic compounds of which many are too large to be filtered and/or are protein-bound. Their renal excretion depends largely on renal tubular secretion, by which the binding is shifted towards the free fraction that can be eliminated. To facilitate this process, kidney proximal tubule cells are equipped with a range of transport proteins that cooperate in cellular uptake and urinary excretion. In recent years, innovations in dialysis techniques to advance uremic toxin removal, as well as treatments with drugs and/or dietary supplements that limit uremic toxin production, have provided some clinical improvements or are still in progress. This review gives an overview of these developments. Furthermore, the role protein-bound uremic toxins play in inter-organ communication, in particular between the gut (the side where toxins are produced) and the kidney (the side of their removal), is discussed.
Collapse
Affiliation(s)
- Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Nonenzymatic Lactic Acid Detection Using Cobalt Poly-phthalocyanine/Carboxylated Multiwalled Carbon Nanotube Nanocomposites Modified Sensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, a novel cobalt polyphthalocyanine/carboxylic acid functionalized multiwalled carbon nanotube nanocomposite (CoPPc/MWCNTs-COOH) to detect lactic acid was successfully fabricated. The nanocomposite was systematically characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, and X-ray photoelectron spectroscopy. The nanocomposite provided excellent conductivity for effective charge transfer and avoided the agglomeration of MWCNTs-COOH. The electrochemical surface area, diffusion coefficient and electron transfer resistance of the CoPPc/MWCNTs-COOH glassy carbon electrode (CoPPc/MWCNTs-COOH/GCE) were calculated as A = 0.49 cm2, D = 9.22 × 10−5 cm2/s, and Rct = 200 Ω, respectively. The lactic acid sensing performance of the CoPPc/MWCNTs-COOH was evaluated using cyclic voltammetry in 0.1 M PBS (pH 4). The results demonstrated that the novel electrode exhibited excellent electrochemical performance toward lactic acid reduction over a wide concentration range (10 to 240 μM), with a low detection limit (2 μM (S/N = 3)), and a reasonable selectivity against various interferents (ascorbic acid, uric acid, dopamine, sodium chloride, glucose, and hydrogen peroxide). Additionally, the electrode was also successfully applied to quantify lactic acid in rice wine samples, showing great promise for rapid monitoring applications.
Collapse
|
12
|
Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Porous cellulose acetate mixed-matrix membrane adsorbents for efficient clearance of p-cresol and creatinine from synthetic serum. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Shen Y, Shen Y, Li J, Ding F, Wang Y. Polyethyleneimine-anchored liposomes as scavengers for improving the efficiency of protein-bound uremic toxin clearance during dialysis. J Biomed Mater Res A 2021; 110:976-983. [PMID: 34908219 DOI: 10.1002/jbm.a.37346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Protein-bound uremic toxins (PBUTs) are significant toxins that are closely related to the prognosis of chronic kidney disease. They cannot be effectively removed by conventional dialysis therapies due to their high albumin binding affinity. Our previous research revealed that cationic liposomes (i.e., polyethyleneimine [PEI]-decorated liposomes) could enhance the clearance of PBUTs via electrostatic interactions. However, the poor biocompatibility (hemolysis) restricted their applications in clinical dialysis treatment. Herein, we produced PEI-anchored, linoleic acid-decorated liposomes (CP-LA liposomes) via the conjugation of PEI to cholesterol chloroformate (Chol-PEI, CP), and linoleic acid (LA) was added to provide liposomal colloidal stability. The CP-LA liposomes outperformed the plain liposomes, demonstrating significantly higher PBUT binding rates and removal rates. In addition, in vitro dialysis simulation verified that the CP-LA liposomes had a better capacity for PBUT clearance than the plain liposomes, especially for PBUTs with a strong negative net charge. Hemolysis and cytotoxicity tests revealed that the biocompatibility of the CP-LA liposomes was better than that of the physically-decorated PEI-liposome. CP-LA liposomes possess great potential for PBUT clearance in clinical dialysis therapy.
Collapse
Affiliation(s)
- Yuqi Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaolun Li
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Wang SC, Liu SH, Fu CC, Hsiao YS, Juang RS. Design and fabrication of electrospun mixed-matrix multi-layered membranes containing tri-n-octylphosphine oxide for efficient adsorption of p-cresol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Dymek K, Kurowski G, Kuterasiński Ł, Jędrzejczyk R, Szumera M, Sitarz M, Pajdak A, Kurach Ł, Boguszewska-Czubara A, Jodłowski PJ. In Search of Effective UiO-66 Metal-Organic Frameworks for Artificial Kidney Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45149-45160. [PMID: 34520182 PMCID: PMC8485328 DOI: 10.1021/acsami.1c05972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/01/2023]
Abstract
The removal of uremic toxins from patients with acute kidney injury is a key issue in improving the quality of life for people requiring peritoneal dialysis. The currently utilized method for the removal of uremic toxins from the human organism is hemodialysis, performed on semipermeable membranes where the uremic toxins, along with small molecules, are separated from proteins and blood cells. In this study, we describe a mixed-linker modulated synthesis of zirconium-based metal-organic frameworks for efficient removal of uremic toxins. We determined that the efficient adsorption of uremic toxins is achieved by optimizing the ratio between -amino functionalization of the UiO-66 structure with 75% of -NH2 groups within organic linker structure. The maximum adsorption of hippuric acid and 3-indoloacetic acid was achieved by UiO-66-NH2 (75%) and by UiO-66-NH2 (75%) 12.5% HCl prepared by modulated synthesis. Furthermore, UiO-66-NH2 (75%) almost completely adsorbs 3-indoloacetic acid bound to bovine serum albumin, which was used as a model protein to which uremic toxins bind in the human body. The high adsorption capacity was confirmed in recyclability test, which showed almost 80% removal of 3-indoloacetic acid after the third adsorption cycle. Furthermore, in vitro cytotoxicity tests as well as hemolytic activity assay have proven that the UiO-66-based materials can be considered as potentially safe for hemodialytic purposes in living organisms.
Collapse
Affiliation(s)
- Klaudia Dymek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Grzegorz Kurowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Łukasz Kuterasiński
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Roman Jędrzejczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| | - Magdalena Szumera
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Sitarz
- Faculty
of Materials Science and Ceramics, AGH University
of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Anna Pajdak
- Strata
Mechanics Research Institute, Polish Academy
of Sciences, Reymonta
27, 30-059 Kraków, Poland
| | - Łukasz Kurach
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland
| | - Przemysław J. Jodłowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| |
Collapse
|
17
|
Characterization of the cylindrical electrospun nanofibrous polysulfone membrane for hemodialysis with modelling approach. Med Biol Eng Comput 2021; 59:1629-1641. [PMID: 34273038 DOI: 10.1007/s11517-021-02404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Electrospun nanofibrous membrane (ENM) is a membrane fabricated using electrospinning technique which has considerable characteristics such as high porosity, nanometer pore size, and simple process. Although ENMs are being evaluated in various medical applications, the effectiveness for hemodialysis (HD) has not been evaluated carefully. Thus, in this study, the cylindrical electrospun nanofibrous polysulfone (CENP) membrane was fabricated and its performance in the dialysis adequacy in HD patients was evaluated.The CENP membrane was fabricated in a tabular shape. The physical characteristics of the membrane are examined using scanning electron microscope (SEM) images and the permporometry technique. Then, its efficiency in urea and creatinine removal from the blood serum of 21 HD patients was evaluated at a low blood flow rate (BFR) of 200 ml min-1 and dialysate fluid rate (DFR) of 300 ml min-1. Afterwards, the results were modeled and optimized using artificial neural network (ANN) and genetic algorithm (GA), respectively. Finally, sensitive analysis was performed via Spearman's rank correlation coefficient. The highest dialysis adequacy was observed in membranes with an inner diameter of 3 mm. The CENP membrane belongs to the super high-flux membrane and it could be replaced with existing commercial hollow fiber membranes.
Collapse
|
18
|
Lee S, Sirich TL, Meyer TW. Improving Clearance for Renal Replacement Therapy. KIDNEY360 2021; 2:1188-1195. [PMID: 35355887 PMCID: PMC8786098 DOI: 10.34067/kid.0002922021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adequacy of hemodialysis is now assessed by measuring the removal of a single solute, urea. The urea clearance provided by current dialysis methods is a large fraction of the blood flow through the dialyzer, and, therefore, cannot be increased much further. However, other solutes, which are less effectively cleared than urea, may contribute more to the residual uremic illness suffered by patients on hemodialysis. Here, we review a variety of methods that could be used to increase the clearance of such nonurea solutes. New clinical studies will be required to test the extent to which increasing solute clearances improves patients' health.
Collapse
Affiliation(s)
- Seolhyun Lee
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Tammy L. Sirich
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Timothy W. Meyer
- Department of Medicine, Stanford University, Palo Alto, California,Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
19
|
Hsiao YS, Lin CL, Liao IH, Chen FJ, Liu CT, Tseng HS, Yu J. Facile Fabrication of Microwrinkled Poly(3,4-Ethylenedioxythiophene) Films that Promote Neural Differentiation under Electrical Stimulation. ACS APPLIED BIO MATERIALS 2021; 4:2354-2362. [PMID: 35014356 DOI: 10.1021/acsabm.0c01204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although conductive bioelectronic interfaces (BEIs) can allow neural cell culturing while providing electrical stimulation (ES) to the nervous system, there are few simple approaches for the preparation of conductive BEIs with topographical features designed for cell manipulation. In this study, we developed a facile method for fabricating microwrinkled poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) films through spin-coating onto pre-elongated polydimethylsiloxane substrates. The microwrinkles of our PEDOT:PSS films pre-elongated by 20 and 40% had average widths of 6.47 ± 1.49 and 5.39 ± 1.53 μm, respectively. These microwrinkled PEDOT:PSS films promoted the directional ordering of neurite outgrowth of PC12 cells and displayed favorable biocompatibility and outstanding electrochemical properties for long-term ES treatment. When using this BEI platform, the level of PC12 gene expression of Neun was enhanced significantly after 5 days of culturing in differentiation media and under ES, in line with the decreased expression of early phase markers. Therefore, such readily fabricated microwrinkled PEDOT:PSS films are promising candidates for use as BEIs for tissue regenerative medicine.
Collapse
Affiliation(s)
- Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Da'an Dist., Taipei City 10607, Taiwan
| | - Chih-Ling Lin
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - I-Hsiang Liao
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Fang-Jung Chen
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Chun-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| | - Hsueh-Sheng Tseng
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Da'an Dist., Taipei City 10617, Taiwan
| |
Collapse
|
20
|
Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl Res 2021; 229:115-134. [PMID: 32891787 DOI: 10.1016/j.trsl.2020.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic kidney disease (CKD) in the worldwide population is currently estimated between 11% and 13%. Adequate renal clearance is compromised in these patients and the accumulation of a large number of uremic retention solutes results in an irreversible worsening of renal function which can lead to end stage renal disease (ESRD). Approximately three million ESRD patients currently receive renal replacement therapies (RRTs), such as hemodialysis, which only partially restore kidney function, as they are only efficient in removing mainly small, unbound solutes from the circulation while leaving larger and protein-bound uremic toxins (PBUTs) untouched. The accumulation of PBUTs in patients highly increases the risk of cardiovascular events and is associated with higher mortality and morbidity in CKD and ESRD. In this review, we address several strategies currently being explored toward reducing PBUT concentrations, including clinical and medical approaches, therapeutic techniques, and recent developments in RRT technology. These include preservation of renal function, limitation of colon derived PBUTs, oral sorbents, adsorbent RRT technology, and use of albumin displacers. Despite the promising results of the different approaches to promote enhanced removal of a small percentage of the more than 30 identified PBUTs, on their own, none of them provide a treatment with the required efficiency, safety and cost-effectiveness to prevent CKD-related complications and decrease mortality and morbidity in ESRD.
Collapse
|
21
|
Affiliation(s)
- Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36837-36850. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patients with end-stage renal disease are prone to developing a complication of hyperhomocysteinemia, manifesting as an elevation of the homocysteine (Hcy) concentration in human plasma. However, Hcy as a protein-bound toxin is barely removed by conventional hemodialysis membranes. Here, we report a novel hemodialysis membrane by preparing a bioactive coating of pyridoxal 5'-phosphate (PLP) and adding biocompatible hyperbranched polyglycerol (HPG) brushes to achieve Hcy removal. The dip-applied PLP coating, a coenzyme with a role in Hcy metabolism, dramatically promoted a decrease in the Hcy concentration in human plasma. Moreover, the aldehyde group of PLP had an intrinsic chemical reactivity toward the terminal amino group to immobilize the HPG brushes on the hemodialysis membrane surface. The hierarchical PLP-HPG layer-functionalized membranes had a high efficacy for eliminating Hcy, with a concentration from the initial stage of 150 μmol/L reduced to a nearly normal level of 20 μmol/L in simulated dialysis. By analyzing the impact of HPG brushes with various chain lengths, we found that HPG brushes with a medium length enabled the PLP coating with the bioactive function of Hcy conversion to additionally protect Hcy-attacked target cells by providing excellent hydrophilicity and a dense enough chain volume overlap of the hyperbranched architecture. Simultaneously, the densely packed HPG brushes generated a maximal steric and hydration barrier that significantly improved biofouling resistance against blood proteins. The optimally functionalized membranes showed a clearance of 83.1% urea and 49.6% lysozyme and a rejection of 96.0% bovine serum albumin. The diversely functionalized PLP-HPG layers demonstrate a potential route for a more integrated hemodialysis membrane that can cope with the urgent issue of hyperhomocysteinemia in clinical hemodialysis therapy.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
23
|
Fu CC, Hsiao YS, Ke JW, Syu WL, Liu TY, Liu SH, Juang RS. Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Li X, Shao S, Yang Y, Mei Y, Qing W, Guo H, Peng LE, Wang P, Tang CY. Engineering Interface with a One-Dimensional RuO 2/TiO 2 Heteronanostructure in an Electrocatalytic Membrane Electrode: Toward Highly Efficient Micropollutant Decomposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21596-21604. [PMID: 32297729 DOI: 10.1021/acsami.0c02552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Decomposition of micropollutants using an electrocatalytic membrane reactor is a promising alternative to traditional advanced oxidation processes due to its high efficiency and environmental compatibility. Rational interface design of electrocatalysts in the membrane electrode is critical to the performance of the reactor. We herein developed a three-dimensional porous membrane electrode via in situ growth of one-dimensional RuO2/TiO2 heterojunction nanorods on a carbon nanofiber membrane by a facile hydrothermal and subsequent thermal treatment approach. The membrane electrode was used as the anode in a gravity-driven electrocatalytic membrane reactor, exhibiting a high degradation efficiency of over 98% toward bisphenol-A and sulfadiazine. The superior electrocatalytic performance was attributed to the 1D RuO2/TiO2 heterointerfacial structure, which provided the fast electron transfer, high generation rate of the hydroxyl radical, and large effective surface area. Our work paves a novel way for the fundamental understanding and designing of novel highly effective and low-consumptive electrocatalytic membranes for wastewater treatment.
Collapse
Affiliation(s)
- Xianhui Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Senlin Shao
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Yang Yang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ying Mei
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Weihua Qing
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Peng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| |
Collapse
|
25
|
Cho K, Jang J, Lee JS. Comparative Study on the Formation and Oxidation-Level Control of Three-Dimensional Conductive Nanofilms for Gas Sensor Applications. ACS OMEGA 2020; 5:2992-2999. [PMID: 32095722 PMCID: PMC7033957 DOI: 10.1021/acsomega.9b03947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/27/2020] [Indexed: 05/06/2023]
Abstract
Investment in wearable monitoring systems is increasing rapidly for realizing their practical applications, for example, in medical treatment, sports, and security systems. However, existing wearable monitoring systems are designed to measure a real-time physical signal and abnormal conditions rather than harmful environmental characteristics. In this study, a flexible chemical sensor electrode based on a three-dimensional conductive nanofilm (3D CNF) is fabricated via facile polymerization with temperature control. The morphology and chemical state of the 3D CNF are modified via electrochemical doping control to increase the carrier mobility and the active surface area of the sensor electrode. The sensor electrode is highly sensitive (up to 1 ppb), selective, and stable for an analyte (NH3) at room temperature owing to the three-dimensional morphology of polypyrrole and the oxidation-level control.
Collapse
Affiliation(s)
- Kyung
Hee Cho
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic
of Korea
| | - Jyongsik Jang
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic
of Korea
- E-mail: . Phone: +82-2-880-7069. Fax: +82-2-880-1604 (J.J.)
| | - Jun Seop Lee
- Department
of Materials Science and Engineering, Gachon
University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
- E-mail: . Phone: +82-31-750-5814. Fax: +82-31-750-5389 (J.S.L.)
| |
Collapse
|