1
|
Nocerino V, Siciliano G, Bianco M, Rea I, Dardano P, Chiriacò MS, Ferrara F, Gigli G, Primiceri E, De Stefano L. MIP-Modified Porous Silicon Optical Sensor for Interleukin-6 Label-Free Quantification. BIOSENSORS 2025; 15:320. [PMID: 40422059 DOI: 10.3390/bios15050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
In this study, we present an innovative optical biosensor designed to detect Interleukin-6 (IL-6), a pivotal cytokine implicated in many pathological conditions. Our sensing platform is made of a porous silicon (PSi) nanostructured substrate modified with a thin (~5 nm) molecularly imprinted polymer (MIP), ensuring both high specificity and sensitivity toward IL-6 molecules. The fabrication process involves electrochemical etching of silicon chips to create the porous structure, followed by the electrodeposition of the MIP, which is tailored to selectively bind the IL-6 target. Extensive testing over a broad IL-6 concentration range demonstrates a clear, proportional optical response, yielding a limit of detection (LOD) of 13 nM. Moreover, the biosensor robustness was verified by evaluating its performance in bovine serum, a complex biological matrix. Despite the presence of various interfering components, the sensor maintained its selectivity and displayed minimal matrix effects, underlining its practical applicability in real-world diagnostic scenarios.
Collapse
Affiliation(s)
- Valeria Nocerino
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Giulia Siciliano
- Institute of Nanotechnology (Nanotec), Via Per Monteroni, 73100 Lecce, Italy
| | - Monica Bianco
- Institute of Nanotechnology (Nanotec), Via Per Monteroni, 73100 Lecce, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | - Francesco Ferrara
- Institute of Nanotechnology (Nanotec), Via Per Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology (Nanotec), Via Per Monteroni, 73100 Lecce, Italy
| | | | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
2
|
Di Giulio T, Asif IM, Corsi M, Rajpal S, Mizaikoff B, Ditaranto N, De Benedetto GE, Malitesta C, Barillaro G, Mazzotta E. A Molecularly Imprinted Polymer-Based Porous Silicon Optical Sensor for Quercetin Detection in Wines. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12663-12675. [PMID: 39932931 PMCID: PMC11873946 DOI: 10.1021/acsami.4c21238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Quercetin (QU), a bioactive flavonoid with significant nutritional and antioxidant properties, plays a vital role in the quality and stability of wine. This study presents the development of a molecularly imprinted polymer (MIP)-based optical sensor for the selective and sensitive detection of quercetin in red and white wines. The sensor combines the selective molecular recognition capabilities of MIPs with the optical properties of nanostructured porous silica (PSiO2) scaffolds, which serve as the transducer. MIP synthesis was achieved through a novel room-temperature vapor-phase polymerization method using pyrrole as the functional monomer. Computational simulations were used to optimize pyrrole interactions with QU and at the polymer level, to explore the binding interactions of QU with the resulting polypyrrole (PPy) matrix. Comprehensive characterization including UV-vis reflectance spectroscopy and advanced surface analyses confirmed successful MIP formation. The sensor exhibited high sensitivity in a dual linear response range (2.5-80 μM and 80-200 μM), with a detection limit of 0.7 μM. Selectivity tests against structurally similar flavonoids and antioxidants demonstrated a significantly higher response to quercetin, with an imprinting factor of 3.6. The sensor was validated using real wine samples, demonstrating the ability to detect quercetin without prior sample preparation. Results showed strong agreement with high-performance liquid chromatography (HPLC), confirming the sensor reliability. Additionally, the sensor exhibited excellent reusability with minimal signal variation (RSD = 2.6%) and good stability over 60 days (RSD = 3%). This work highlights the potential of MIP-based optical sensors for the real-time monitoring of bioactive compounds in complex food matrices, such as wine, offering a robust and cost-effective alternative for quality control applications.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratory
of Analytical Chemistry, Department of Biological and Environmental
Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce 73100, Italy
| | - Ibrar Muhammad Asif
- Laboratory
of Analytical Chemistry, Department of Biological and Environmental
Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce 73100, Italy
| | - Martina Corsi
- Information
Engineering Department, University of Pisa, via G. Caruso 16, Pisa 56122, Italy
| | - Soumya Rajpal
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, Ulm 89081, Germany
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, Ulm 89081, Germany
- Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany
| | - Nicoletta Ditaranto
- Chemistry
Department, Aldo Moro University of Bari, Via Orabona 4, Bari 70126, Italy
| | - Giuseppe E. De Benedetto
- Laboratory
of Analytical Mass Spectrometry, Cultural Heritage Department, University of Salento, Via Monteroni, Lecce 73100, Italy
| | - Cosimino Malitesta
- Laboratory
of Analytical Chemistry, Department of Biological and Environmental
Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce 73100, Italy
| | - Giuseppe Barillaro
- Information
Engineering Department, University of Pisa, via G. Caruso 16, Pisa 56122, Italy
| | - Elisabetta Mazzotta
- Laboratory
of Analytical Chemistry, Department of Biological and Environmental
Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce 73100, Italy
| |
Collapse
|
3
|
Kang RH, Baek SW, Oh CK, Kim YH, Kim D. Recent Advances of Macrostructural Porous Silicon for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5609-5626. [PMID: 39818715 PMCID: PMC11788993 DOI: 10.1021/acsami.4c18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties. In drug delivery, pSi's potential for controlled and sustained release of therapeutic agents has been well-studied, making it suitable for chronic disease treatment. Innovative approaches, like microneedle arrays and hybrid drug delivery systems, are highlighted, along with challenges, such as scalability and stability, in biological environments. pSi-based biosensors offer exceptional sensitivity for detecting biomarkers, benefiting early disease diagnosis. In tissue engineering, fibrous and particulate pSi scaffolds mimic the extracellular matrix, promoting cell proliferation and tissue regeneration. pSi is also gaining momentum in orthopedic implants, demonstrating the potential for bone regeneration. Despite its promise, challenges like mechanical strength, scalability, and long-term stability must be addressed. Looking forward, future research should focus on optimizing production methods, enhancing stability, and exploring hybrid materials for pSi, paving the way for its widespread clinical use in personalized medicine, advanced drug delivery, and next-generation biosensors and implants.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department
of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Woo Baek
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Kyu Oh
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
- Institute
for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
| | - Dokyoung Kim
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Center
for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical
Research Center for Bioreaction to Reactive Oxygen Species and Biomedical
Science Institute, School of Medicine, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science
and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Sánchez-Salcedo R, Sharma P, Voelcker NH. Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2814-2843. [PMID: 39757779 DOI: 10.1021/acsami.4c18273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Biosensors play a critical role in modern diagnostics, offering high sensitivity and specificity for detecting various relevant clinical analytes as well as real-time monitoring and integrability in point-of-care (POC) platforms and wearable/implantable devices. Among the numerous materials used as biosensing substrates, porous silicon (pSi) has garnered significant attention due to its tunable properties, ease of fabrication, large surface area, and versatile surface chemistry. These attributes make pSi an ideal platform for transducer development, particularly in the fabrication of optical and electrochemical biosensors. This review explores the various stages of the design of a pSi-based biosensor starting from pSi fabrication, followed by a deep study about the stabilization and functionalization techniques providing a comparative analysis of their performance. Moreover, we survey the reported designs categorized as optical and electrochemical sensors, presenting a critical evaluation of their analytical validity as well as identifying the challenges of bringing these devices to the clinical practice. By bridging existing knowledge gaps, this review aims to inspire future innovation, providing valuable insights into how pSi-based biosensors can be further optimized for noninvasive diagnostics, personalized healthcare, and early disease detection leading to a doable commercialization.
Collapse
Affiliation(s)
- Raquel Sánchez-Salcedo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Pritam Sharma
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
5
|
Zhou H, Guo J, Wang Z, Zhao J, Gao Z, Song P, Song YY, Zhao C. Enzyme-Free Identification of Monosaccharide Enantiomers on TiO 2 Nanotube Array-Based Fabry-Pérot Interferometer. Anal Chem 2024. [PMID: 39562532 DOI: 10.1021/acs.analchem.4c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Chirality is a vital property across various domains, especially for biological activity. Herein, an enzyme-free sensing platform for monosaccharide enantiomer identification was developed by utilizing the Fabry-Pérot interferometer feature of TiO2 nanotube arrays modified with enantioselective metal-organic framework and glucose oxidase-mimicking Au NPs. In this design, optical property is monitored by reflective interferometric Fourier transform spectroscopy (RIFTS), a highly sensitive technique for detecting changes in the average refractive index within nanotubular structures. Using glucose (Glu) enantiomers as the model targets, after the recognition of L-/d-Glu on mesoporous homochiral MIL-101 (Fe), Au NPs anchored in MIL-101(Fe) catalyze the oxidation of Glu molecules to produce hydrogen peroxide (H2O2). Benefiting from the confinement effect of frameworks, MIL-101(Fe), as an artificial enzyme with excellent peroxidase-like activity, catalyzes the conversion of 4-chloro-1-naphthol (4-CN) into insoluble precipitates. These gathered precipitates effectively change the average refractive index of the interferometric substrate. Based on the variation of effective optical thickness (ΔEOT) values, the enantioselective determination of l-Glu and d-Glu can be achieved. Moreover, the proposed RIFTS sensor also presents broad applicability for the identification of other monosaccharide enantiomers. As the enzyme-free homochiral interferometer is directly constructed on a Ti-metal sheet, the RIFTS platform offers a robust, sensitive, and low-cost device for monosaccharide enantiomer recognition.
Collapse
Affiliation(s)
- Hairihan Zhou
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junli Guo
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, China
| | - Zirui Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Yan-Yan Song
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning 110122, China
| |
Collapse
|
6
|
Di Giulio T, Corsi M, Gagliani F, De Benedetto G, Malitesta C, Mazzei A, Barca A, Verri T, Barillaro G, Mazzotta E. Reconfigurable Optical Sensor for Metal-Ion-Mediated Label-Free Recognition of Different Biomolecular Targets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43752-43761. [PMID: 39106976 PMCID: PMC11345716 DOI: 10.1021/acsami.4c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Martina Corsi
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesco Gagliani
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe De Benedetto
- Laboratorio
di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di
Beni Culturali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Cosimino Malitesta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Aurora Mazzei
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Amilcare Barca
- Laboratorio
di Fisiologia Applicata, Dipartimento di Medicina Sperimentale (Di.Me.S), Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Barillaro
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Elisabetta Mazzotta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Paghi A, Mariani S, Corsi M, Maurina E, Debrassi A, Dähne L, Capaccioli S, Barillaro G. Ultrathin Ambipolar Polyelectrolyte Capacitors Prepared via Layer-by-Layer Assembling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309365. [PMID: 38268140 DOI: 10.1002/adma.202309365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Miniaturized solid state capacitors leveraging migration of unipolar ions in a single polyelectrolyte layer sandwiched between metal electrodes, namely, polyelectrolyte capacitors (PECs), have been recently reported with areal capacitance up to 100-200 nF mm-2. Nonetheless, application of PECs in consumer and industrial electronics has been hindered so far by their small operational frequency range, up to a few kHz, due to the resistive behavior (phase angle >-45°) of PECs in the range kHz-to-MHz. Here, it is reported on multilayer polyelectrolyte capacitors (mPECs) that leverage as dielectric an ambipolar nanometer-thick (down to 10 nm) stack of anionic and cationic polyelectrolytes assembled layer-by-layer between metal electrodes to eliminate the resistive behavior at frequencies from kHz to MHz. This significantly extends the operational range of mPECs over PECs. mPECs with areal capacitance as high as 25 nF mm-2 at 20 Hz and full capacitive behavior from 100 mHz to 10 MHz are demonstrated using different assembling conditions and anionic/cationic polyelectrolyte pairs. The mPECs reliably operate over time for >300 million cycles, at different biasing voltages up to 3 V, and temperatures up to 80 °C, showing a reversible capacitive behavior without significant hysteresis. Application of mPECs in flexible electronics, also operating at high frequency, is envisaged.
Collapse
Affiliation(s)
- Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Elena Maurina
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Aline Debrassi
- Surflay Nanotec GmbH, Max-Planck-Straße 3, 12489, Berlin, Germany
| | - Lars Dähne
- Surflay Nanotec GmbH, Max-Planck-Straße 3, 12489, Berlin, Germany
| | - Simone Capaccioli
- Physics Department, University of Pisa, Largo Pontecorvo 3, Pisa, I-56127, Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, I-56126, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, I-56126, Italy
| |
Collapse
|
8
|
Jin M, Shi P, Sun Z, Zhao N, Shi M, Wu M, Ye C, Lin CT, Fu L. Advancements in Polymer-Assisted Layer-by-Layer Fabrication of Wearable Sensors for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:2903. [PMID: 38733009 PMCID: PMC11086243 DOI: 10.3390/s24092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.
Collapse
Grants
- (52272053, 52075527, 52102055) the National Natural Science Foundation of China
- (2022YFA1203100, 2022YFB3706602, 2021YFB3701801) the National Key R&D Program of China
- (2021Z120, 2021Z115, 2022Z084, 2022Z191) Ningbo Key Scientific and Technological Project
- (2021A-037-C, 2021A-108-G) the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- (2020M681965, 2022M713243) China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- (2021ZDYF020196, 2021ZDYF020198) Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001) the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
9
|
Mazzotta E, Di Giulio T, Mariani S, Corsi M, Malitesta C, Barillaro G. Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302274. [PMID: 37222612 DOI: 10.1002/smll.202302274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Stefano Mariani
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Barillaro
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
10
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Muthukumar D, Shtenberg G. SERS-based immunosensor for E. coli contaminants detection in milk using silver-coated nanoporous silicon substrates. Talanta 2023; 254:124132. [PMID: 36459872 DOI: 10.1016/j.talanta.2022.124132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The dairy sector is frequently affected by contagious and environmental factors that spread between animals by numerous means and induce the inflammatory disease of bovine mastitis (BM). Herein, silver decorated porous silicon (Ag-pSi) SERS platform was designed for rapid and reliable Escherichia coli (predominant BM pathogen) detection in various milk origins. The inherent surface void and pore morphology were physically optimized to augment the SERS effect using 4-aminothiphenol (4ATP) while achieving an enhancement factor >4.6 × 107. An indirect immunoassay evaluated the residual unreacted antibodies using an optimized 4ATP/Ag-pSi SERS platform modified with secondary antibodies. Under optimized conditions, the porous substrate offered high sensitivity toward target bacteria detection of 3 CFU mL-1 and linear response of 101-105 CFU mL-1. Moreover, the selectivity and specificity of the designed sensing platform were cross-validated against other interfering bacteria without compromising its performance efficiencies. Finally, the applicability of the developed system for real-life conditions was elucidated in different milk samples (bovine, goat, sheep) with recovery values of 78-115% compared to the conventional culture technique. Considering the complex media analysis, the miniaturized SERS platform is highly reliable, rapid and accurate that could be applicable for routine on-site analysis of various emerging pathogens relevant to BM management.
Collapse
Affiliation(s)
- Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
12
|
Nanda Kumar D, Freidman I, Sionov E, Shtenberg G. Porous Silicon Fabry-Pérot Interferometer Designed for Sensitive Detection of Aflatoxin B1 in Field Crops. Food Chem 2022; 405:134980. [DOI: 10.1016/j.foodchem.2022.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
13
|
Iadanza S, Mendoza-Castro JH, Oliveira T, Butler SM, Tedesco A, Giannino G, Lendl B, Grande M, O’Faolain L. High-Q asymmetrically cladded silicon nitride 1D photonic crystals cavities and hybrid external cavity lasers for sensing in air and liquids. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4183-4196. [PMID: 36147699 PMCID: PMC9412843 DOI: 10.1515/nanoph-2022-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/01/2022] [Indexed: 05/13/2023]
Abstract
In this paper we show a novel design of high Q-factor silicon nitride (SiN) 1D photonic crystal (PhC) cavities side-coupled to curved waveguides, operating with both silica and air cladding. The engineering of the etched 1D PhC cavity sidewalls angle allows for high Q-factors over a wide range of upper cladding compositions, and the achievement of the highest calculated Q-factor for non-suspended asymmetric SiN PhC structures. We show the employment of these type of SiN PhC cavities in hybrid external cavity laser (HECL) configuration, with mode-hop free single mode laser operation over a broad range of injected currents (from 25 mA to 65 mA), milliwatts of power output (up to 9 mW) and side-mode suppression ratios in the range of 40 dB. We demonstrate the operation of these devices as compact and energy efficient optical sensors that respond to refractive index changes in the surrounding medium the measurement of sodium chloride (from 0% to 25%) and sucrose (from 0% to 25%) in aqueous solution. In HECL configuration, the RI sensor exhibits a 2 orders of magnitude improvement in detection limit compared to the passive microcavity. We also discuss the possibility for applying these devices as novel transducers for refractive index changes that are induced by analyte specific absorption of infrared radiation by the target analytes present in gas or liquid phase.
Collapse
Affiliation(s)
- Simone Iadanza
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Jesus Hernan Mendoza-Castro
- DEI, Politecnico di Bari, Via Amendola 126/b, Bari, Italy
- TUW, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060Vienna, Austria
| | - Taynara Oliveira
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Sharon M. Butler
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
| | | | | | - Bernhard Lendl
- TUW, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060Vienna, Austria
| | - Marco Grande
- DEI, Politecnico di Bari, Via Amendola 126/b, Bari, Italy
| | - Liam O’Faolain
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, Ireland
| |
Collapse
|
14
|
Corsi M, Paghi A, Mariani S, Golinelli G, Debrassi A, Egri G, Leo G, Vandini E, Vilella A, Dähne L, Giuliani D, Barillaro G. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202062. [PMID: 35618637 PMCID: PMC9353472 DOI: 10.1002/advs.202202062] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Here, the authors report on the manufacturing and in vivo assessment of a bioresorbable nanostructured pH sensor. The sensor consists of a micrometer-thick porous silica membrane conformably coated layer-by-layer with a nanometer-thick multilayer stack of two polyelectrolytes labeled with a pH-insensitive fluorophore. The sensor fluorescence changes linearly with the pH value in the range 4 to 7.5 upon swelling/shrinking of the polymer multilayer and enables performing real-time measurements of the pH level with high stability, reproducibility, and accuracy, over 100 h of continuous operation. In vivo studies carried out implanting the sensor in the subcutis on the back of mice confirm real-time monitoring of the local pH level through skin. Full degradation of the pH sensor occurs in one week from implant in the animal model, and its biocompatibility after 2 months is confirmed by histological and fluorescence analyses. The proposed approach can be extended to the detection of other (bio)markers in vivo by engineering the functionality of one (at least) of the polyelectrolytes with suitable receptors, thus paving the way to implantable bioresorbable chemical sensors.
Collapse
Affiliation(s)
- Martina Corsi
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & AdultsUniversity‐Hospital of Modena and Reggio EmiliaVia del Pozzo 71Modena41124Italy
| | - Aline Debrassi
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Gabriella Egri
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Giuseppina Leo
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Eleonora Vandini
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Antonietta Vilella
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Lars Dähne
- Surflay Nanotec GmbHMax‐Planck‐Straße 312489BerlinGermany
| | - Daniela Giuliani
- Department of Biomedical Metabolic and Neural SciencesUniversity of Modena and Reggio Emiliavia G. Campi 287Modena41125Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di Pisavia G. Caruso 16Pisa56122Italy
| |
Collapse
|
15
|
Pira A, Amatucci A, Melis C, Pezzella A, Manini P, d'Ischia M, Mula G. The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores. Sci Rep 2022; 12:11436. [PMID: 35794122 PMCID: PMC9258763 DOI: 10.1038/s41598-022-14347-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic–inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we’ll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins' properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer’s properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations.
Collapse
Affiliation(s)
- Alessandro Pira
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Alberto Amatucci
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Claudio Melis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy
| | - Alessandro Pezzella
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Paola Manini
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 21, 80126, Napoli (Na), Italy
| | - Guido Mula
- PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.
| |
Collapse
|
16
|
Kumar DN, Baider Z, Elad D, Blum SE, Shtenberg G. Botulinum Neurotoxin C Dual Detection through Immunological Recognition and Endopeptidase Activity Using Porous Silicon Interferometers. Anal Chem 2022; 94:5927-5936. [PMID: 35385264 DOI: 10.1021/acs.analchem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known in nature produced by Clostridium botulinum strains, which can cause life-threatening diseases in both humans and animals. The latter is of serious environmental and economic concern, resulting in high mortality, production losses, and rejection of contaminated animal feed. The available in vivo mouse assay is inadequate for real-time and on-site assessment of outbreaks. Herein, we present a reflective-based approach for the detection of BoNT/C while estimating its activity. Two adjacent porous Si Fabry-Pérot interferometers are simultaneously utilized to quantify minute BoNT/C concentrations by a competitive immunoassay and to assess their endopeptidase activity. The reflectivity signals of each interferometer are amplified by biochemical reaction products infiltration into the scaffold or by peptide fragments detachment from the nanostructure. The optical assay is highly sensitive in compliance with the in vivo approach by presenting a detection limit of 4.24 pg mL-1. The specificity and selectivity of the designed platform are cross-validated against BoNT/B and BoNT/D, also relevant to animal health. Finally, the analytical performances of both interferometers for real-life scenarios are confirmed using actual toxins while depicting excellent compliance to complex media analysis. Overall, the presented sensing scheme offers an efficient, rapid, and label-free approach for potential biodiagnostic elucidation of botulism outbreaks.
Collapse
Affiliation(s)
- D Nanda Kumar
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Zina Baider
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Daniel Elad
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Shlomo E Blum
- Botulism National Reference Laboratory, Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50200, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
17
|
Kartashova AD, Gonchar KA, Chermoshentsev DA, Alekseeva EA, Gongalsky MB, Bozhev IV, Eliseev AA, Dyakov SA, Samsonova JV, Osminkina LA. Surface-Enhanced Raman Scattering-Active Gold-Decorated Silicon Nanowire Substrates for Label-Free Detection of Bilirubin. ACS Biomater Sci Eng 2021; 8:4175-4184. [PMID: 34775760 DOI: 10.1021/acsbiomaterials.1c00728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bilirubin (BR) is a product of hemoglobin breakdown, and its increasing levels in the blood may indicate liver disorders and lead to jaundice. Kernicterus is most dangerous in newborns when the unconjugated BR concentration can quickly rise to toxic levels, causing neurological damage and even death. The development of an accurate, fast, and sensitive sensor for BR detection will help reduce diagnostic time and ensure successful treatment. In this study, we propose a new method for creating a surface-enhanced Raman scattering (SERS)-active substrate based on gold-decorated silicon nanowires (Au@SiNWs) for sensitive label-free BR detection. Gold-assisted chemical etching of crystalline silicon wafers was used to synthesize SiNWs, the tops of which were then additionally decorated with gold nanoparticles. The low detection limit of model analyte 4-mercaptopyridine down to the concentration of 10-8 M demonstrated the excellent sensitivity of the obtained substrates for SERS application. The theoretical full-wave electromagnetic simulations of Raman scattering in the Au@SiNW substrates showed that the major contribution to the total SERS signal comes from the analyte molecules located on the SiNW surface near the gold nanoparticles. Therefore, for efficient BR adsorption and SERS detection, the surface of the SiNWs was modified with amino groups. Label-free detection of BR using amino modified Au@SiNWs with high point-to-point, scan-to-scan, and batch-to-batch reproducibility with a detection limit of 10-6 M has been demonstrated. Artificial urine, mimicking human urine samples, was used as the matrix to get insights into the influence of different parameters such as matrix complexity on the overall BR SERS signal. The signal stability was demonstrated for 7 days after adsorption of BR with a concentration of 5 × 10-5 M, which is the required sensitivity for clinical applications.
Collapse
Affiliation(s)
- Anna D Kartashova
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Kirill A Gonchar
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry A Chermoshentsev
- Skolkovo Institute of Science and Technology, Center for Photonics and Quantum Materials, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy pereulok 9, 141701 Moscow, Russia.,Russian Quantum Center, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russian Federation
| | - Ekaterina A Alekseeva
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Maxim B Gongalsky
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia
| | - Ivan V Bozhev
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Quantum Technology Center, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Andrei A Eliseev
- Lomonosov Moscow State University, Faculty of Chemistry, Leninskie Gory 1, 119991 Moscow, Russia
| | - Sergey A Dyakov
- Skolkovo Institute of Science and Technology, Center for Photonics and Quantum Materials, Bolshoy Boulevard 30, bld. 1, 143025 Moscow, Russia
| | - Jeanne V Samsonova
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Leninskie Gory 1, 119991 Moscow, Russia
| | - Liubov A Osminkina
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1, 119991 Moscow, Russia.,Institute for Biological Instrumentation of Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
18
|
Arshavsky-Graham S, Ward SJ, Massad-Ivanir N, Scheper T, Weiss SM, Segal E. Porous Silicon-Based Aptasensors: Toward Cancer Protein Biomarker Detection. ACS MEASUREMENT SCIENCE AU 2021; 1:82-94. [PMID: 34693403 PMCID: PMC8532149 DOI: 10.1021/acsmeasuresciau.1c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
The anterior gradient homologue-2 (AGR2) protein is an attractive biomarker for various types of cancer. In pancreatic cancer, it is secreted to the pancreatic juice by premalignant lesions, which would be an ideal stage for diagnosis. Thus, designing assays for the sensitive detection of AGR2 would be highly valuable for the potential early diagnosis of pancreatic and other types of cancer. Herein, we present a biosensor for label-free AGR2 detection and investigate approaches for enhancing the aptasensor sensitivity by accelerating the target mass transfer rate and reducing the system noise. The biosensor is based on a nanostructured porous silicon thin film that is decorated with anti-AGR2 aptamers, where real-time monitoring of the reflectance changes enables the detection and quantification of AGR2, as well as the study of the diffusion and target-aptamer binding kinetics. The aptasensor is highly selective for AGR2 and can detect the protein in simulated pancreatic juice, where its concentration is outnumbered by orders of magnitude by numerous proteins. The aptasensor's analytical performance is characterized with a linear detection range of 0.05-2 mg mL-1, an apparent dissociation constant of 21 ± 1 μM, and a limit of detection of 9.2 μg mL-1 (0.2 μM), which is attributed to mass transfer limitations. To improve the latter, we applied different strategies to increase the diffusion flux to and within the nanostructure, such as the application of isotachophoresis for the preconcentration of AGR2 on the aptasensor, mixing, or integration with microchannels. By combining these approaches with a new signal processing technique that employs Morlet wavelet filtering and phase analysis, we achieve a limit of detection of 15 nM without compromising the biosensor's selectivity and specificity.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Simon J. Ward
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Naama Massad-Ivanir
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Thomas Scheper
- Institute
of Technical Chemistry, Leibniz Universität
Hannover, Callinstraße 5, 30167 Hanover, Germany
| | - Sharon M. Weiss
- Department
of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ester Segal
- Department
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
19
|
Botulinum Neurotoxin-C Detection Using Nanostructured Porous Silicon Interferometer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxins (BoNT) are the most potent toxins, which are produced by Clostridium bacteria and cause the life-threatening disease of botulism in all vertebrates. Specifically, animal botulism represents a serious environmental and economic concern in animal production due to the high mortality rates observed during outbreaks. Despite the availability of vaccines against BoNT, there are still many outbreaks of botulism worldwide. Alternative assays capable of replacing the conventional in vivo assay in terms of rapid and sensitive quantification, and the applicability for on-site analysis, have long been perused. Herein, we present a simple, highly sensitive and label-free optical biosensor for real-time detection of BoNT serotype C using a porous silicon Fabry–Pérot interferometer. A competitive immunoassay coupled to a biochemical cascade reaction was adapted for optical signal amplification. The resulting insoluble precipitates accumulated within the nanostructure changed the reflectivity spectra by alternating the averaged refractive index. The augmented optical performance allowed for a linear response within the range of 10 to 10,000 pg mL−1 while presenting a detection limit of 4.8 pg mL−1. The practical aspect of the developed assay was verified using field BoNT holotoxins to exemplify the potential use of the developed optical approach for rapid bio-diagnosis of BoNT. The specificity and selectivity of the assay were successfully validated using an adjacent holotoxin relevant for farm animals (BoNT serotype D). Overall, this work sets the foundation for implementing a miniaturized interferometer for routine on-site botulism diagnosis, thus significantly reducing the need for animal experimentation and shortening analysis turnaround for early evidence-based therapy.
Collapse
|
20
|
Bismuth M, Zaltzer E, Muthukumar D, Suckeveriene R, Shtenberg G. Real-time detection of copper contaminants in environmental water using porous silicon Fabry-Pérot interferometers. Analyst 2021; 146:5160-5168. [PMID: 34286718 DOI: 10.1039/d1an00701g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Water sources are vulnerable to intentional and inadvertent human pollution with thousands of synthetic and geogenic trace contaminants, posing long-term effects on the aquatic ecosystem and human health. Thus, early and rapid detection of water pollutants followed by corrective and preventive actions can lead to the reduction of the overall polluting impact to safeguard public health. This study presents a generic sensing assay for the label-free detection of copper contaminants in environmental water samples using multilayered polyethylenimine (PEI) functionalized porous silicon Fabry-Pérot interferometers. The selective chelating activity of PEI thin-films was monitored in real-time by reflective interferometric Fourier transform spectroscopy (RIFTS) while assessing the improved optical responses. The optimized scaffold of two sequential PEI layers depicted a linear working range between 0.2 and 2 ppm while presenting a detection limit of 0.053 ppm (53 ppb). The specificity of the developed platform was cross-validated against various metallic pollutants and cations commonly found in water bodies (i.e., Cd2+, Pb2+, Cr3+, Fe3+, Mg2+, Ca2+, Zn2+, K+ and Al3+). Finally, as a proof of concept, the analytical performance of the porous interferometers for real-life scenarios was demonstrated in three water samples (tap, ground and irrigation), presenting sufficient adaptability to complex matrix analysis with recovery values of 85-106%. Overall, the developed sensing concept offers an efficient, rapid and label-free methodology that can be potentially adopted for routine on-site detection using a simple and portable device.
Collapse
Affiliation(s)
- Mike Bismuth
- Life Sciences and Nanotechnology, Bar Ilan University, Ramat-Gan, Israel
| | - Eytan Zaltzer
- Epidemiology and Preventive Medicine, School of Public Health - Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Divagar Muthukumar
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel.
| | - Ran Suckeveriene
- Department of Water Industry Engineering, Kinneret Academic College, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
21
|
Balderas-Valadez RF, Pacholski C. Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win-Win Situation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36436-36444. [PMID: 34297537 PMCID: PMC10015452 DOI: 10.1021/acsami.1c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Label-free optical sensors are attractive candidates, for example, for detecting toxic substances and monitoring biomolecular interactions. Their performance can be pushed by the design of the sensor through clever material choices and integration of components. In this work, two porous materials, namely, porous silicon and plasmonic nanohole arrays, are combined in order to obtain increased sensitivity and dual-mode sensing capabilities. For this purpose, porous silicon monolayers are prepared by electrochemical etching and plasmonic nanohole arrays are obtained using a bottom-up strategy. Hybrid sensors of these two materials are realized by transferring the plasmonic nanohole array on top of the porous silicon. Reflectance spectra of the hybrid sensors are characterized by a fringe pattern resulting from the Fabry-Pérot interference at the porous silicon borders, which is overlaid with a broad dip based on surface plasmon resonance in the plasmonic nanohole array. In addition, the hybrid sensor shows a significant higher reflectance in comparison to the porous silicon monolayer. The sensitivities of the hybrid sensor to refractive index changes are separately determined for both components. A significant increase in sensitivity from 213 ± 12 to 386 ± 5 nm/RIU is determined for the transfer of the plasmonic nanohole array sensors from solid glass substrates to porous silicon monolayers. In contrast, the spectral position of the interference pattern of porous silicon monolayers in different media is not affected by the presence of the plasmonic nanohole array. However, the changes in fringe pattern reflectance of the hybrid sensor are increased 3.7-fold after being covered with plasmonic nanohole arrays and could be used for high-sensitivity sensing. Finally, the capability of the hybrid sensor for simultaneous and independent dual-mode sensing is demonstrated.
Collapse
|
22
|
Cheng R, Wang S, Moslova K, Mäkilä E, Salonen J, Li J, Hirvonen J, Xia B, Santos HA. Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by 1H NMR. ACS Biomater Sci Eng 2021; 8:4132-4139. [PMID: 34292713 PMCID: PMC9554871 DOI: 10.1021/acsbiomaterials.1c00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Porous silicon (PSi)
nanoparticles have been applied in various
fields, such as catalysis, imaging, and biomedical applications, because
of their large specific surface area, easily modifiable surface chemistry,
biocompatibility, and biodegradability. For biomedical applications,
it is important to precisely control the surface modification of PSi-based
materials and quantify the functionalization density, which determines
the nanoparticle’s behavior in the biological system. Therefore,
we propose here an optimized solution to quantify the functionalization
groups on PSi, based on the nuclear magnetic resonance (NMR) method
by combining the hydrolysis with standard 1H NMR experiments.
We optimized the hydrolysis conditions to degrade the PSi, providing
mobility to the molecules for NMR detection. The NMR parameters were
also optimized by relaxation delay and the number of scans to provide
reliable NMR spectra. With an internal standard, we quantitatively
analyzed the surficial amine groups and their sequential modification
of polyethylene glycol. Our investigation provides a reliable, fast,
and straightforward method in quantitative analysis of the surficial
modification characterization of PSi requiring a small amount of sample.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jiachen Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,College of Science Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Bing Xia
- College of Science Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,Helsinki Insititute of Life Science, HiLIFE, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
23
|
Chung H, Boriskina SV. Inverse design of a single-frequency diffractive biosensor based on the reporter cleavage detection mechanism. OPTICS EXPRESS 2021; 29:10780-10799. [PMID: 33820205 DOI: 10.1364/oe.421656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Vertically interrogated porous silicon (PSi) interferometric biosensors have shown high potential for sensing bio-molecules as they combine high detection sensitivity with simplicity of fabrication, functionalization, optical coupling, and interfacing with microfluidic systems. However, most interferometric sensor designs require either broadband or wavelength-tunable light sources as well as wide-angle detection schemes, increasing their complexity and cost for point-of-care biosensing applications. The limit of detection of such sensors is also constrained by the small size and low refractive index of biological molecules, making it hard to detect very low concentrations of pathogens. In this work, we use a large-scale computational "inverse design" technique to demonstrate a single-frequency, fixed-angle PSi-based biosensor, which exploits a recently developed high-contrast reporter cleavage detection (HCCD) technique. The HCCD sensors detect high-index reporter cleavage events instead of low-index target analyte capture events as typical for traditional label-free optical biosensors. We use the inverse design approach to discover an optimal configuration of a PSi biosensor that makes use of the extended achievable range of cleavage-induced PSi effective index variations and can be interrogated at a single frequency and at a fixed angle. The optimized design in the form of a one-dimensional PSi grating exhibits the change in the reflectance up to 55 % at the interrogation angle of 12∘ and wavelength of 600 nm, which is caused by cleavage of Au nanoparticle reporters initially occupying 2% of the sensor surface area. The maximum possible change in reflectance is predicted to be 222 % (for a two-dimensional freeform design not amenable to fabrication). This demonstration may pave the way for developing new or redesigned conventional interferometric and colorimetric point-of-care biosensor systems in combination with the cleavage-based detection schemes.
Collapse
|
24
|
Wang Y, Desroches GJ, Macfarlane RJ. Ordered polymer composite materials: challenges and opportunities. NANOSCALE 2021; 13:426-443. [PMID: 33367442 DOI: 10.1039/d0nr07547g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer nanocomposites containing nanoscale fillers are an important class of materials due to their ability to access a wide variety of properties as a function of their composition. In order to take full advantage of these properties, it is critical to control the distribution of nanofillers within the parent polymer matrix, as this structural organization affects how the two constituent components interact with one another. In particular, new methods for generating ordered arrays of nanofillers represent a key underexplored research area, as emergent properties arising from nanoscale ordering can be used to introduce novel functionality currently inaccessible in random composites. The knowledge gained from developing such methods will provide important insight into the thermodynamics and kinetics associated with nanomaterial and polymer assembly. These insights will not only benefit researchers working on new composite materials, but will also deepen our understanding of soft matter systems in general. In this review, we summarize contemporary research efforts in manipulating nanofiller organization in polymer nanocomposites and highlight future challenges and opportunities for constructing ordered nanocomposite materials.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Griffen J Desroches
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
25
|
Vercauteren R, Leprince A, Mahillon J, Francis LA. Porous Silicon Biosensor for the Detection of Bacteria through Their Lysate. BIOSENSORS 2021; 11:27. [PMID: 33498536 PMCID: PMC7909573 DOI: 10.3390/bios11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
Porous silicon (PSi) has been widely used as a biosensor in recent years due to its large surface area and its optical properties. Most PSi biosensors consist in close-ended porous layers, and, because of the diffusion-limited infiltration of the analyte, they lack sensitivity and speed of response. In order to overcome these shortcomings, PSi membranes (PSiMs) have been fabricated using electrochemical etching and standard microfabrication techniques. In this work, PSiMs have been used for the optical detection of Bacillus cereus lysate. Before detection, the bacteria are selectively lysed by PlyB221, an endolysin encoded by the bacteriophage Deep-Blue targeting B. cereus. The detection relies on the infiltration of bacterial lysate inside the membrane, which induces a shift of the effective optical thickness. The biosensor was able to detect a B. cereus bacterial lysate, with an initial bacteria concentration of 105 colony forming units per mL (CFU/mL), in only 1 h. This proof-of-concept also illustrates the specificity of the lysis before detection. Not only does this detection platform enable the fast detection of bacteria, but the same technique can be extended to other bacteria using selective lysis, as demonstrated by the detection of Staphylococcus epidermidis, selectively lysed by lysostaphin.
Collapse
Affiliation(s)
- Roselien Vercauteren
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (J.M.)
| | - Laurent A. Francis
- Electrical Engineering Department, Institute of Information and Communication Technologies Electronics and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
26
|
Antunez EE, Mahon CS, Tong Z, Voelcker NH, Müllner M. A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules 2020; 22:441-453. [PMID: 33320642 DOI: 10.1021/acs.biomac.0c01318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waterborne diarrheal diseases such as travelers' diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers' diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 μM. Furthermore, our platform shows a temperature-mediated "catch-and-release" behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use.
Collapse
Affiliation(s)
- E Eduardo Antunez
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Clare S Mahon
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney 2006, New South Wales, Australia
| |
Collapse
|
27
|
Kumar DN, Pinker N, Shtenberg G. Inflammatory biomarker detection in milk using label-free porous SiO2 interferometer. Talanta 2020; 220:121439. [DOI: 10.1016/j.talanta.2020.121439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
|
28
|
Kumar DN, Pinker N, Shtenberg G. Porous Silicon Fabry-Pérot Interferometer for N-Acetyl-β-d-Glucosaminidase Biomarker Monitoring. ACS Sens 2020; 5:1969-1976. [PMID: 32573203 DOI: 10.1021/acssensors.0c00348] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bovine mastitis (BM) is a prominent inflammatory disease affecting the dairy industry worldwide, originated by pathogenic agent invasion onto the mammary gland. Early detection of new BM cases is of high importance for infection control within the herd. Conventional analytical techniques lack the ability to detect BM-predicting biomarkers, used as analytical indicators for health status evaluation, in real time or outside the laboratory boundaries. Herein, we describe a biosensing platform for label-free detection and identification of BM onset through targeting N-acetyl-β-d-glucosaminidase (NAGase) for potential evidence-based therapy. The lysosomal activity in dissimilar milk qualities was monitored by a gelatin-functionalized porous Si Fabry-Pérot interferometer, while estimating the biochemical reaction precipitating products within the nanostructure. The optical response was proportional to the inherent NAGase concentration found in real milk samples, influenced by two dominant BM causative pathogens (i.e., Escherichia coli and Streptococcus dysgalactiae) at various somatic cell counts. Quantitative analysis of NAGase levels within the entire inflammatory spectrum (healthy, subclinical, and clinical BM) was obtained within the range of 1.0-4.2 μM/min (enzymatic activity per volume unit), while presenting a detection limit of 0.51 μM/min. The optical performances correspond with standardized biochemical activity assay in dissimilar milk qualities. Overall, the presented sensing concept exhibits the potential of BM-predicting biomarker detection using a simple and portable experimental setup for convenient early biodiagnostics and health status evaluation.
Collapse
Affiliation(s)
- D. Nanda Kumar
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - Nofar Pinker
- Department of Biotechnology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Giorgi Shtenberg
- Institute of Agricultural Engineering, ARO, The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
29
|
Abu-Thabit N, Ratemi E. Hybrid Porous Silicon Biosensors Using Plasmonic and Fluorescent Nanomaterials: A Mini Review. Front Chem 2020; 8:454. [PMID: 32548094 PMCID: PMC7272471 DOI: 10.3389/fchem.2020.00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
During the last two decades, porous silicon (PSi) has been proposed as a high-performance biosensing platform due to its biocompatibility, surface tailorability, and reproducibility. This review focuses on the recent developments and progress in the area related to hybrid PSi biosensors using plasmonic metal nanoparticles (MNPs), fluorescent quantum dots (QDs), or a combination of both MNPs and QDs for creating hybrid nanostructured architectures for ultrasensitive detection of biomolecules. The review discusses the mechanisms of sensitivity enhancement based on Localized Surface Plasmon Resonance (LSPR) of MNPs, Fluorescence Resonance Energy Transfer (FRET) in the case of MNPs/QDs donor-acceptor interactions, and photoluminescence/fluorescence enhancement resulting from the embedded fluorescent QDs inside the PSi microcavity. The review highlights the key features of hybrid PSi/MNPs/QDs biosensors for dual-mode detection applications.
Collapse
Affiliation(s)
- Nedal Abu-Thabit
- Department of Chemical and Process Engineering Technology, Jubail Industrial City, Al Jubail, Saudi Arabia
| | - Elaref Ratemi
- Department of Chemical and Process Engineering Technology, Jubail Industrial City, Al Jubail, Saudi Arabia
| |
Collapse
|