1
|
Li S, Luo M, Li J, Huang Q, Lei B. Sprayable Nanocomposites Hydrogel for Wound Healing and Skin Regeneration. Adv Healthc Mater 2024; 13:e2402549. [PMID: 39400478 DOI: 10.1002/adhm.202402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Wound management remains a critical challenge worldwide and imposes a huge financial burden on every nation. Hydrogels are promising for biomedical applications because of their extracellular matrix (ECM) like structure, good biocompatibility and multifunctional bioactivity. However, the poor mechanical properties and inconvenient operation of traditional hydrogels make it difficult to meet the complex and multifaceted needs of clinical practice. In recent years, the multifunctional nanocomposites hydrogel with especially sprayable feature have shown enhanced mechanical properties and facile operation, which enable their huge clinical applications value. A unique and powerful nanocomposite hydrogels (NCH) platform is developed by combining the many advantages of nanomaterials and hydrogels, which can achieve efficient trauma repair. This work reviews important advances on the preparation, functions and applications of sprayable NCH platforms. The challenges and future trends in the field with the aim of providing researchers with clarity on the past, present, and future of the emerging field of sprayable NCH are also proposed in detail.
Collapse
Affiliation(s)
- Sihua Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710126, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, 471031, China
| | - Qian Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
2
|
Fu Z, Zou J, Zhong J, Zhan J, Zhang L, Xie X, Zhang L, Li W, He R. Curcumin-Loaded Nanocomposite Hydrogel Dressings for Promoting Infected Wound Healing and Tissue Regeneration. Int J Nanomedicine 2024; 19:10479-10496. [PMID: 39439502 PMCID: PMC11495204 DOI: 10.2147/ijn.s479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Background The skin regulates body processes. When damaged, it is prone to breeding bacteria, causing inflammation and impeding wound healing. There is an urgent need for new dressings that can combat bacteria to aid in infectious wound repair. Methods In this study, a curcumin-loaded nanocomposite hydrogel dressing (GelMA/AHA-Gel@Cur) with antibacterial properties and strong toughness was synthesized, designed to combine the modified gelatin-based hydrogel (GelMA/AHA) with curcumin-coated gelatin (Gel@Cur) nanoparticles to promote the healing of bacterial infection wounds. Under UV irradiation, methylacrylylated gelatin (GelMA) and aldehyaluronic acid (AHA) formed a composite network hydrogel through radical polymerization and Schiff base reaction. Meanwhile, the residual aldehyde group on the molecular chain of AHA securely locked Gel@Cur nanoparticles in the hydrogel network through Schiff base reaction. Results The addition of Gel@Cur nanoparticles not only enhanced the hydrogel's mechanical strength but also facilitated a sustained, gradual release of curcumin, endowing the composite hydrogel with robust antimicrobial capabilities. In an animal model of infected wounds, the composite hydrogel significantly improved wound closure, healing, and vascularization compared to the control group. Hemocompatibility tests confirmed the hydrogel's safety, with a hemolysis ratio of just 0.45%. Histological evaluation following treatment with the composite hydrogel showed improved tissue architecture, increased collagen deposition, and regeneration of dermal gland structures. Conclusion The GelMA/AHA-Gel@Cur composite hydrogel exhibits excellent mechanical properties, potent antimicrobial activity, and controlled drug release, along with superior cell and hemocompatibility. These characteristics make it a promising material for infected wound repair and a potential candidate for clinical skin regeneration applications.
Collapse
Affiliation(s)
- Zhengzheng Fu
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jingwen Zou
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jing Zhong
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Jipang Zhan
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lian Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Xiaoru Xie
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| | - Lai Zhang
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
- Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, Guangdong Province, 510500, People’s Republic of China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatologic Oncology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510000, People’s Republic of China
| |
Collapse
|
3
|
Chen J, Jing Y, Liu Y, Luo Y, He Y, Qiu X, Zhang Q, Xu H. Molecularly Imprinted Macroporous Hydrogel Promotes Bone Regeneration via Osteogenic Induction and Osteoclastic Inhibition. Adv Healthc Mater 2024; 13:e2400897. [PMID: 38626922 DOI: 10.1002/adhm.202400897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Indexed: 04/30/2024]
Abstract
Macroporous hydrogels offer physical supportive spaces and bio-instructive environment for the seeded cells, where cell-scaffold interactions directly influence cell fates and subsequently affect tissue regeneration post-implantation. Effectively modifying bioactive motifs at the inner pore surface provides appropriate niches for cell-scaffold interactions. A molecular imprinting method and sacrificial templates are introduced to prepare inner pore surface modification in the macroporous hydrogels. In detail, acrylated bisphosphonates (Ac-BPs) chelating to templates (CaCO3 particles) are anchored on the inner pore surface of the methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA)-poly (ethylene glycol) diacrylate (PEGDA) macroporous hydrogel (GHP) to form a functional hydrogel scaffold (GHP-int-BP). GHP-int-BP, but not GHP, effectively crafts artificial cell niches to substantially alter cell fates, including osteogenic induction and osteoclastic inhibition, and promote in situ bone regeneration. These findings highlight that molecular imprinting on the inner pore surface in the hydrogel efficiently creates orthogonally additive bio-instructive scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Jingxiao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yihan Jing
- Geriatric Medicine Department, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, P. R. China
| | - Yanhong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yongxi Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yutong He
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Xiaozhong Qiu
- Geriatric Medicine Department, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, P. R. China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
4
|
Liu X, Zhang Q, Cao Y, Hussain Z, Xu M, Liu Y, Ullah I, Lu Z, Osaka A, Lin J, Pei R. An Injectable Hydrogel Composing Anti-Inflammatory and Osteogenic Therapy toward Bone Erosions Microenvironment Remodeling in Rheumatoid Arthritis. Adv Healthc Mater 2024; 13:e2304668. [PMID: 38925602 DOI: 10.1002/adhm.202304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Healing bone erosions in rheumatoid arthritis (RA) remains greatly challenging via biomaterial strategies. Given the unsuccessful innate bone erosion healing due to an inflammatory disorder, over-activated osteoclasts, and impaired osteoblasts differentiation, RA pathogenesis-guided engineering of an innovative hydrogel platform is needed for remodeling osteoimmune and osteogenic microenvironment of bone erosion healing. Herein, in situ adaptable and injectable interpenetrating polymer network (IPN) hydrogel is developed through an ingenious combination of a bio-orthogonal reaction between hyaluronic acid (HA) and collagen, along with effective electrostatic interactions leveraging bisphosphonate (BP)-functionalized HA macromers (HABP) and nanorod shaped zinc (Zn)-doped biphasic calcium phosphate (ZnBCP). IPN hydrogel exhibits exceptional adaptability to the local shape complexity at bone erosions, and by integrating ZnBCP and HABP, a multi-stage releasing platform is engineered, facilitating controlled cargo delivery for remodeling more anti-inflammatory M2 cells and reducing over-activated osteoclastic activities, thereby reconstructing the bone regeneration microenvironment. Sustainedly co-delivering multiple ions (calcium and phosphate) can display excellent osteogenic properties and be conducive to the bone formation process, by effects of osteogenesis-associated cell differentiation. Overall, the introduced bioactive IPN hydrogel therapy remodels the osteoimmune environment by synergistic pro-inflammation-resolving, osteogenesis, and anti-osteoclastic activities, displaying excellent bone reconstruction in the collagen-induced arthritis rabbit model.
Collapse
Affiliation(s)
- Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Qin Zhang
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, P. R. China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, P. R. China
| | - Zahid Hussain
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Mingsheng Xu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhongzhong Lu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Akiyoshi Osaka
- School of Materials Science of Engineering, Henan University of Science of Technology, Luoyang, Henan, 471023, P. R. China
- Faculty of Engineering, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama, 700-8530, Japan
| | - Jun Lin
- Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, P. R. China
- Department of Orthopaedics, Fourth Affiliated of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, 215001, P. R. China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| |
Collapse
|
5
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Ding H, Hao L, Mao H. Magneto-responsive biocomposites in wound healing: from characteristics to functions. J Mater Chem B 2024; 12:7463-7479. [PMID: 38990160 DOI: 10.1039/d4tb00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The number of patients with non-healing wounds continuously increases, and has become a prominent societal issue that imposes a heavy burden on both patients and the entire healthcare system. Although traditional dressings play an important role in wound healing, the complexity and diversity of the healing process pose serious challenges in this field. Magneto-responsive biocomposites, with their excellent biocompatibility, remote spatiotemporal controllability, and unique convenience, demonstrate enticing advantages in the field of wound dressings. However, current research on magneto-responsive biocomposites as wound dressings lacks comprehensive and in-depth reviews, which to some extent, restricts the deeper understanding and further development of this field. Based on this, this paper reviews the latest advances in magnetic responsive wound dressings for wound healing. First, we review the process of skin wound healing and parameters for assessing repair progress. Then, we systematically discuss the preparation strategies and unique characteristics of magneto-responsive biocomposites, focusing on magneto-induced orientation, magneto-induced mechanical stimulation, and magnetocaloric effect. Subsequently, this review elaborates the multiple mechanisms of magneto-responsive biocomposites in promoting wound healing, including regulating cell behavior, enhancing electrical signal, controlling drug release, and accelerating tissue reconstruction. Finally, we further propose the development direction and future challenges of magnetic responsive biomaterials as wound dressings in clinical application.
Collapse
Affiliation(s)
- Haoyang Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Tao S, Zhu S, Wang W, Cao X, Hu Y, Chen Q, Zha L, Zha Z. Shape Self-Adaptive Liquid Embolic Agent for Ultrafast and Durable Vascular Embolization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31936-31949. [PMID: 38869429 DOI: 10.1021/acsami.4c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Minimally invasive embolization greatly decreases the mortality resulting from vascular injuries while still suffering from a high risk of recanalization and systematic thrombosis due to the intrinsic hydrophobicity and poor adhesion of the clinically used liquid embolic agent of Lipiodol. In this study, a shape self-adaptive liquid embolic agent was developed by mixing biocompatible poly(acrylic acid) (PAA), two-dimensional magnesium-aluminum layered double hydroxide (LDH), and poly(ethylene glycol)200 (PEG200). Upon contact with blood, the injectable PAA-LDH@PEG200 would quickly absorb water to form an adhesive and mechanically strong PAA-LDH thin hydrogel within 5 s, which could firmly adhere to the blood vessel wall for ultrafast and durable embolization. In addition, benefiting from the "positively charged nucleic center effect" of LDH nanosheets, the liquid PAA-LDH@PEG200 could avoid vascular distension by PAA overexpansion and possess high shock-resistant mechanical strength from the blood flow. Furthermore, both in vitro and in vivo embolization experiments demonstrated the complete embolic capacity of liquid PAA-LDH@PEG200 without the occurrence of recanalization for 28 days and also the great potential to act as a platform to couple with chemotherapeutic drugs for the minimized transcatheter arterial chemoembolization (TACE) treatment of VX2 tumors without recurrence for 18 days. Thus, liquid PAA-LDH@PEG200 developed here possesses great potential to act as a shape self-adaptive liquid embolic agent for ultrafast and durable vascular embolization.
Collapse
Affiliation(s)
- Shi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shuangli Zhu
- Institute of Medical Health, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou 450000, P. R. China
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qian Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lisha Zha
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
- School of Biomedical Sciences, Hunan University, Changsha 410082, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
8
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Cai R, Shan Y, Du F, Miao Z, Zhu L, Hang L, Xiao L, Wang Z. Injectable hydrogels as promising in situ therapeutic platform for cartilage tissue engineering. Int J Biol Macromol 2024; 261:129537. [PMID: 38278383 DOI: 10.1016/j.ijbiomac.2024.129537] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Injectable hydrogels are gaining prominence as a biocompatible, minimally invasive, and adaptable platform for cartilage tissue engineering. Commencing with their synthesis, this review accentuates the tailored matrix formulations and cross-linking techniques essential for fostering three-dimensional cell culture and melding with complex tissue structures. Subsequently, it spotlights the hydrogels' enhanced properties, highlighting their augmented functionalities and broadened scope in cartilage tissue repair applications. Furthermore, future perspectives are advocated, urging continuous innovation and exploration to surmount existing challenges and harness the full clinical potential of hydrogels in regenerative medicine. Such advancements are crucial for validating the long-term efficacy and safety of hydrogels, positioning them as a promising direction in regenerative medicine to address cartilage-related ailments.
Collapse
Affiliation(s)
- Rong Cai
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Fengyi Du
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212013, China
| | - Zhiwei Miao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Li Hang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| |
Collapse
|
10
|
Taghizadeh S, Tayebi L, Akbarzadeh M, Lohrasbi P, Savardashtaki A. Magnetic hydrogel applications in articular cartilage tissue engineering. J Biomed Mater Res A 2024; 112:260-275. [PMID: 37750666 DOI: 10.1002/jbm.a.37620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.
Collapse
Affiliation(s)
- Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Soltani L, Varmira K, Nazari M. Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds. Sci Rep 2024; 14:161. [PMID: 38168144 PMCID: PMC10762099 DOI: 10.1038/s41598-023-50664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study, the creation of a chitosan/alginate scaffold hydrogel with and without FeO-NPs or CuO-NPs was studied. From fetal ovine bone marrow mesenchymal stem cells (BM-MSCs) were isolated and cultivated. Their differentiation into osteocyte and adipose cells was investigated. Also, on the scaffolds, cytotoxicity and apoptosis were studied. To investigate the differentiation, treatment groups include: (1) BM-MSCs were plated in DMEM culture medium with high glucose containing 10% FBS and antibiotics (negative control); (2) BM-MSCs were plated in osteogenic differentiation medium (positive control); (3) positive control group + FeO-NPs, (4) positive control group + CuO-NPs; (5) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold; (6) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/FeO-NPs scaffold; and (7) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/CuO-NPs scaffold. Alkaline phosphatase enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were evaluated after 21 days of culture. In addition, qRT-PCR was used to assess the expression of the ALP, ColA, and Runx2 genes. When compared to other treatment groups, the addition of CuO-NPs in the chitosan/alginate hydrogel significantly increased the expression of the ColA and Runx2 genes (p < 0.05). However, there was no significant difference between the chitosan/alginate hydrogel groups containing FeO-NPs and CuO-NPs in the expression of the ALP gene. It appears that the addition of nanoparticles, in particular CuO-NPs, has made the chitosan/alginate scaffold more effective in supporting osteocyte differentiation.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, 67144-14971, Iran.
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
12
|
Shou Y, Le Z, Cheng HS, Liu Q, Ng YZ, Becker DL, Li X, Liu L, Xue C, Yeo NJY, Tan R, Low J, Kumar ARK, Wu KZ, Li H, Cheung C, Lim CT, Tan NS, Chen Y, Liu Z, Tay A. Mechano-Activated Cell Therapy for Accelerated Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304638. [PMID: 37681325 DOI: 10.1002/adma.202304638] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. A powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) is developed to accelerate diabetic wound healing. The hydrogel encapsulates U.S. Food and Drug Administration (FDA)-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a nongenetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition, and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, a mechanosensitive fibroblast subpopulation is identified that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. The "all-in-one" system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - David Laurence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Natalie Jia Ying Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Runcheng Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Arun R K Kumar
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119288, Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
13
|
Vítková L, Kazantseva N, Musilová L, Smolka P, Valášková K, Kocourková K, Humeník M, Minařík A, Humpolíček P, Mráček A, Smolková I. Magneto-responsive hyaluronan hydrogel for hyperthermia and bioprinting: Magnetic, rheological properties and biocompatibility. APL Bioeng 2023; 7:036113. [PMID: 37692374 PMCID: PMC10491462 DOI: 10.1063/5.0147181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2024] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Magneto-responsive soft hydrogels are used for a number of biomedical applications, e.g., magnetic hyperthermia, drug delivery, tissue engineering, and neuromodulation. In this work, this type of hydrogel has been fabricated from hyaluronan (HA) filled with a binary system of Al2O3 nanoparticles and multicore magnetic particles (MCPs), which were obtained by clustering of superparamagnetic iron oxide FeOx NPs. It was established that the presence of diamagnetic Al2O3 has several positive effects: it enhances the hydrogel storage modulus and long-term stability in the cell cultivation medium; prevents the magnetic interaction among the MCPs. The HA hydrogel provides rapid heating of 0.3 °C per min under exposure to low amplitude radio frequency alternating magnetic field. Furthermore, the magneto-responsive hydrogel was successfully used to encapsulate cells and extrusion-based 3D printing with 87±6% cell viability, thus providing a bio-ink. The combination of high heating efficiency, softness, cytocompatibility, and 3D printability of magnetic HA hydrogel leads to a material suitable for biomedical applications.
Collapse
Affiliation(s)
- L. Vítková
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 5669, 76001 Zlín, Czech Republic
| | | | | | - P. Smolka
- Author to whom correspondence should be addressed:
| | - K. Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | | | - M. Humeník
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | | | | | | | - I. Smolková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
14
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
15
|
Wang Q, Zhang Y, Ma Y, Wang M, Pan G. Nano-crosslinked dynamic hydrogels for biomedical applications. Mater Today Bio 2023; 20:100640. [PMID: 37179534 PMCID: PMC10173301 DOI: 10.1016/j.mtbio.2023.100640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hydrogels resemble natural extracellular matrices and have been widely studied for biomedical applications. Nano-crosslinked dynamic hydrogels combine the injectability and self-healing property of dynamic hydrogels with the versatility of nanomaterials and exhibit unique advantages. The incorporation of nanomaterials as crosslinkers can improve the mechanical properties (strength, injectability, and shear-thinning properties) of hydrogels by reinforcing the skeleton and endowing them with multifunctionality. Nano-crosslinked functional hydrogels that can respond to external stimuli (such as pH, heat, light, and electromagnetic stimuli) and have photothermal properties, antimicrobial properties, stone regeneration abilities, or tissue repair abilities have been constructed through reversible covalent crosslinking strategies and physical crosslinking strategies. The possible cytotoxicity of the incorporated nanomaterials can be reduced. Nanomaterial hydrogels show excellent biocompatibility and can facilitate cell proliferation and differentiation for biomedical applications. This review introduces different nano-crosslinked dynamic hydrogels in the medical field, from fabrication to application. In this review, nanomaterials for dynamic hydrogel fabrication, such as metals and metallic oxides, nanoclays, carbon-based nanomaterials, black phosphorus (BP), polymers, and liposomes, are discussed. We also introduce the dynamic crosslinking method commonly used for nanodynamic hydrogels. Finally, the medical applications of nano-crosslinked hydrogels are presented. We hope that this summary will help researchers in the related research fields quickly understand nano-crosslinked dynamic hydrogels to develop more preparation strategies and promote their development and application.
Collapse
Affiliation(s)
- Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| |
Collapse
|
16
|
Bruschi ML, de Souza Nunes GC. Magnetic Gels in Skin Cancer Treatment: A Review of Potential Applications in Diagnostics, Drug Delivery and Hyperthermia. Pharmaceutics 2023; 15:pharmaceutics15041244. [PMID: 37111728 PMCID: PMC10143045 DOI: 10.3390/pharmaceutics15041244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Skin cancer (SC) is affecting an increasing number of people worldwide. Its lesions affect mainly the most exposed regions of the skin. SC is classified into to main categories: non-melanoma (basal cell carcinoma of the epidermis and squamous cell carcinoma) and melanoma (the abnormal proliferation of melanocytes, which is rarer, more hazardous, and more deadly). Prevention and early diagnosis are important actions, and surgery is often considered. After the removal of cancerous lesions, the local administration of medicine can guarantee anticancer therapeutic action, rapid healing and the recovery of tissue, ensuring the absence of recurrence. Magnetic gels (MGs) have attracted increased attention regarding their pharmaceutical and biomedical applications. They are magnetic nanoparticles (e.g., iron oxide nanoparticles) dispersed in a polymeric matrix, which constitute adaptive systems under a magnetic field. MGs can combine magnetic susceptibility, high elasticity, and softness, and are thus useful platforms for diagnostics, drug delivery, and also for hyperthermia. This manuscript reviews MGs as a technological strategy for the treatment of SC. An overview of SC and the treatment, types, and methods of preparing MGs are discussed. Moreover, the applications of MGs in SC and their future perspectives are considered. The combination of polymeric gels and magnetic nanoparticles continues to be investigated, and new products must hit the market. Clinical trials and new products are expected, due to the important advantages of MGs.
Collapse
Affiliation(s)
- Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil
| | - Glécilla Colombelli de Souza Nunes
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, Maringa 87020-900, PR, Brazil
| |
Collapse
|
17
|
Dadashi H, Eskandani M, Roshangar L, Sharifi-Azad M, Shahpouri M, Cho WC, Jahanban-Esfahlan R. Remotely-controlled hydrogel platforms for recurrent cancer therapy. J Drug Deliv Sci Technol 2023; 82:104354. [DOI: 10.1016/j.jddst.2023.104354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Dong D, Chen R, Jia J, Zhao C, Chen Z, Lu Q, Sun Y, Huang W, Wang C, Li Y, He H. Tailoring and application of a multi-responsive cellulose nanofibre-based 3D nanonetwork wound dressing. Carbohydr Polym 2023; 305:120542. [PMID: 36737193 DOI: 10.1016/j.carbpol.2023.120542] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The rapid loss of drugs and the weak curative effects due to cyclical urination are the main reasons why wound heal with difficulty after bladder tumour resection. Here, a bioinspired cellulose nanofibre (CNF)-based magnetic 3D nanonetwork wound dressing with excellent tissue adhesion and biocompatibility is designed by the assembly of pH- and near infrared-responsive CNF nanoskeletons, magnetic switching Fe3O4 nanoparticles, and temperature switching Pluronic®F-127. The dressing with high loading capacity for mitomycin and indocyanine green can form a sticky 3D nanonetwork at the wound site and remain for a long time to release drugs through an external magnetic field. Interestingly, the dressing possessed excellent antibacterial activity, bacterial biofilm elimination, T24 tumour cell killing, and wound healing promotion through photothermal, photodynamic, and chemotherapy. Therefore, it has promising application for bladder postoperative infected wound healing to avoid rapid loss of drugs due to cyclical urination.
Collapse
Affiliation(s)
- Die Dong
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Jihong Jia
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Qin Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Weiyi Huang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China
| | - Chunfang Wang
- Affiliated Hospital of You Jiang Medical College for Nationalities, Baise 533000, PR China.
| | - Yao Li
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
19
|
Xie G, Wang L, Li B, Zhang C, Zhang X. Transform commercial magnetic materials into injectable gel for magnetic hyperthermia therapy in vivo. Colloids Surf B Biointerfaces 2023; 224:113185. [PMID: 36758458 DOI: 10.1016/j.colsurfb.2023.113185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Magnetic hyperthermia therapy of tumors employing magnetic materials has been greatly developed due to their low invasiveness, high specificity, few side effects and no limitation of tissue penetration depth. However, traditional nanoscale magnetocaloric materials exhibited the disadvantages of low tumor enrichment efficiency, complex preparation process and difficulty in large-scale production. While eddy current loss-based magnetic hyperthermia tumor ablation with metal implants faces shortcomings such as high invasiveness and low selectivity of tumor shape and volume. Herein, we developed injectable magnetic gels by adding commercial magnetic metal or metal oxide powders (CMMPs) into alginate-Ca2+ (ALG-Ca2+) gel through an ultra-simple mixing strategy for magneto-thermal therapy of tumors in vivo. The ALG-Ca2+ gel can not only turn the water-insoluble CMMPs into injectable gel, but also retain the inherent magnetic loss-based heating capacity. Besides, CMMPs in the gels are easily retained at the tumor site after peritumoral injection because of their large size and strong hydrophobicity, which benefits the efficiency and accuracy of the treatment and reduces side effects to the surrounding tissues. The prepared ALG-Ca2+-CMMPs give full play to the inherent magneto-thermal capacity of CMMPs, which possesses super high loading ability (>100 mg magnetic materials/mL), superior large-scale production capability (>1 kg in laboratory synthesis), low cost, satisfactory syringeability and biological safety. Collectively, this study provides a convenient and universal strategy for the construction of magnetocaloric materials for biological applications.
Collapse
Affiliation(s)
- Guangchao Xie
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Lishi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
20
|
Luo Y, Tan J, Zhou Y, Guo Y, Liao X, He L, Li D, Li X, Liu Y. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol 2023; 231:123308. [PMID: 36669634 DOI: 10.1016/j.ijbiomac.2023.123308] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is not only a natural anionic polysaccharide with excellent biocompatibility, biodegradability, and moisturizing effect, but also an essential factor that can affect angiogenesis, inflammation, cell behavior, which has a wide range of applications in the biomedical field. Among them, HA-based hydrogels formed by various physical or chemical crosslinking strategies are particularly striking. They not only retain the physiological function of HA, but also have the skeleton function of hydrogel, which further expands the application of HA. However, HA-based natural hydrogels generally have problems such as insufficient mechanical strength and susceptibility to degradation by hyaluronidase, which limits their application to a certain extent. To solve such problems, researchers have prepared a variety of HA-based multifunctional hydrogels with remarkable properties in recent years by adopting various structural modification methods or novel crosslinking strategies, as well as introducing functionally reactive molecules or moieties, which have extended the application scope. This manuscript systematically introduced common crosslinking strategies of HA-based hydrogels and highlighted the development of novel HA-based hydrogels in anticancer drug delivery, cartilage repair, three-dimensional cell culture, skin dressing and other fields. We hope to provide some references for the subsequent development of HA-based hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Yuning Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junyan Tan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxilei Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinxin Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
22
|
Liu Y, Su G, Zhang R, Dai R, Li Z. Nanomaterials-Functionalized Hydrogels for the Treatment of Cutaneous Wounds. Int J Mol Sci 2022; 24:336. [PMID: 36613778 PMCID: PMC9820076 DOI: 10.3390/ijms24010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrogels have been utilized extensively in the field of cutaneous wound treatment. The introduction of nanomaterials (NMs), which are a big category of materials with diverse functionalities, can endow the hydrogels with additional and multiple functions to meet the demand for a comprehensive performance in wound dressings. Therefore, NMs-functionalized hydrogels (NMFHs) as wound dressings have drawn intensive attention recently. Herein, an overview of reports about NMFHs for the treatment of cutaneous wounds in the past five years is provided. Firstly, fabrication strategies, which are mainly divided into physical embedding and chemical synthesis of the NMFHs, are summarized and illustrated. Then, functions of the NMFHs brought by the NMs are reviewed, including hemostasis, antimicrobial activity, conductivity, regulation of reactive oxygen species (ROS) level, and stimulus responsiveness (pH responsiveness, photo-responsiveness, and magnetic responsiveness). Finally, current challenges and future perspectives in this field are discussed with the hope of inspiring additional ideas.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
23
|
|
24
|
Fragal EH, Fragal VH, Silva EP, Paulino AT, da Silva Filho EC, Mauricio MR, Silva R, Rubira AF, Muniz EC. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. Carbohydr Polym 2022; 292:119665. [PMID: 35725166 DOI: 10.1016/j.carbpol.2022.119665] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This review reports recent advances in polysaccharide-based magnetic hydrogels as smart platforms for different biomedical applications. These hydrogels have proved to be excellent, viable, eco-friendly alternative materials for the biomedical field due to their biocompatibility, biodegradability, and possibility of controlling delivery processes via modulation of the remote magnetic field. We first present their main synthesis methods and compare their advantages and disadvantages. Next, the synergic properties of hydrogels prepared with polysaccharides and magnetic nanoparticles (MNPs) are discussed. Finally, we describe the main contributions of polysaccharide-based magnetic hydrogels in the targeted drug delivery, tissue regeneration, and hyperthermia therapy fields. Overall, this review aims to motivate the synthesis of novel composite biomaterials, based on the combination of magnetic nanoparticles and natural polysaccharides, to overcome challenges that still exist in the treatment of several diseases.
Collapse
Affiliation(s)
- Elizângela H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Vanessa H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil.
| | - Elisangela P Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Alexandre T Paulino
- Santa Catarina State University, Department of Chemistry, Rua Paulo Malschitzki, 200, Zona Industrial Norte, 89.219-710 Joinville, SC, Brazil
| | - Edson C da Silva Filho
- Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcos R Mauricio
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Rafael Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil; Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil; Federal Technological University of Paraná, Estrada dos Pioneiros, 3131, Jardim Morumbi, 86036-370 Londrina, PR, Brazil.
| |
Collapse
|
25
|
Chang S, Li C, Xu N, Wang J, Jing Z, Cai H, Tian Y, Wang S, Liu Z, Wang X. A sustained release of alendronate from an injectable tetra-PEG hydrogel for efficient bone repair. Front Bioeng Biotechnol 2022; 10:961227. [PMID: 36177182 PMCID: PMC9513246 DOI: 10.3389/fbioe.2022.961227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
Significant efforts on construction of smart drug delivery for developing minimally invasive gelling system to prolong local delivery of bisphosphonates are considered as promising perspectives for the bone-related diseases, which provide the hydrogels with unique bioactivities for bone repair in clinic. Herein, we have constructed an alendronate (ALN)-conjoined injectable tetra-PEG hydrogel with excellent biocompatibility, uniform network, and favorable mechanical properties in one-pot strategy. In views of the quick ammonolysis reaction between N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG and amine groups of tetra-PEG-NH2 polymer and ALN molecules, the uniform networks were formed within seconds along with the easy injection, favorable biocompatibility and mechanical properties for hydrogel scaffolds. On account of the simultaneous physical encapsulation and chemical linkage of the ALN within the hydrogels, the ALN-conjoined tetra-PEG hydrogel exhibited a sustained drug release delivery that could persistently and effectively facilitate viability, growth, proliferation, and osteogenesis differentiation of stem cells, thereby allowing the consequent adaptation of hydrogels into the bone defects with irregular shapes, which endowed the ALN-conjoined tetra-PEG hydrogel with depot formulation capacity for governing the on-demand release of ALN drugs. Consequently, the findings imply that these drug-based tetra-PEG hydrogels mediate optimal release of therapeutic cargoes and effective promotion of in situ bone regeneration, which will be broadly utilized as therapeutic scaffolds in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Chao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Nanfang Xu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Jiedong Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Shaobo Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhongjun Liu, ; Xing Wang,
| |
Collapse
|
26
|
Vítková L, Musilová L, Achbergerová E, Kolařík R, Mrlík M, Korpasová K, Mahelová L, Capáková Z, Mráček A. Formulation of Magneto-Responsive Hydrogels from Dually Cross-Linked Polysaccharides: Synthesis, Tuning and Evaluation of Rheological Properties. Int J Mol Sci 2022; 23:ijms23179633. [PMID: 36077030 PMCID: PMC9455683 DOI: 10.3390/ijms23179633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Smart hydrogels based on natural polymers present an opportunity to fabricate responsive scaffolds that provide an immediate and reversible reaction to a given stimulus. Modulation of mechanical characteristics is especially interesting in myocyte cultivation, and can be achieved by magnetically controlled stiffening. Here, hyaluronan hydrogels with carbonyl iron particles as a magnetic filler are prepared in a low-toxicity process. Desired mechanical behaviour is achieved using a combination of two cross-linking routes—dynamic Schiff base linkages and ionic cross-linking. We found that gelation time is greatly affected by polymer chain conformation. This factor can surpass the influence of the number of reactive sites, shortening gelation from 5 h to 20 min. Ionic cross-linking efficiency increased with the number of carboxyl groups and led to the storage modulus reaching 103 Pa compared to 101 Pa–102 Pa for gels cross-linked with only Schiff bases. Furthermore, the ability of magnetic particles to induce significant stiffening of the hydrogel through the magnetorheological effect is confirmed, as a 103-times higher storage modulus is achieved in an external magnetic field of 842 kA·m−1. Finally, cytotoxicity testing confirms the ability to produce hydrogels that provide over 75% relative cell viability. Therefore, dual cross-linked hyaluronan-based magneto-responsive hydrogels present a potential material for on-demand mechanically tunable scaffolds usable in myocyte cultivation.
Collapse
Affiliation(s)
- Lenka Vítková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
| | - Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
- Correspondence: (L.M.); (A.M.)
| | - Eva Achbergerová
- CEBIA-Tech, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stráněmi 4511, 760 05 Zlin, Czech Republic
| | - Roman Kolařík
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslav Mrlík
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Kateřina Korpasová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
| | - Leona Mahelová
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 760 01 Zlin, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlin, tř. Tomáše Bati 5678, 760 01 Zlin, Czech Republic
- Correspondence: (L.M.); (A.M.)
| |
Collapse
|
27
|
Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
28
|
Zhou C, Wang C, Xu K, Niu Z, Zou S, Zhang D, Qian Z, Liao J, Xie J. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact Mater 2022; 25:615-628. [PMID: 37056264 PMCID: PMC10087085 DOI: 10.1016/j.bioactmat.2022.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Cartilage injury affects numerous individuals, but the efficient repair of damaged cartilage is still a problem in clinic. Hydrogel is a potent scaffold candidate for tissue regeneration, but it remains a big challenge to improve its mechanical property and figure out the interaction of chondrocytes and stiffness. Herein, a novel hybrid hydrogel with tunable stiffness was fabricated based on methacrylated gelatin (GelMA) and iron oxide nanoparticles (Fe2O3) through chemical bonding. The stiffness of Fe2O3/GelMA hybrid hydrogel was controlled by adjusting the concentration of magnetic nanoparticles. The hydrogel platform with tunable stiffness modulated its cellular properties including cell morphology, microfilaments and Young's modulus of chondrocytes. Interestingly, Fe2O3/GelMA hybrid hydrogel promoted oxidative phosphorylation of mitochondria and facilitated catabolism of lipids in chondrocytes. As a result, more ATP and metabolic materials generated for cellular physiological activities and organelle component replacements in hybrid hydrogel group compared to pure GelMA hydrogel. Furthermore, implantation of Fe2O3/GelMA hybrid hydrogel in the cartilage defect rat model verified its remodeling potential. This study provides a deep understanding of the bio-mechanism of Fe2O3/GelMA hybrid hydrogel interaction with chondrocytes and indicates the hydrogel platform for further application in tissue engineering.
Collapse
|
29
|
Metal-organic framework-based hydrogel with structurally dynamic properties as a stimuli-responsive localized drug delivery system for cancer therapy. Acta Biomater 2022; 145:43-51. [PMID: 35398545 DOI: 10.1016/j.actbio.2022.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Metal-organic framework (MOF) is an exciting class of porous biomaterials that have been considered as a carrier to store and deliver therapeutic drugs. However, similar to other nanomaterials, the application of MOF in clinical settings is still limited because of premature diffusion of their payloads and tissue off-targeting behavior. To overcome these challenges, we designed an MOF-based hydrogel with structurally dynamic properties, i.e., self-healing and shear-thinning, as an injectable localized drug delivery platform. The drug-encapsulating MOF hydrogel is formed through a dynamic coordination bond cross-linkage between a doxorubicin-loaded MOF (MOF@DOX) particle and a homemade bisphosphonate-modified hyaluronic acid (HA-BP) polymeric binder. The HA-BP·MOF@DOX hydrogel demonstrates pH- and ATP-responsive drug release characteristic and efficiently kills cancer cells in vitro. The animal experiments reveal that the HA-BP·MOF@DOX hydrogel has enhanced capability in terms of tumor growth suppression as compared to the MOF@DOX group, which can be attributed to drug localization in hydrogel superstructure and sustained release at the tumor site. The presented injectable dynamic MOF-based hydrogel is a promising in vivo localized drug delivery system for cancer treatment. Herein, we report the self-healing and shear-thinning of MOF-based drug carrier cross-linked by coordinate bonds for the first time and provide new insights and a facile chemical strategy for designing and fabricating MOF-based biomaterials by using bisphosphonate-zinc interaction. STATEMENT OF SIGNIFICANCE: Bisphosphonate-zinc interaction is a facile chemical strategy to cross-link metal-organic framework (MOF)-based hydrogel. The presented MOF-based hydrogel demonstrates structurally dynamic properties, including smooth injectability, self-healing, and shear-thinning. The developed MOF-based hydrogel possesses pH- and ATP-responsive drug release characteristic and kills cancer cells in vitro efficiently. The dynamic MOF-based hydrogel shows enhanced in vivo anticancer activity as compared to pure MOF particles. Self-healing and shear-thinning of metal-ligand cross-linked MOF-based drug delivery system are reported for the first time, thus providing new insights for the design and fabrication of MOF-based biomaterials.
Collapse
|
30
|
Ganguly S, Margel S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Myrovali E. Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:2598-2607. [PMID: 35580307 DOI: 10.1021/acsabm.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tremendous attention has been given to hydrogels due to their mechanical and physical properties. Hydrogels are promising biomaterials due to their high biocompatibility. Magnetic hydrogels, which are based on hydrogel incorporated magnetic nanoparticles, have been proposed in biomedical applications. The advantages of magnetic hydrogels are that they can easily respond to externally applied magnetic fields and prevent the leakage of magnetic nanoparticles in the surrounding area. Herein, a prototype hybrid stent of magnetic hydrogel was fabricated, characterized, and evaluated for magnetic hyperthermia treatment. First, magnetic hydrogel was produced by a solution of alginate with magnetic nanoparticles in a bath of calcium chloride (5-15 mg mL-1) in order to achieve the external gelation and optimize the heating rate. The increased concentration (1-8 mg mL-1) of magnetic nanoparticles inside the hydrogel resulted in almost zero leakage of iron oxide nanoparticles after 15 days, guaranteeing that they can be used safely in biomedical applications. Thus, magnetic hybrid stents, which are based on the magnetic hydrogels, were developed in a simple way and were evaluated both in an agarose phantom model and in an ex vivo tissue sample at 30 mT and 765 kHz magnetic hyperthermia conditions to examine the heating efficiency. In both cases, hyperthermia results indicate excellent heat generation from the hybrid stent and facile temperature control via tuning magnetic nanoparticle concentration (2-8 mg mL-1). This study can be a promising method that promotes spatially thermal distribution in cancer treatment or restenosis treatment of hollow organs.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.,Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, 57001 Thessaloniki, Greece
| |
Collapse
|
32
|
Rahman MA, Ochiai B. A facile aqueous production of bisphosphonated-polyelectrolyte functionalized magnetite nanoparticles for pH-specific targeting of acidic-bone cells. RSC Adv 2022; 12:8043-8058. [PMID: 35424742 PMCID: PMC8982438 DOI: 10.1039/d1ra09445a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Bone malignancy treatment is being hindered due to the insufficient selectivity of therapeutic nanoparticles towards malignant bone sites. Polyelectrolyte functionalized magnetic nanoparticles having dually specific pH-sensing ability and bisphosphonate moieties, can be an effective solution for selective targeting of bone malignancies. First, polyelectrolyte was prepared via N-carboxycitraconyzation of chitosan (NCCS) followed by successive functionalization with alendronic acid (AL) and fluorescein isothiocyanate (FITC). Then, Fe3O4-NCCS-FITC-AL nanoparticles were synthesized by a facile one-step microwave-assisted aqueous method via in situ surface functionalization. The formation, crystal structure, and surface conjugation of Fe3O4 nanoparticles with polyelectrolytic stabilizer were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses. Synthesized Fe3O4-NCCS-FITC-AL nanoparticles were superparamagnetic, colloidally stable and highly hemocompatible under physiological conditions. Moreover, at pH 5.0, Fe3O4-NCCS-FITC-AL nanoparticles formed a precipitate due to inversion of their surface charge. This pH-dependent charge-inversion drastically changed the interactions with erythrocytes and bones. Selective membranolysis of erythrocytes occurred at pH 5.0. The designed nanoparticles showed enough potential for selective targeting of pathological bone sites in early-stage magnetofluorescent imaging and as a therapeutics carrier to treat malignant bone diseases.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Polymer Colloids and Nanomaterials Lab, Department of Chemistry, Faculty of Science, Rajshahi University Rajshahi 6205 Bangladesh
| | - Bungo Ochiai
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
33
|
Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers (Basel) 2022; 14:polym14040752. [PMID: 35215665 PMCID: PMC8878751 DOI: 10.3390/polym14040752] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.
Collapse
|
34
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
He X, Zeng Y, Liu G, Tian Y, Wei Y, Zhao L, Yang L, Tao L. Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik-Fields Reaction. ACS Macro Lett 2022; 11:39-45. [PMID: 35574804 DOI: 10.1021/acsmacrolett.1c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of high quality magnetic self-healing hydrogels containing well-dispersed magnetic nanoparticle has been a challenging procedure due to unavailable methods of facilely introducing groups that can efficiently stabilize these magnetic nanoparticles in the self-healing hydrogels. In this research, a polymer containing both phenylboronic acid (PBA) and phosphonic acid (PA) groups has been developed by the Kabachnik-Fields (KF) reaction. This polymer well disperses iron oxide nanoparticles (IONPs) through the strong interactions between the PA groups and the surface of the IONPs; thus, this polymer effectively mixed IONPs and poly(vinyl alcohol) (PVA) to form a hydrogel containing well-dispersed IONPs. The resulting hydrogel is self-healing, owing to the dynamic borate ester linkages. Moreover, the presence of the IONPs endowed the hydrogel with magnetic properties, also making it heat-responsive in an alternating magnetic field and expanding its application as a contrast agent for magnetic resonance imaging. The magnetic self-healing hydrogel showed excellent biosafety properties in animal experiments, suggesting its potential as an injectable implant material for biological and medical applications. This research exploits a biocompatible magnetic self-healing hydrogel with well-dispersed IONPs, demonstrating the value of the KF reaction in the development of functional polymers and smart materials, which might prompt a broad study of multicomponent reactions in interdisciplinary fields.
Collapse
Affiliation(s)
- Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Ye Tian
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education, Institute of Regenerative Medicine and Biomimetic Material Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
36
|
Lu CH, Yeh YC. Fabrication of Multiresponsive Magnetic Nanocomposite Double-Network Hydrogels for Controlled Release Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105997. [PMID: 34791796 DOI: 10.1002/smll.202105997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) have been demonstrated as promising biomaterials to present several desired properties (e.g., high mechanical strength, stimuli-responsiveness, and local therapy) for biomedicine. Here, a new type of ncDN hydrogels featuring definable microstructures and properties as well as multistimuli responsiveness for controlled release applications is developed. Amine-functionalized iron oxide nanoparticles (IOPs_NH2 ) are used as nanoparticle cross-linkers to simultaneously connect the dual networks of gelatin (Gel) and polydextran aldehyde (PDA) through hydrogen bonding, electrostatic interactions, and dynamic imine bonds. The pH- and temperature-responsive Gel/PDA/IOP_NH2 ncDN hydrogels present a fast release profile of proteins at acidic pH and high temperature. Besides, IOP_NH2 also contributes the magnetic-responsiveness to the ncDN hydrogels, allowing the use of magnetic field to generate heat to facilitate the structural change of hydrogels and the subsequent applications. Taken together, a versatile ncDN hydrogel platform capable of multistimuli responsiveness and local heating for controlled release is developed for advanced biomedical applications.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
37
|
Shen KH, Lu CH, Kuo CY, Li BY, Yeh YC. Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. J Mater Chem B 2021; 9:7100-7116. [PMID: 34212171 DOI: 10.1039/d1tb00980j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanocomposite (NC) hydrogels are emerging biomaterials that possess desirable and defined properties and functions for therapeutics and diagnostics. Particularly, nanoparticles (NPs) are employed as stimulus-transducers in NC hydrogels to facilitate the treatment process by providing controllable structural change and payload release under internal and external simulations. Among the various external stimuli, near-infrared (NIR) light has attracted considerable interest due to its minimal photo-damage, deep tissue penetration, low auto-fluorescence in living systems, facile on/off switch, easy remote and spatiotemporal control. In this study, we discuss four types of transducing nanomaterials used in NIR-responsive NC hydrogels, including metal-based nanoparticles, carbon-based nanomaterials, polydopamine nanoparticles (PDA NPs), and upconversion nanoparticles (UCNPs). This review provides an overview of the current progress in NIR-responsive NC hydrogels, focusing on their preparation, properties, applications, and future prospects.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Yu Kuo
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Bo-Yan Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32673-32689. [PMID: 34227792 DOI: 10.1021/acsami.1c06058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Collapse
Affiliation(s)
- Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Weidong Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
39
|
Dai G, Sun L, Xu J, Zhao G, Tan Z, Wang C, Sun X, Xu K, Zhong W. Catechol-metal coordination-mediated nanocomposite hydrogels for on-demand drug delivery and efficacious combination therapy. Acta Biomater 2021; 129:84-95. [PMID: 34010690 DOI: 10.1016/j.actbio.2021.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels have drawn considerable attention in the field of drug delivery, yet their poor mechanical strength and uncontrollable drug release behavior have hindered further applications in clinical practice. Taking utility of metal-ligand coordination for structurally reinforcing the hydrogel network, we report design and synthesis of magnetic nanocomposite hydrogels (HA-DOPA·MNPs) that are crosslinked by DOPA-Fe(III) coordination existing between dopamine-conjugated hyaluronan (HA-DOPA) and iron oxide magnetic nanoparticles (MNPs). The MNPs in the nanocomposite hydrogel not only serve as structural crosslinkers, but also facilitate magnetic hyperthermia and on-demand release of doxorubicin (DOX) in HA-DOPA·MNPs/DOX hydrogels, for release rate of DOX accelerates when external alternating magnetic field (AMF) is ON, and it restores to a slow pace when AMF is OFF. Importantly, HA-DOPA·MNPs/DOX hydrogel shows a longer retention time than HA-DOPA/DOX gel or DOX solution in vivo. Further experiments confirm the efficacious anticancer potency of HA-DOPA·MNPs/DOX in vitro and in vivo, that is mediated by a combination therapy consisting of chemotherapy (DOX) and hyperthermia (MNPs). In contrast, single-modality treatment (DOX or hyperthermia only) fails to show an equivalent efficacy at the same dose. STATEMENT OF SIGNIFICANCE: This study reports the design of a class of magnetic nanocomposite hydrogel (HA-DOPA·MNPs) that was structurally reinforced by DOPA-Fe (III) coordination between HA-DOPA and iron oxide MNPs. On one hand, MNPs served as crosslinking centers for structurally reinforcing the nanocomposite hydrogel; on the other hand, MNPs facilitated temperature rise under an external MNPs, which prompted on-demand drug release as well as a combination therapy. Comparing to single modality treatment (chemotherapy or hyperthermia alone), the HA-DOPA·MNPs/DOX formulation with AMF demonstrated better efficacy against proliferation of tumor cells (A375) both in vitro and in vivo. We believe that design of HA-DOPA·MNPs/DOX hydrogel in this report provides a general approach to fabricate structurally-reinforced nanocomposite hydrogels for on-demand drug delivery and efficacious combination therapy.
Collapse
|
40
|
Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J Control Release 2021; 335:541-556. [PMID: 34097923 DOI: 10.1016/j.jconrel.2021.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Smart hydrogels which can respond to external stimuli have been widely focused with increasing interest. Thereinto, magnetic-responsive hydrogels that are prepared by embedding magnetic nanomaterials into hydrogel networks are more advantageous in biomedical applications due to their rapid magnetic response, precisely temporal and spatial control and non-invasively remote actuation. Upon the application of an external magnetic field, magnetic hydrogels can be actuated to perform multiple response modes such as locomotion, deformation and thermogenesis for therapeutic purposes without the limit of tissue penetration depth. This review summarizes the latest advances of magnetic-responsive hydrogels with focus on biomedical applications. The synthetic methods of magnetic hydrogels are firstly introduced. Then, the roles of different response modes of magnetic hydrogels played in different biomedical applications are emphatically discussed in detail. In the end, the current limitations and future perspectives for magnetic hydrogels are given.
Collapse
Affiliation(s)
- Zhenguang Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
41
|
He Y, Li Y, Sun Y, Zhao S, Feng M, Xu G, Zhu H, Ji P, Mao H, He Y, Gu Z. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr Polym 2021; 261:117870. [PMID: 33766357 DOI: 10.1016/j.carbpol.2021.117870] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Effective wound dressings are of great significance in preventing infections and promoting wound healing. However, most existing hydrogel dressings have an inadequacy in either mechanical performance, biological activities, or versatilities. Here we presented a double-network cross-linked polysaccharide-based hydrogel composed of collagen peptide-functionalized carboxymethyl chitosan (CS) and oxidized methacrylate sodium alginate (SA). The hydrogel possessed interconnected porous morphologies, suitable swelling ratios, excellent mechanical properties, and favorable biocompatibility. Meanwhile, the in vivo studies using a mouse full-thickness skin defect model showed that the double-network CS/SA hydrogel significantly accelerated wound healing by regulating the inflammatory process, promoting collagen deposition, and improving vascularization. Therefore, the functionalized double-network hydrogel should be a potential candidate as wound dressings.
Collapse
Affiliation(s)
- Yuxin He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yadong Sun
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shijia Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Miao Feng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guoming Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Haofang Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peihong Ji
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing, 210000, China
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, 210000, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing, 210000, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China.
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, 210000, China; Suqian Advanced Materials Industry Technology Innovation Center of Nanjing Tech University, Nanjing, 211816, China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China; Research Institute for Biomaterials, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing, 210000, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing, 210000, China; Suqian Advanced Materials Industry Technology Innovation Center of Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
42
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
43
|
Nowak BP, Niehues M, Ravoo BJ. Magneto-responsive hydrogels by self-assembly of low molecular weight peptides and crosslinking with iron oxide nanoparticles. SOFT MATTER 2021; 17:2857-2864. [PMID: 33586750 DOI: 10.1039/d0sm02049d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels that respond to non-invasive, external stimuli such as a magnetic field are of exceptional interest for the development of adaptive soft materials. To date magneto tuneable gels are predominantly based on macromolecular building blocks, while comparable low molecular weight systems are rarely found in the literature. Herein, we report a highly efficient peptide-based gelator (Nap GFYE), which can form hydrogels and incorporate Fe3O4 superparamagnetic nanoparticles in the gel matrix. The magnetic nanoparticles act as a physical crosslinker for the self-assembled peptide nanostructures and thus give rise to a fortified hybrid gel with distinctively improved mechanical properties. Furthermore, the particles provide the material with magnetic susceptibility and a gel to sol transition is observed upon application of a weak magnetic field. Magnetization of the inorganic-organic hybrid nanomaterial leads to on-demand release of an incorporated fluorescent dye into the supernatant.
Collapse
Affiliation(s)
- Benedikt P Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Maximilian Niehues
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| |
Collapse
|
44
|
Zeng Y, Sun L, Du D, He X, Shi L. Lanthanide-Bisphosphonate Coordination Chemistry: Biocompatible Fluorescent Labeling Strategy for Hydrogel. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuqin Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Lu Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Dou Du
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Liyang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, P. R. China
| |
Collapse
|
45
|
Yuan W, Li Z, Xie X, Zhang ZY, Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact Mater 2020; 5:819-831. [PMID: 32637746 PMCID: PMC7321771 DOI: 10.1016/j.bioactmat.2020.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nanocomposite hydrogels consist of polymeric network embedded with functional nanoparticles or nanostructures, which not only contribute to the enhanced mechanical properties but also exhibit the bioactivities for regulating cell behavior. Bisphosphonates (BPs) are capable of coordinating with various metal ions and modulating bone homeostasis. Thanks to the inherent dynamic properties of metal-ligand coordination bonds, BP-based nanocomposite hydrogels possess tunable mechanical properties, highly dynamic structures, and the capability to mediate controlled release of encapsulated therapeutic agents, thereby making them highly versatile for various biomedical applications. This review presents the comprehensive overview of recent developments in BP-based nanocomposite hydrogels with an emphasis on the properties of embedded nanoparticles (NPs) and interactions between hydrogel network and NPs. Furthermore, various challenges in the biomedical applications of these hydrogels are discussed to provide an outlook of potential clinical translation.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, PR China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058, PR China
| |
Collapse
|
46
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
47
|
Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering. Front Chem 2020; 8:124. [PMID: 32211375 PMCID: PMC7068712 DOI: 10.3389/fchem.2020.00124] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering is a promising strategy for the repair and regeneration of damaged tissues or organs. Biomaterials are one of the most important components in tissue engineering. Recently, magnetic hydrogels, which are fabricated using iron oxide-based particles and different types of hydrogel matrices, are becoming more and more attractive in biomedical applications by taking advantage of their biocompatibility, controlled architectures, and smart response to magnetic field remotely. In this literature review, the aim is to summarize the current development of magnetically sensitive smart hydrogels in tissue engineering, which is of great importance but has not yet been comprehensively viewed.
Collapse
Affiliation(s)
- Zhongyang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| |
Collapse
|
48
|
Debnath S, Kaushal S, Mandal S, Ojha U. Solvent processable and recyclable covalent adaptable organogels based on dynamic trans-esterification chemistry: separation of toluene from azeotropic mixtures. Polym Chem 2020. [DOI: 10.1039/c9py01807g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
New covalent adaptable networks (CANs) possessing processability and recyclability to monomers are desirable as an alternative to traditional plastics to address plastic waste-related issues.
Collapse
Affiliation(s)
- Suman Debnath
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Swaraj Kaushal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Subhankar Mandal
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| | - Umaprasana Ojha
- Department of Chemistry
- Rajiv Gandhi Institute of Petroleum Technology
- Amethi
- India
| |
Collapse
|