1
|
Zhao Z, Hou Y, Zhang H, Guo J, Wang J. A PEDOT: PSS/GO fiber microelectrode fabricated by microfluidic spinning for dopamine detection in human serum and PC12 cells. Mikrochim Acta 2024; 191:362. [PMID: 38822867 DOI: 10.1007/s00604-024-06415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.
Collapse
Affiliation(s)
- Zexu Zhao
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yang Hou
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hao Zhang
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiahao Guo
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jinyi Wang
- Colleges of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Cao S, Wei Y, Bo R, Yun X, Xu S, Guan Y, Zhao J, Lan Y, Zhang B, Xiong Y, Jin T, Lai Y, Chang J, Zhao Q, Wei M, Shao Y, Quan Q, Zhang Y. Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration. SCIENCE ADVANCES 2023; 9:eadi8606. [PMID: 37756408 PMCID: PMC10530085 DOI: 10.1126/sciadv.adi8606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Graft-host mechanical mismatch has been a longstanding issue in clinical applications of synthetic scaffolds for soft tissue regeneration. Although numerous efforts have been devoted to resolve this grand challenge, the regenerative performance of existing synthetic scaffolds remains limited by slow tissue growth (comparing to autograft) and mechanical failures. We demonstrate a class of rationally designed flexible network scaffolds that can precisely replicate nonlinear mechanical responses of soft tissues and enhance tissue regeneration via reduced graft-host mechanical mismatch. Such flexible network scaffold includes a tubular network frame containing inversely engineered curved microstructures to produce desired mechanical properties, with an electrospun ultrathin film wrapped around the network to offer a proper microenvironment for cell growth. Using rat models with sciatic nerve defects or Achilles tendon injuries, our network scaffolds show regenerative performances evidently superior to that of clinically approved electrospun conduit scaffolds and achieve similar outcomes to autologous nerve transplantation in prevention of target organ atrophy and recovery of static sciatic index.
Collapse
Affiliation(s)
- Shunze Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Xing Yun
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Shiwei Xu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yanjun Guan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Jianzhong Zhao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Lan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Bin Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Yingjie Xiong
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Tianqi Jin
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Yuchen Lai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Chang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qing Zhao
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Min Wei
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
| | - Yue Shao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
| | - Qi Quan
- Department of Orthopedic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, P.R. China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100142, P.R. China
- Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100142, Beijing, P.R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
3
|
Suryavanshi P, Kudtarkar Y, Chaudhari M, Bodas D. Fabricating a low-temperature synthesized graphene-cellulose acetate-sodium alginate scaffold for the generation of ovarian cancer spheriod and its drug assessment. NANOSCALE ADVANCES 2023; 5:5045-5053. [PMID: 37705775 PMCID: PMC10496900 DOI: 10.1039/d3na00420a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/15/2023]
Abstract
3D cell culture can mimic tumor pathophysiology, which reflects cellular morphology and heterogeneity, strongly influencing gene expression, cell behavior, and intracellular signaling. It supports cell-cell and cell-matrix interaction, cell attachment, and proliferation, resulting in rapid and reliable drug screening models. We have generated an ovarian cancer spheroid in interconnected porous scaffolds. The scaffold is fabricated using low-temperature synthesized graphene, cellulose acetate, and sodium alginate. Graphene nanosheets enhance cell proliferation and aggregation, which aids in the formation of cancer spheroids. The spheroids are assessed after day 7 and 14 for the generation of reactive oxygen species (ROS), expression of the hypoxia inducing factor (HIF-1⍺) and vascular endothelial growth factor (VEGF). Production of ROS was observed due to the aggregated tumor mass, and enhanced production of HIF-1⍺ and VEGF results from a lack of oxygen and nutrition. Furthermore, the efficacy of anticancer drug doxorubicin at varying concentrations is assessed on ovarian cancer spheroids by studying the expression of caspase-3/7 at day 7 and 14. The current findings imply that the graphene-cellulose-alginate (GCA) scaffold generates a reliable ovarian cancer spheroid model to test the efficacy of the anticancer drug.
Collapse
Affiliation(s)
- Pooja Suryavanshi
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411 004 India
- 2. Savitribai Phule Pune University Ganeshkhind Road Pune 411 007 India
| | - Yohaan Kudtarkar
- Department of Mechanical Engineering, Vishwakarma Institute of Technology (VIT) Bibwewadi Pune 411 037 India
| | - Mangesh Chaudhari
- Department of Mechanical Engineering, Vishwakarma Institute of Technology (VIT) Bibwewadi Pune 411 037 India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute G. G. Agarkar Road Pune 411 004 India
- 2. Savitribai Phule Pune University Ganeshkhind Road Pune 411 007 India
| |
Collapse
|
4
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Macromol Biosci 2023; 23:e2200429. [PMID: 36543751 DOI: 10.1002/mabi.202200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Microfibers, a type of long, thin, and flexible material, can be assembled into functional 3D structures by folding, binding, and weaving. As a novel spinning method, combining microfluidic technology and wet spinning, microfluidic spinning technology can precisely control the size, morphology, structure, and composition of the microfibers. Particularly, the process is mild and rapid, which is suitable for preparing microfibers using biocompatible materials and without affecting the viability of cells encapsulated. Furthermore, owing to the controllability of microfluidic spinning, microfibers with well-defined structures (such as hollow structures) will contribute to the exchange of nutrients or guide cell orientation. Thus, this method is often used to fabricate microfibers as cell scaffolds for cell encapsulation or adhesion and can be further applied to biomimetic fibrous tissues. In this review, the focus is on different fiber structures prepared by microfluidic spinning technology, including solid, hollow, and heterogeneous structures, generated from three essential elements: spinning platform, fiber composition, and solidification methods. Furthermore, the application of microfibers is described with different structures in tissue engineering, such as blood vessels, skeletal muscle, bone, nerves, and lung bronchi. Finally, the challenges and future development prospects of microfluidic spinning technology in tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Li Huili Hospital, 57 Xingning Road, Ningbo, Zhejiang, 315100, P. R. China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xu Zhang
- CAS Key Laboratory of SSAC, Department of biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Lu XL, Shao JC, Chi HZ, Zhang W, Qin H. Self-Assembly of a Graphene Oxide Liquid Crystal for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47549-47559. [PMID: 36219449 DOI: 10.1021/acsami.2c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorbents, especially those with high removal efficiency, long life, and multi-purpose capabilities, are the most crucial components in an adsorption system. By taking advantage of the liquid-like mobility and crystal-like ordering of liquid crystal materials, a liquid crystal induction method is developed and applied to construct three-dimensional graphene-based adsorbents featuring excellent shape adaptability, a distinctive pore structure, and abundant surface functional groups. When the monoliths are used for water restoration, the large amount of residual oxygen-containing groups is more susceptible to electrophilic attack, thus contributing to cation adsorption (up to 705.4 mg g-1 for methylene blue), while the connected microvoids between the aligned graphene oxide sheets facilitate mass transfer, e.g., the high adsorption capacity for organic pollutants (196.2 g g-1 for ethylene glycol) and the high evaporation rate for water (4.01 kg m-2 h-1). This work gives a practical method for producing high-performance graphene-based functional materials for those applications that are sensitive to surface and mass transfer properties.
Collapse
Affiliation(s)
- Xin Liang Lu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia Cheng Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wen Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Haiying Qin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
7
|
Podder AK, Mohamed MA, Tseropoulos G, Nasiri B, Andreadis ST. Engineering Nanofiber Scaffolds with Biomimetic Cues for Differentiation of Skin-Derived Neural Crest-like Stem Cells to Schwann Cells. Int J Mol Sci 2022; 23:10834. [PMID: 36142746 PMCID: PMC9504850 DOI: 10.3390/ijms231810834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 01/17/2023] Open
Abstract
Our laboratory reported the derivation of neural crest stem cell (NCSC)-like cells from the interfollicular epidermis of the neonatal and adult epidermis. These keratinocyte (KC)-derived Neural Crest (NC)-like cells (KC-NC) could differentiate into functional neurons, Schwann cells (SC), melanocytes, and smooth muscle cells in vitro. Most notably, KC-NC migrated along stereotypical pathways and gave rise to multiple NC derivatives upon transplantation into chicken embryos, corroborating their NC phenotype. Here, we present an innovative design concept for developing anisotropically aligned scaffolds with chemically immobilized biological cues to promote differentiation of the KC-NC towards the SC. Specifically, we designed electrospun nanofibers and examined the effect of bioactive cues in guiding KC-NC differentiation into SC. KC-NC attached to nanofibers and adopted a spindle-like morphology, similar to the native extracellular matrix (ECM) microarchitecture of the peripheral nerves. Immobilization of biological cues, especially Neuregulin1 (NRG1) promoted the differentiation of KC-NC into the SC lineage. This study suggests that poly-ε-caprolactone (PCL) nanofibers decorated with topographical and cell-instructive cues may be a potential platform for enhancing KC-NC differentiation toward SC.
Collapse
Affiliation(s)
- Ashis Kumar Podder
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- School of Pharmacy, Brac University, Dhaka 1212, Bangladesh
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY); Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
- Center of Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|
9
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
11
|
Li Y, Jarosova R, Weese-Myers ME, Ross AE. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Anal Chem 2022; 94:4803-4812. [PMID: 35274933 DOI: 10.1021/acs.analchem.1c05637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we have synthesized and characterized graphene-fiber microelectrodes (GFME's) for subsecond detection of neurochemicals with fast-scan cyclic voltammetry (FSCV) for the first time. GFME's exhibited extraordinary properties including faster electron transfer kinetics, significantly improved sensitivity, and ease of tunability that we anticipate will have major impacts on neurochemical detection for years to come. GF's have been used in the literature for various applications; however, scaling their size down to microelectrodes and implementing them as neurochemical microsensors is significantly less developed. The GF's developed in this paper were on average 20-30 μm in diameter and both graphene oxide (GO) and reduced graphene oxide (rGO) fibers were characterized with FSCV. Neat GF's were synthesized using a one-step dimension-confined hydrothermal strategy. FSCV detection has traditionally used carbon-fiber microelectrodes (CFME's) and more recently carbon nanotube fiber electrodes; however, uniform functionalization and direct control of the 3D surface structure of these materials remain limited. The expansion to GFME's will certainly open new avenues for fine-tuning the electrode surface for specific electrochemical detection. When comparing to traditional CFME's, our GFME's exhibited significant increases in electron transfer, redox cycling, fouling resistance, higher sensitivity, and frequency independent behavior which demonstrates their incredible utility as biological sensors.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Romana Jarosova
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Drive 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
12
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
13
|
Lei C, Xie Z, Wu K, Fu Q. Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103495. [PMID: 34590751 DOI: 10.1002/adma.202103495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/08/2021] [Indexed: 05/23/2023]
Abstract
Vertically aligned structures, which are a series of characteristic conformations with thickness-direction alignment, interconnection, or assembly of filler in polymeric composite materials that can provide remarkable structural performance and advanced anisotropic functions, have attracted considerable attention in recent years. The past two decades have witnessed extensive development with regard to universal fabrication methods, subtle control of morphological features, improvement of functional properties, and superior applications of vertically aligned structures in various fields. However, a systematic review remains to be attempted. The various configurations of vertical structures inspired from biological samples in nature, such as vertically aligned structures with honeycomb, reed, annual ring, radial, and lamellar configurations are summarized here. Additionally, relevant processing methods, which include the transformation of oriented direction, external-field inducement, template method, and 3D printing method, are discussed in detail. The diverse applications in mechanical, thermal, electric, dielectric, electromagnetic, water treatment, and energy fields are also highlighted by providing representative examples. Finally, future opportunities and prospects are listed to identify current issues and potential research directions. It is expected that perspectives on the vertically aligned structures presented here will contribute to the research on advanced multifunctional composites.
Collapse
Affiliation(s)
- Chuxin Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
14
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
15
|
Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Guo Y, Yan J, Xin JH, Wang L, Yu X, Fan L, Liu P, Yu H. Microfluidic-directed biomimetic Bulbine torta-like microfibers based on inhomogeneous viscosity rope-coil effect. LAB ON A CHIP 2021; 21:2594-2604. [PMID: 34008681 DOI: 10.1039/d1lc00252j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical structures are attracting increasing attention owing to their unique typical physical and chemical properties. However, it remains a challenge to construct atypical helical structures at the microscale. This paper proposes a continuous spinning method with a microfluidic-chip-based spinning device to engineer atypical helical microfibers. The strategy causes polymer fluid to form the biomimetic Bulbine torta (BT)-like shape with the aid of the inhomogeneous viscosity rope-coil effect. In particular, the structure parameter of the BT microfibers could be optimized through the synchronous regulation of the microfluidic flow and reaction kinetics, and the obtained microfibers exhibit ultrahigh strain sensitivity, indicating great promise as exceptional candidates for constructing ideal strain sensors. In addition, single- and double-hollow BT microfibers are also prepared by introducing the core flow channel into the microfluidic chip and demonstrate high structural similarity to irregular blood vessels (e.g. varicose veins), which is promising for the actual application of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Yongshi Guo
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Jianhua Yan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lihuan Wang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Xi Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Longfei Fan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Central Laboratory, Shanghai Jiao Tong University, Shanghai, 200032, 200127, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
17
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
18
|
Ghamsari M, Madrakian T, Afkhami A, Ahmadi M. Self-assembled graphene-based microfibers with eclectic optical properties. Sci Rep 2021; 11:5451. [PMID: 33750859 PMCID: PMC7943562 DOI: 10.1038/s41598-021-84940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
The construction of graphene-based microfibers with reinforced mechanical and electrical properties has been the subject of numerous researches in recent years. However, the fabrication of graphene-based fibers with remarkable optical features still remains a challenge and has not been addressed so far. This paper aims to report a series of flexible self-assembled fibers, synthesized through a few-minute sonication of thermally oxidized graphene oxide nanosheets, so-called Nanoporous Over-Oxidized Graphene (NOG), in an acidic medium. These free-standing glassy fibers were classified into four distinct morphological structures and displayed a collection of intriguing optical properties comprising high transparency, strong birefringence, fixed body colorations (e.g. colorless, blue, green, and red), tunable interference marginal colorations, UV-visible-near IR fluorescence, and upconversion emissions. Moreover, they exhibited high chemical stability in strongly acidic, basic, and oxidizing media. The foregoing notable attributes introduce the NOG fiber as a promising candidate both for the construction of graphene-based photoluminescent textiles and the development of a wide variety of optical applications.
Collapse
Affiliation(s)
- Mahdi Ghamsari
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
19
|
Ma Q, Ma H, Xu F, Wang X, Sun W. Microfluidics in cardiovascular disease research: state of the art and future outlook. MICROSYSTEMS & NANOENGINEERING 2021; 7:19. [PMID: 34567733 PMCID: PMC8433381 DOI: 10.1038/s41378-021-00245-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 05/21/2023]
Abstract
Due to extremely severe morbidity and mortality worldwide, it is worth achieving a more in-depth and comprehensive understanding of cardiovascular diseases. Tremendous effort has been made to replicate the cardiovascular system and investigate the pathogenesis, diagnosis and treatment of cardiovascular diseases. Microfluidics can be used as a versatile primary strategy to achieve a holistic picture of cardiovascular disease. Here, a brief review of the application of microfluidics in comprehensive cardiovascular disease research is presented, with specific discussions of the characteristics of microfluidics for investigating cardiovascular diseases integrally, including the study of pathogenetic mechanisms, the development of accurate diagnostic methods and the establishment of therapeutic treatments. Investigations of critical pathogenetic mechanisms for typical cardiovascular diseases by microfluidic-based organ-on-a-chip are categorized and reviewed, followed by a detailed summary of microfluidic-based accurate diagnostic methods. Microfluidic-assisted cardiovascular drug evaluation and screening as well as the fabrication of novel delivery vehicles are also reviewed. Finally, the challenges with and outlook on further advancing the use of microfluidics technology in cardiovascular disease research are highlighted and discussed.
Collapse
Affiliation(s)
- Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071 China
| | - Haixia Ma
- Center for Prenatal Diagnosis, Zibo Maternal and Child Health Care Hospital, Zibo, 255000 China
| | - Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University, Jinan, 250061 China
| | - Wentao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & School of Medicine, Nankai University, Tianjin, 300457 China
| |
Collapse
|
20
|
Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45673-45701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), Cidade Universitária, 58.051-900, João Pessoa, Paraiba, Brazil
| | - Juliano E Oliveira
- Department of Engineering, Federal University of Lavras (UFLA), 37200-900, Lavras, Minas Gerais, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Chen R, Liu G, Sun X, Cao X, He W, Lin X, Liu Q, Zhao J, Pang Y, Li B, Qin A. Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis via downregulating ROS. NANOSCALE 2020; 12:16229-16244. [PMID: 32706362 DOI: 10.1039/d0nr02848g] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Osteoclasts are the main cells involved in normal bone remodeling and pathological bone destruction in vivo. Overactivation of osteoclasts can lead to osteolytic diseases, including breast cancer, bone tumors, arthritis, the aseptic loosening of orthopedic implants, and Paget's disease. Excessive reactive oxygen species are the main cause of osteoclast overactivation. We have synthesized chitosan derived nitrogen-doped carbon dots (N-CDs) with a high synthetic yield and the ability to scavenge reactive oxygen species (ROS). N-CDs effectively abrogated RANKL-induced elevation in ROS generation and therefore impaired the activation of NF-κB and MAPK pathways. Osteoclastogenesis and bone resorption was effectively attenuated in vitro. Furthermore, the in vivo administration of N-CDs in mice protected them against lipopolysaccharide (LPS)-induced calvarial bone destruction and breast cancer cell-induced tibial bone loss. Based on the good biocompatibility of N-CDs and the ability to efficiently remove ROS, a nanomaterial treatment scheme was provided for the first time for the clinical treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Runfeng Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, 530021, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
He J, Zhang B, Li Z, Mao M, Li J, Han K, Li D. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 2020; 12:042002. [PMID: 32615543 DOI: 10.1088/1758-5090/aba1fa] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrohydrodynamic (EHD) printing is a newly emerging additive manufacturing strategy for the controlled fabrication of three-dimensional (3D) micro/nanoscale architectures. This unique superiority makes it particularly suitable for the biofabrication of artificial tissue analogs with biomimetic structural organizations similar to the scales of native extracellular matrix (ECM) or living cells, which shows great potentials to precisely regulate cellular behaviors and tissue regeneration. Here the state-of-the-art advancements of high-resolution EHD bioprinting were reviewed mainly including melt-based and solution-based processes for the fabrication of micro/nanoscale fibrous scaffolds and living tissues constructs. The related printing materials, innovations on structure design and printing processes, functionalization of the resultant architectures as well as their effects on the mechanical and biological properties of the EHD-printed structures were introduced and analyzed. The recent explorations on the EHD cell printing for high-resolution cell-laden microgel patterning and 3D construct fabrication were highlighted. The major challenges as well as possible solutions to translate EHD bioprinting into a mature and prevalent biofabrication strategy were finally discussed.
Collapse
Affiliation(s)
- Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Rapid manufacturing research center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
23
|
Zheng F, He E, Wang Z, Huang J, Li Z. Mosaic Immunoassays Integrated with Microfluidic Channels for High-Throughput Parallel Detection. Anal Chem 2020; 92:5688-5694. [PMID: 32212688 DOI: 10.1021/acs.analchem.0c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the ice-printing technique, we have integrated micromosaic immunoassays (μMIAs) with microfluidic channels, which reduces the sample consumption and response time and allows high-throughput parallel detection. The ice-printing method is a low-temperature and contaminant-free process, which is more convenient, precise, and biofriendly than the traditional fabrication method. Meanwhile, based on the ice-drying process, this method can obtain a uniform distribution of the residue protein patterns, which leads to a uniform fluorescence result. As a proof of concept, the test of stability, sensitivity, and specificity of μMIA based on one-step ELISA are demonstrated. In this device, immobilized antigens surrounded with ice could remain biological at -20 °C for months.
Collapse
Affiliation(s)
- Fengyi Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Enqi He
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Zhongyan Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Jiasheng Huang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|