1
|
Wei J, Wei J, Yu X, Xie J, Chen X. Serum bilirubin as a biomarker of oxidative stress in children with type 1 diabetes mellitus: An observational study. Medicine (Baltimore) 2025; 104:e42430. [PMID: 40355206 PMCID: PMC12073854 DOI: 10.1097/md.0000000000042430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
This study aims to explore whether bilirubin can act as a biomarker of oxidative stress in type 1 diabetes mellitus (T1DM) by analyzing the serum bilirubin levels and possible influencing factors in different disease states and durations in children with T1DM. This is a retrospective study. The medical records of 1652 inpatients with T1DM and 101 healthy children in Shanxi Provincial Children's Hospital from 2014 to 2023 were collected and divided into different subgroups. The relevant indices in different disease states and durations in the T1DM group were statistically analyzed, particularly the serum bilirubin levels and possible influencing factors. Compared to children without diabetic ketoacidosis (DKA)/diabetic ketosis (DK), children with DKA/DK exhibited higher random blood glucose (RBG), HbA1C, total bilirubin (TBil), and indirect bilirubin (IBil) (P < .05). Compared to the control group, the levels of TBil and IBil in the newly-diagnosed and established T1DM children were statistically significantly higher (P < .05). Compared to newly-diagnosed T1DM children, serum TBil and IBil levels were statistically significantly lower in the established T1DM group and subgroups with different disease durations (P < .05). TBil and IBil were correlated with the status of blood glucose control and can be reflected by RBG, HbA1C, and DKA/DK (P < .05), but had no correlation was observed with disease duration (P > .05). Serum bilirubin possesses the potential to be a biomarker of oxidative stress in T1DM children.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Genetics and Metabolism, Shanxi Children’s Hospital, Taiyuan, China
| | - Jinshu Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaoya Yu
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Jianing Xie
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Chen
- Department of Endocrinology, Genetics and Metabolism, Shanxi Children’s Hospital, Taiyuan, China
| |
Collapse
|
2
|
Tatikolov AS, Pronkin PG, Panova IG. Bilirubin nanotechnology: An innovative approach in biomedicine. Biophys Chem 2025; 320-321:107412. [PMID: 39970844 DOI: 10.1016/j.bpc.2025.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Bilirubin, a product of heme catabolism, is toxic at elevated concentrations (>250-300 μM in blood serum), whereas at therapeutic concentrations (∼20-200 μM) exerts potent antioxidant, anti-inflammatory, immunomodulatory, cytoprotective and neuroprotective effects. Despite the therapeutic potential, its use in clinical practice is hampered by poor aqueous solubility, instability, and rapid metabolism. Nanotechnology overcomes these limitations and additionally imparts to bilirubin the advantages characteristic of nanopreparations: targeted action on the desired organ/tissue, increased therapeutic efficacy by delaying drug elimination from the body, improved transportation over biological barriers, the ability to combine therapeutic and diagnostic properties in a single agent. The review analyses the chemical synthesis, therapeutic mechanisms, and preclinical applications of nanosystems comprising bilirubin. In particular, nanostructures obtained by the covalent binding of bilirubin to macromolecules, bilirubin encapsulation in nanocarriers, bilirubin conjugation with metal nanoparticles and nanofunctionalization of inorganic compounds are considered; the data on the therapeutic trials of nanobilirubin are summarized. While studies on animal models and in vitro systems demonstrate improved biodistribution, reduced toxicity, and enhanced efficacy, no clinical trials to date have validated nanobilirubin formulations. Key barriers may include unresolved challenges in scalable synthesis, long-term biocompatibility, reproducible dosing of nanoformulations. Hence, further development of nanotherapeutic bilirubin agents for clinical practice is urgent.
Collapse
Affiliation(s)
- Alexander S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia.
| | - Pavel G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, st. Kosygin, 4, Moscow 119334, Russia; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Ina G Panova
- International Scientific and Practical Center of Tissue Proliferation, st. Prechistenka, 14/19, Moscow 119034, Russia
| |
Collapse
|
3
|
Xi H, Gao X, Qiu L, Wang Y, Qiu Y, Tao Z, Hu M, Jiang X, Yao Q, Kou L, Zhao J, Chen R. Melatonin-loaded nanoparticles protecting human sperm from oxidative stress during cryopreservation. Expert Opin Drug Deliv 2025:1-13. [PMID: 40285548 DOI: 10.1080/17425247.2025.2499117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND During the process of sperm cryopreservation, the overproduction of reactive oxygen species (ROS) triggers oxidative stress thereby leading to a reduction in sperm motility and quality. Therefore, it is a feasible strategy to mitigate oxidative damage during cryopreservation by adding antioxidants to freezing media. RESEARCH DESIGN AND METHODS In this study, we explored the potential of melatonin to protect sperm from oxidative stress-induced damage by evaluating sperm-related parameters after thawing through self-assembly with a hyaluronic acid-bilirubin conjugate into nanoparticles (M@HBn). RESULTS The optimized M@HBn exhibited uniform spherical morphology with average particle size of 112.57 ± 9.8 nm, PDI of 0.22 ± 0.02, a surface potential of - 0.43 ± 1.02 mV and entrapment efficiency of 85.1 ± 4.6%. The addition of 5 μM M@HBn demonstrated a notable enhancement in frozen-thawed human spermatozoa viability, motility, and DNA integrity by scavenging ROS. Additionally, the use of M@HBn supplementation in freezing medium resulted in the most mitochondrial stability and total viability as compared to the other groups. CONCLUSIONS These findings suggest that M@HBn have the potential to serve as a novel drug delivery platform for protecting spermatozoa against from cryodamage while enhancing the quality of cryopreserved sperm and the bioavailability of melatonin.
Collapse
Affiliation(s)
- Haitao Xi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Xue Gao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunzhi Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yifan Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihao Tao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miyun Hu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Junzhao Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| |
Collapse
|
4
|
Yang C, Yu R, Zhang Y, Wang Q, Huang D, Cheng Y, Zhu Y, Shen X, Shi Y, Zhao YZ, Yao Q. Curcumin-loaded bioadhesive silk fibroin microsphere improves islet transplantation by mitigating oxidative stress and inhibiting apoptosis. Mater Today Bio 2025; 31:101507. [PMID: 39925714 PMCID: PMC11804778 DOI: 10.1016/j.mtbio.2025.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Islet transplantation, a form of cell therapy involving the injection of healthy islet cells into the recipient's body for curative treatment of T1DM, often fails due to oxidative stress and inflammatory damage experienced by the transplanted islets. Curcumin, a naturally occurring polyphenol with potent anti-inflammatory and antioxidant properties, has been underutilized in islet protection due to challenges associated with its co-delivery and formulation. In this study, we developed bioadhesive curcumin microspheres (PDA/CUR@SF) by incorporating curcumin into a silk fibroin matrix and subsequently coating it with polydopamine to enhance islet adherence. Silk protein acts as a delivery carrier while polydopamine serves as an adhesive agent; both components synergistically provide anti-inflammatory effects. In vitro experiments demonstrated that PDA/CUR@SF enhances islet resistance against oxidative stress and inflammatory damage by improving cell viability and function. In vivo studies showed that PDA/CUR@SF prolongs stabilization of blood glucose levels in diabetic mice receiving islet transplantation while facilitating faster glucose clearance. Further analysis revealed that PDA/CUR@SF protects transplanted islets through co-grafting and promotes neovascularization. Overall, our findings suggest that PDA/CUR@SF offers a rational approach to improve outcomes in transplantation.
Collapse
Affiliation(s)
- Chunhui Yang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China
| | - Runjie Yu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Di Huang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang Cheng
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yixuan Zhu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyue Shen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yifan Shi
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
5
|
Xi H, Huang L, Qiu L, Li S, Yan Y, Ding Y, Zhu Y, Wu F, Shi X, Zhao J, Chen R, Yao Q, Kou L. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: A promising strategy for assisted reproduction techniques. Int J Pharm X 2024; 8:100268. [PMID: 39070171 PMCID: PMC11278021 DOI: 10.1016/j.ijpx.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
In assisted reproduction techniques, oocytes encounter elevated levels of reactive oxygen species (ROS) during in vitro maturation (IVM). Oxidative stress adversely affects oocyte quality, hampering their maturation, growth, and subsequent development. Thus, mitigating excessive ROS to safeguard less viable oocytes during IVM stands as a viable strategy. Numerous antioxidants have been explored for oocyte IVM, yielding considerable effects; however, several aspects, including solubility, stability, and safety, demand attention and resolution. In this study, we developed nanoparticles by self-assembling endogenous bilirubin and melatonin hormone coated with bilirubin-conjugated glycol chitosan (MB@GBn) to alleviate oxidative stress and enhance oocyte maturation. The optimized MB@GBn exhibited a uniform spherical shape, measuring 128 nm in particle size, with a PDI value of 0.1807 and a surface potential of +11.35 mV. The positively charged potential facilitated nanoparticle adherence to the oocyte surface through electrostatic interaction, allowing for functional action. In vitro studies demonstrated that MB@GB significantly enhanced the maturation of compromised oocytes. Further investigation revealed MB@GB's effectiveness in scavenging ROS, reducing intracellular calcium levels, and suppressing mitochondrial polarization. This study not only offers a novel perspective on nano drug delivery systems for biomedical applications but also presents an innovative strategy for enhancing oocyte IVM.
Collapse
Affiliation(s)
- Haitao Xi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lin Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yang Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuhao Zhu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junzhao Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| |
Collapse
|
6
|
Huang Y, Wang L, Jin H. cRGD-Conjugated Bilirubin Nanoparticles Alleviate Dry Eye Disease Via Activating the PINK1-Mediated Mitophagy. Invest Ophthalmol Vis Sci 2024; 65:55. [PMID: 39589348 PMCID: PMC11601138 DOI: 10.1167/iovs.65.13.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose The purpose of this study was to evaluate the cytoprotective effect and the mechanism of cRGD-conjugated bilirubin nanoparticles (cNPs@BR) in dry eye disease (DED). Methods The binding capacity and cellular uptake of cNPs@BR in human corneal epithelial cells (HCECs) were assessed by immunofluorescence. The anti-inflammation and anti-oxidative stress effects of cNPs@BR were determined by flow cytometry, immunofluorescence, Western blot, chromatin immunoprecipitation (ChIP), and ELISA assay in LPS-stimulated RAW264.7 cells and hypertonic HCECs. The function of ocular surface barrier, tear production, and the number of goblet cells after cNPs@BR treatment were further assessed by fluorescein sodium staining, phenol red cotton threads, quantitative PCR (qPCR), hematoxylin and eosin (H&E) staining, and Periodic Acid-Schiff (PAS) staining in a 0.2% BAC-induced DED mouse model. Furthermore, the mechanism of cNPs@BR in treating DED was explored by RNA sequencing and RNA interference. Results The cRGD peptide prolonged the retention time of nanoparticles on HCECs and enhanced the cellular uptake efficiency. In both cell models, 20 µM cNPs@BR pretreatment ameliorated oxidative stress by decreasing the intracellular reactive oxygen species (ROS) levels and the expression of NOX4 and 4-HNE, while promoting HO-1 and nuclear Nrf2 levels. Moreover, cNPs@BR alleviated the inflammatory response by inhibiting NF-κB p65 nuclear translocation and decreasing the expression of iNOS and the secretion of IL-1β, IL-6, and TNF-α. In addition, cNPs@BR protected ocular surface epithelium against oxidative stress and inflammation and restored conjunctival goblet cells in the mouse model of DED by activating PINK1-mediated mitophagy. Conclusions The cNPs@BR suppressed oxidative stress and inflammatory response in the ocular surface epithelium and restored goblet cells by activating PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Zhao X, Huang H, Jiang X, Zheng S, Qiu C, Cheng Y, Lin Y, Wang Y, Yan Y, Di X, Hu M, Zhu W, Wu F, Shi X, Chen R, Kou L. Supramolecular nanoparticle loaded with bilirubin enhances cartilage protection and alleviates osteoarthritis via modulating oxidative stress and inflammatory responses. Colloids Surf B Biointerfaces 2024; 245:114243. [PMID: 39288548 DOI: 10.1016/j.colsurfb.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammation that gradually leads to cartilage degradation. Prolonged chondrocyte oxidative stress contributes to the development of diseases, including chondrocyte apoptosis, cartilage matrix degradation, and aggravation of articular cartilage damage. Bilirubin (BR) possesses strong antioxidant properties by scavenging reactive oxygen species (ROS) and potent protection effects against inflammation. However, its insolubility and short half-life limit its clinical use. Therefore, we developed a supramolecular system of ε-polylysine (EPL) conjugated by β-cyclodextrin (β-CD) on the side chain, and bilirubin was loaded via host-guest interactions, which resulted in the self-assemble of this system into bilirubin-loaded polylysine-β-cyclodextrin nanoparticle (PB) with improving solubility while reducing toxicity and prolonging medication action time. To explore PB's potential pharmacological mechanisms on OA, we established in vitro and in vivo OA models. PB exerted ROS-scavenging proficiency and anti-apoptotic effects on rat chondrocytes by activating the Nrf2-HO-1/GPX4 signaling pathway. Additionally, PB reprogrammed the cartilage microenvironment by regulating the NF-κB signaling pathway to maintain chondrocyte function. Animal experiments further confirmed that PB had excellent scavenging ability for ROS and inflammatory factors related to charge adsorption with cartilage as well as long retention ability. Together, this work suggests that PB has superior protective abilities with beneficial effects on OA, indicating its great potential for intervention therapy targeting chondrocytes.
Collapse
Affiliation(s)
- Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yingfeng Cheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yunzhi Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Xinyu Di
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Miyun Hu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| |
Collapse
|
8
|
Huang L, Zhang L, Gao D, Sun M, An W, Sun Q, Zeng F, Cui B. Association of total bilirubin and prognosis in disorders of consciousness. Sci Rep 2024; 14:20071. [PMID: 39209971 PMCID: PMC11362453 DOI: 10.1038/s41598-024-71124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Accurate prediction of the recovery of Disorders of Consciousness (DoC) is of paramount significance for clinicians and families. Serum total bilirubin (TBIL) formed by activation of heme oxygenase 2, is associated with incidence and prognosis of cardiovascular and cerebrovascular diseases. However, studies that based TBIL and DoC are limited. The study attempted to examine the association between serum TBIL levels and prognosis in patients with DoC. One hundred and sixty-eight patients with DoC in the Second hospital of Shandong University from June 2021 to June 2023 were recruited. The clinical characteristics and venous blood samples were collected within 24 h after admission. The diagnosis of DoC was determined by two skilled investigators employing various behavioral evaluations along the coma recovery scale-revised (CRS-R) and the investigators conducted follow-up assessments of diagnosis at 1, 3, and 6 months after admission. For statistical analysis, we categorized patients with an improvement in clinical diagnosis from study entry as having a "good outcome". In total, 139 individuals enrolled in the study. The median TBIL level was 8.2 μmol/L. Good recovery of DoC at 1, 3, and 6 months occurred in 25 (18.0%), 41 (29.5%), and 56 (40.3%) patients, respectively. After full adjustment, a significant association was found between TBIL levels and the prognosis of DoC at 1, 3, and 6 months. When TBIL levels were analyzed as categorical variables, an increasing trend in the tertiles of TBIL levels demonstrated a significant positive association with the recovery of DoC at 1, 3, and 6 months. Stratified analysis revealed that the association between serum TBIL levels and the recovery of DoC remained consistent across different sub-populations. A high serum TBIL level is associated with an improved likelihood of recovery of DoC. Additional research is required to elucidate the underlying pathophysiological causal association between TBIL levels and DoC.
Collapse
Affiliation(s)
- Laigang Huang
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Li Zhang
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Dongmei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Min Sun
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Wenhan An
- Department of Rehabilitation Medicine, Yu Huang Ding Hospital, Yantai, Shandong, China
| | - Qiangsan Sun
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China
| | - Baojuan Cui
- Department of Rehabilitation Medicine, The Second Hospital of Shandong University, 247# Beiyuan Street, Jinan, 250033, Shandong, China.
| |
Collapse
|
9
|
Zhao X, Duan B, Wu J, Huang L, Dai S, Ding J, Sun M, Lin X, Jiang Y, Sun T, Lu R, Huang H, Lin G, Chen R, Yao Q, Kou L. Bilirubin ameliorates osteoarthritis via activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. J Cell Mol Med 2024; 28:e18173. [PMID: 38494841 PMCID: PMC10945086 DOI: 10.1111/jcmm.18173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that affects worldwide. Oxidative stress plays a critical role in the chronic inflammation and OA progression. Scavenging overproduced reactive oxygen species (ROS) could be rational strategy for OA treatment. Bilirubin (BR) is a potent endogenous antioxidant that can scavenge various ROS and also exhibit anti-inflammatory effects. However, whether BR could exert protection on chondrocytes for OA treatment has not yet been elucidated. Here, chondrocytes were exposed to hydrogen peroxide with or without BR treatment. The cell viability was assessed, and the intracellular ROS, inflammation cytokines were monitored to indicate the state of chondrocytes. In addition, BR was also tested on LPS-treated Raw264.7 cells to test the anti-inflammation property. An in vitro bimimic OA microenvironment was constructed by LPS-treated Raw264.7 and chondrocytes, and BR also exert certain protection for chondrocytes by activating Nrf2/HO-1 pathway and suppressing NF-κB signalling. An ACLT-induced OA model was constructed to test the in vivo therapeutic efficacy of BR. Compared to the clinical used HA, BR significantly reduced cartilage degeneration and delayed OA progression. Overall, our data shows that BR has a protective effect on chondrocytes and can delay OA progression caused by oxidative stress.
Collapse
Affiliation(s)
- Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Baiqun Duan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Jie Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
| | - Xinlu Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyWenzhouChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhouChina
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyWenzhouChina
- Zhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhouChina
| |
Collapse
|
10
|
Qi B, Ding Y, Zhang Y, Kou L, Zhao YZ, Yao Q. Biomaterial-assisted strategies to improve islet graft revascularization and transplant outcomes. Biomater Sci 2024; 12:821-836. [PMID: 38168805 DOI: 10.1039/d3bm01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.
Collapse
Affiliation(s)
- Boyang Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yang Ding
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
11
|
Yao Q, Tang Y, Dai S, Huang L, Jiang Z, Zheng S, Sun M, Xu Y, Lu R, Sun T, Huang H, Jiang X, Yao X, Lin G, Kou L, Chen R. A Biomimetic Nanoparticle Exerting Protection against Acute Liver Failure by Suppressing CYP2E1 Activity and Scavenging Excessive ROS. Adv Healthc Mater 2023; 12:e2300571. [PMID: 37236618 DOI: 10.1002/adhm.202300571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18β-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.
Collapse
Affiliation(s)
- Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yingying Tang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Shiming Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, P. R. China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, P. R. China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, 325027, P. R. China
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, P. R. China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| |
Collapse
|
12
|
Li H, Shang Y, Feng Q, Liu Y, Chen J, Dong H. A novel bioartificial pancreas fabricated via islets microencapsulation in anti-adhesive core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Bioact Mater 2023; 27:362-376. [PMID: 37180642 PMCID: PMC10172916 DOI: 10.1016/j.bioactmat.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Islets transplantation is a promising treatment for type 1 diabetes mellitus. However, severe host immune rejection and poor oxygen/nutrients supply due to the lack of surrounding capillary network often lead to transplantation failure. Herein, a novel bioartificial pancreas is constructed via islets microencapsulation in core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Specifically, a hydrogel scaffold containing methacrylated gelatin (GelMA), methacrylated heparin (HepMA) and vascular endothelial growth factor (VEGF) is fabricated, which can delivery VEGF in a sustained style and thus induce subcutaneous angiogenesis. In addition, islets-laden core-shell microgels using methacrylated hyaluronic acid (HAMA) as microgel core and poly(ethylene glycol) diacrylate (PEGDA)/carboxybetaine methacrylate (CBMA) as shell layer are prepared, which provide a favorable microenvironment for islets and simultaneously the inhibition of host immune rejection via anti-adhesion of proteins and immunocytes. As a result of the synergistic effect between anti-adhesive core-shell microgels and prevascularized hydrogel scaffold, the bioartificial pancreas can reverse the blood glucose levels of diabetic mice from hyperglycemia to normoglycemia for at least 90 days. We believe this bioartificial pancreas and relevant fabrication method provide a new strategy to treat type 1 diabetes, and also has broad potential applications in other cell therapies.
Collapse
Affiliation(s)
- Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yulian Shang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Cui Y, Wu C, Li L, shi H, Li C, Yin S. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases. Mater Today Bio 2023; 20:100658. [PMID: 37214553 PMCID: PMC10196858 DOI: 10.1016/j.mtbio.2023.100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Bilirubin, an open chain tetrapyrrole, has powerful antioxidant, anti-inflammatory, immuno-suppressive, metabolic-modulating and anti-proliferative activities. Bilirubin is a natural molecule that is produced and metabolized within the human body, making it highly biocompatible and well suited for clinical use. However, the use of bilirubin has been hampered by its poor water solubility and instability. With advanced construction strategies, bilirubin-derived nanoparticles (BRNPs) have not only overcome the disadvantages of bilirubin but also enhanced its therapeutic effects by targeting damaged tissues, passing through physiological barriers, and ensuring controlled sustained release. We review the mechanisms underlying the biological activities of bilirubin, BRNP preparation strategies and BRNP applications in various disease models. Based on their superior performance, BRNPs require further exploration of their efficacy, biodistribution and long-term biosafety in nonhuman primate models that recapitulate human disease to promote their clinical translation.
Collapse
Affiliation(s)
- Yaqi Cui
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cuiping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haibo shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - ChunYan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shankai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
14
|
Zhang ZJ, Ding LY, Zuo XL, Feng H, Xia Q. A new paradigm in transplant immunology: At the crossroad of synthetic biology and biomaterials. MED 2023:S2666-6340(23)00142-3. [PMID: 37244257 DOI: 10.1016/j.medj.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Solid organ transplant (SOT) recipients require meticulously tailored immunosuppressive regimens to minimize graft loss and mortality. Traditional approaches focus on inhibiting effector T cells, while the intricate and dynamic immune responses mediated by other components remain unsolved. Emerging advances in synthetic biology and material science have provided novel treatment modalities with increased diversity and precision to the transplantation community. This review investigates the active interface between these two fields, highlights how living and non-living structures can be engineered and integrated for immunomodulation, and discusses their potential application in addressing the challenges in SOT clinical practice.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China
| | - Lu-Yue Ding
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China; Punan Branch (Shanghai Punan Hospital), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai 200127, China; Shanghai Institute of Transplantation, Shanghai 200127, China.
| |
Collapse
|
15
|
Wang Z, Jiang Z, Lu R, Kou L, Zhao YZ, Yao Q. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm 2023; 187:130-140. [PMID: 37105362 DOI: 10.1016/j.ejpb.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.
Collapse
Affiliation(s)
- Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
16
|
Lan T, Bi F, Xu Y, Yin X, Chen J, Han X, Guo W. PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress. Int J Oral Sci 2023; 15:10. [PMID: 36797252 PMCID: PMC9935639 DOI: 10.1038/s41368-023-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Collapse
Affiliation(s)
- Tingting Lan
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, China
| | - Fei Bi
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoli Yin
- grid.216938.70000 0000 9878 7032Department of Pediatric Dentistry, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China ,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Jie Chen
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xue Han
- grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China. .,Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China.
| |
Collapse
|
17
|
Ma B, Xiao Y, Lv Q, Li G, Wang Y, Fu G. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206129. [PMID: 36394179 DOI: 10.1002/adma.202206129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerosis, as a life-threatening cardiovascular disease with chronic inflammation and abnormal lipid enrichment, is often difficult to treat timely due to the lack of obvious symptoms. In this work, a theranostic nanoplatform is constructed for the noninvasive in vivo diagnosis, plaque-formation inhibition, and the lesion reversal of atherosclerosis. A three-in-one therapeutic complex is constructed and packaged along with a polymeric photoacoustic probe into nanoparticles named as PLCDP@PMH, which indicates an atherosclerosis-targeting accumulation and a reactive oxygen species (ROS)/matrix metalloproteinase (MMP) dual-responsive degradation. The photoacoustic probe suggests a lesion-specific imaging on atherosclerotic mice with an accurate and distinct recognition of plaques. At the same time, the three-in-one complex performs an integrated lipid management through the inhibition of macrophages M1-polarization, liver X receptor (LXR)-mediated up-regulation of ATP-binding cassette transporter A1/G1 (ABCA1/G1) and the cyclodextrin-assisted lipid dissolution, which lead to the reduced lipid uptake, enhanced lipid efflux, and actuated lipid removal. The in vivo evaluations reveal that PLCDP@PMH can suppress the lesion progression and further reverse the formed plaques under a diet without high fat. Hence, PLCDP@PMH provides a candidate for the theranostics of early-stage atherosclerosis and delivers an impressive potential on the reversal of formed atherosclerotic lesions.
Collapse
Affiliation(s)
- Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Yun Xiao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
18
|
Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem 2022; 37:487-501. [PMID: 34986721 PMCID: PMC8741241 DOI: 10.1080/14756366.2021.2020773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bilirubin (BR) is the final product of haem catabolism. Disruptions along BR metabolic/transport pathways resulting from inherited disorders can increase plasma BR concentration (hyperbilirubinaemia). Unconjugated hyperbilirubinemia may induce BR accumulation in brain, potentially causing irreversible neurological damage, a condition known as BR encephalopathy or kernicterus, to which newborns are especially vulnerable. Numerous pharmaceutical strategies, mostly based on hemoperfusion, have been proposed over the last decades to identify new valid, low-risk alternatives for BR removal from plasma. On the other hand, accumulating evidence indicates that BR produces health benefits due to its potent antioxidant, anti-inflammatory and immunomodulatory action with a significant potential for the treatment of a multitude of diseases. The present manuscript reviews both such aspects of BR pharmacology, gathering literature data on applied pharmaceutical strategies adopted to: (i) reduce the plasma BR concentration for preventing neurotoxicity; (ii) produce a therapeutic effect based on BR efficacy in the treatment of many disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Alessandro Bonardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Simone Pratesi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Paola Gratteri
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
21
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
22
|
Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. SMALL METHODS 2022; 6:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.
Collapse
Affiliation(s)
- Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
23
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
24
|
Huang Z, Shi Y, Wang H, Chun C, Chen L, Wang K, Lu Z, Zhao Y, Li X. Protective Effects of Chitosan-Bilirubin Nanoparticles Against Ethanol-Induced Gastric Ulcers. Int J Nanomedicine 2022; 16:8235-8250. [PMID: 34992363 PMCID: PMC8709796 DOI: 10.2147/ijn.s344805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Gastric ulcers (GU) are a disease of the gastrointestinal tract that can be caused by excessive alcohol consumption and heavy use of nonsteroidal anti-inflammatory drugs. GU manifests predominantly as pathological damage, such as extensive inflammatory erosion and superficial bleeding of the gastric mucosa. Oxidative stress damage and the inflammatory response are now considered important predisposing factors for GU, suggesting that antioxidant and anti-inflammatory drugs could be treatments for GU. Nanoparticle drug carriers offer many advantages over conventional drugs, such as improved drug efficiency, increased drug stability, and increased half-life. Methods We designed chitosan-bilirubin conjugate (CS-BR) nanoparticles and assessed the anti-inflammatory and antioxidant abilities of CS-BR in gastric epithelial cells. Then, we evaluated the intragastric retention time and the anti-ulcer effects of CS-BR in vivo. Results The in vitro data showed that CS-BR nanoparticles protect gastric epithelial cells against oxidative/inflammatory injury. The in vivo study demonstrated that CS-BR nanoparticles accumulate permanently in the stomach and exert powerful antioxidant and anti-inflammatory effects against GU. Conclusion This study applied bilirubin to the treatment of GU and confirmed that CS-BR nanoparticles are effective at alleviating acute GU in an experimental model. The findings provide innovative ideas for prophylaxis against or treatment of GU.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Hengcai Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Longwang Chen
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Kang Wang
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Zhongqiu Lu
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Xinze Li
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| |
Collapse
|
25
|
Yao Q, Shi Y, Xia X, Tang Y, Jiang X, Zheng YW, Zhang H, Chen R, Kou L. Bioadhesive hydrogel comprising bilirubin/β-cyclodextrin inclusion complexes promote diabetic wound healing. PHARMACEUTICAL BIOLOGY 2021; 59:1139-1149. [PMID: 34425063 PMCID: PMC8386728 DOI: 10.1080/13880209.2021.1964543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Chronic non-healing diabetic wound therapy is an important clinical challenge. Manipulating the release of bioactive factors from an adhesive hydrogel is an effective approach to repair chronic wounds. As an endogenous antioxidant, bilirubin (BR) has been shown to promote wound healing. Nonetheless, its application is limited by its low water solubility and oxidative degradation. OBJECTIVE This study developed a bilirubin-based formulation for diabetic wound healing. MATERIALS AND METHODS Bilirubin was incorporated into β-CD-based inclusion complex (BR/β-CD) which was then loaded into a bioadhesive hydrogel matrix (BR/β-CD/SGP). Scratch wound assays were performed to examine the in vitro pro-healing activity of BR/β-CD/SGP (25 μg/mL of BR). Wounds of diabetic or non-diabetic rats were covered with BR or BR/β-CD/SGP hydrogels (1 mg/mL of BR) and changed every day for a period of 7 or 21 days. Histological assays were conducted to evaluate the in vivo effect of BR/β-CD/SGP. RESULTS Compared to untreated (18.7%) and BR (55.2%) groups, wound closure was more pronounced (65.0%) in BR/β-CD/SGP group. In diabetic rats, the wound length in BR/β-CD/SGP group was smaller throughout the experimental period than untreated groups. Moreover, BR/β-CD/SGP decreased TNF-α levels to 7.7% on day 3, and elevated collagen deposition and VEGF expression to 11.9- and 8.2-fold on day 14. The therapeutic effects of BR/β-CD/SGP were much better than those of the BR group. Similar observations were made in the non-diabetic model. DISCUSSION AND CONCLUSION BR/β-CD/SGP promotes wound healing and tissue remodelling in both diabetic and non-diabetic rats, indicating an ideal wound-dressing agent.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yannan Shi
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingying Tang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Ruijie Chen 109 Xueyuan West Road, Wenzhou325027, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- CONTACT Longfa Kou
| |
Collapse
|
26
|
Feng Y, Chen S, Li Z, Gu Z, Xu S, Ban X, Hong Y, Cheng L, Li C. A review of controlled release from cyclodextrins: release methods, release systems and application. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34797201 DOI: 10.1080/10408398.2021.2007352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controlled release of guest molecules from cyclodextrin (CD) inclusion complexes is very important for specific industrial applications in foods, medicine, cosmetics, textiles, agriculture, environmental protection, and chemical materials. The term "controlled release" encompasses several related methods, including those referred to as immediate release, sustained release and targeted release. Many different CD-based controlled release systems are currently used in practical applications. CD inclusion complexes, CD coupling, supramolecular hydrogels, and supramolecular micelles are among the most common. This review systematically introduces the principles and applications of CD-based controlled release systems, providing a theoretical basis for improving the bioavailability of effective substances and broadening their range of application.
Collapse
Affiliation(s)
- Yan Feng
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shuangdi Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Shude Xu
- Key Laboratory of Aquaculture Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Mariculture of Ministry Education, Ocean University of China, Qingdao, People's Republic of China.,Guangdong VTR Bio-tech Co., Ltd, Zhuhai, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
27
|
Manouchehri S, Zarrintaj P, Saeb MR, Ramsey JD. Advanced Delivery Systems Based on Lysine or Lysine Polymers. Mol Pharm 2021; 18:3652-3670. [PMID: 34519501 DOI: 10.1021/acs.molpharmaceut.1c00474] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polylysine and materials that integrate lysine form promising drug delivery platforms. As a cationic macromolecule, a polylysine polymer electrostatically interacts with cells and is efficiently internalized, thereby enabling intracellular delivery. Although polylysine is intrinsically pH-responsive, the conjugation with different functional groups imparts smart, stimuli-responsive traits by adding pH-, temperature-, hypoxia-, redox-, and enzyme-responsive features for enhanced delivery of therapeutic agents. Because of such characteristics, polylysine has been used to deliver various cargos such as small-molecule drugs, genes, proteins, and imaging agents. Furthermore, modifying contrast agents with polylysine has been shown to improve performance, including increasing cellular uptake and stability. In this review, the use of lysine residues, peptides, and polymers in various drug delivery systems has been discussed comprehensively to provide insight into the design and robust manufacturing of lysine-based delivery platforms.
Collapse
Affiliation(s)
- Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | | | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
28
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Kou L, Jiang X, Lin X, Huang H, Wang J, Yao Q, Chen R. Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr Pharm Biotechnol 2021; 22:451-467. [PMID: 32603279 DOI: 10.2174/1389201021666200630140735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Łagiewka J, Girek T, Ciesielski W. Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers (Basel) 2021; 13:1759. [PMID: 34072062 PMCID: PMC8198514 DOI: 10.3390/polym13111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides mostly composed of six, seven, or eight α-D-glucopyranose units with α-1,4-glycosidic bonds to form toroidal structures. The CDs possess a hydrophilic exterior and hydrophobic interior with the ability to form an inclusion complex, especially with hydrophobic molecules. However, most existing studies are about conjugation CDs with peptide/protein focusing on the formation of new systems. The CD-peptide/protein can possess new abilities; particularly, the cavity can be applied in modulation properties of more complexed proteins. Most studies are focused on drug delivery, such as targeted delivery in cell-penetrating peptides or co-delivery. The co-delivery is based mostly on polylysine systems; on the other hand, the CD-peptide allows us to understand biomolecular mechanisms such as fibryllation or stem cell behaviour. Moreover, the CD-proteins are more complexed systems with a focus on targeted therapy; these conjugates might be controllable with various properties due to changes in their stability. Finally, the studies of CD-peptide/protein are promising in biomedical application and provide new possibilities for the conjugation of simple molecules to biomolecules.
Collapse
Affiliation(s)
- Jakub Łagiewka
- Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave., 13/15, 42 201 Czestochowa, Poland; (T.G.); (W.C.)
| | | | | |
Collapse
|
31
|
Huang ZW, Shi Y, Zhai YY, Du CC, Zhai J, Yu RJ, Kou L, Xiao J, Zhao YZ, Yao Q. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J Control Release 2021; 334:275-289. [PMID: 33930479 DOI: 10.1016/j.jconrel.2021.04.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) is a common pathological process that is globally associated with a high morbidity and mortality rate. The underlying AKI mechanisms include over-produced reactive oxygen species (ROS), inflammatory cell infiltration, and high levels of inflammatory mediators. Bilirubin is an endogenous compound with antioxidant, anti-inflammatory and anti-apoptotic properties, and could, therefore, be a promising therapeutic candidate. Nanotechnology-mediated therapy has emerged as a novel drug delivery strategy for AKI treatment. In this study, we report a hyaluronic acid (HA) coated ε-polylysine-bilirubin conjugate (PLBR) nanoparticle (nHA/PLBR) that can selectively accumulate in injured kidneys and alleviate the oxidative/inflammatory-induced damage. The in vitro study revealed that nHA/PLBR has good stability, biocompatibility, and exhibited higher antioxidant as well as anti-apoptotic effects when compared to nPLBR or bilirubin. The in vivo study showed that nHA/PLBR could target and accumulate in the injured kidney, effectively relieve oxidative stress and inflammatory reactions, protect the structure and function of the mitochondria, and more importantly, inhibit the apoptosis of tubular cells in an ischemia/reperfusion-induced AKI rat model. Therefore, nHA/PLBR has the capacity to enhance specific biodistribution and delivery efficiency of bilirubin, thereby providing better treatment for AKI in the future.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chu-Chu Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaoyuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Run-Jie Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
32
|
Zhao M, Zhang N, Yang R, Chen D, Zhao Y. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts? Adv Healthc Mater 2021; 10:e2001897. [PMID: 33326185 DOI: 10.1002/adhm.202001897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Indexed: 12/24/2022]
Abstract
With the rapid advancements in nanotechnology and materials science, numerous nanomaterials have been used as catalysts for nanomedical applications. Their design and modification according to the microenvironment of diseases have been shown to achieve effective treatment. Chemists are in pursuit of nanocatalysts that are more efficient, controllable, and less toxic by developing innovative synthetic technologies and improving existing ones. Recently, single-atom catalysts (SACs) with excellent catalytic activity and high selectivity have attracted increasing attention because of their accurate design as nanomaterials at the atomic level, thereby highlighting their potential for nanomedical applications. In this review, the recent advances in nanocatalysts and SACs are briefly summarized according to their synthesis, characterizations, catalytic mechanisms, and nanomedical applications. The opportunities and future scope for their development and the issues and challenges for their application as nanomedicine are also discussed. As far as it is known, the review is the systematic comparison of nanocatalysts and SACs, especially in the field of nanomedicine, which has promoted the development of nanocatalytic medicine.
Collapse
Affiliation(s)
- Mengyang Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Ruigeng Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Deliang Chen
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Yongxing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| |
Collapse
|
33
|
Chen S, Huang S, Li Y, Zhou C. Recent Advances in Epsilon-Poly-L-Lysine and L-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications. Front Chem 2021; 9:659304. [PMID: 33869146 PMCID: PMC8044885 DOI: 10.3389/fchem.2021.659304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
With the advantages in biocompatibility, antimicrobial ability, and comparative facile synthesis technology, poly-L-lysine (PLL) has received considerable attention in recent years. Different arrangement forms and structures of the backbone endow lysine-based polymers with versatile applications, especially for ε-poly-L-lysine (EPL) and lysine-based dendrimer (LBD) compounds. This review summarized the advanced development of the synthesis and modification strategies of EPL and LBD, focus on the modification of bio-synthesis and artificial synthesis, respectively. Meanwhile, biomedical fields, where EPL and LBD are mainly utilized, such as agents, adjuvants, or carriers to anti-pathogen or used in tumor or gene therapies, are also introduced. With the deeper of knowledge of pharmacodynamics and pharmacokinetics of the drug system, the design and synthesis of these drugs can be further optimized. Furthermore, the performances of combination with other advanced methodologies and technologies demonstrated that challenges, such as scale production and high expenses, will not hinder the prospective future of lysine-based polymers.
Collapse
Affiliation(s)
| | | | - Yan Li
- School of Material Science and Engineering, Tongji University, Shanghai, China
| | - Chuncai Zhou
- School of Material Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Huang L, Xiang J, Cheng Y, Xiao L, Wang Q, Zhang Y, Xu T, Chen Q, Xin H, Wang X. Regulation of Blood Glucose Using Islets Encapsulated in a Melanin-Modified Immune-Shielding Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12877-12887. [PMID: 33689267 DOI: 10.1021/acsami.0c23010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Islet transplantation is currently a promising treatment for type 1 diabetes mellitus. However, the foreign body reaction and retrieval difficulty often lead to transplantation failure and hinder the clinical application. To address these two challenges, we propose a balanced charged sodium alginate-polyethyleneimine-melanin (SA-PEI-Melanin) threadlike hydrogel with immune shielding and retrievable properties. The attractiveness of this study lies in that the introduction of melanin can stimulate insulin secretion, especially under near-infrared (NIR) irradiation. After demonstrating a good immune-shielding effect, we performed an in vivo transplantation experiment. The results showed that the blood glucose level in the SA-PEI-Melanin group was stably controlled below the diabetic blood glucose criterion, and this blood glucose level could be further adjusted after NIR irradiation. In addition, the evaluation after retrieving the SA-PEI-Melanin hydrogel indicated that the islets still maintained a normal physiological function, further proving its excellent immunological protection. This study provides a new approach for the accurate regulation of blood glucose in patients with type 1 diabetes mellitus and contributes to developing a promising transplant system to reconcile real-time and precise light-defined insulin secretion regulation.
Collapse
Affiliation(s)
- Ling Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jiajia Xiang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yukai Cheng
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Ling Xiao
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qingqing Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yini Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Tieling Xu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qianrui Chen
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
35
|
Bao S, Zheng H, Ye J, Huang H, Zhou B, Yao Q, Lin G, Zhang H, Kou L, Chen R. Dual Targeting EGFR and STAT3 With Erlotinib and Alantolactone Co-Loaded PLGA Nanoparticles for Pancreatic Cancer Treatment. Front Pharmacol 2021; 12:625084. [PMID: 33815107 PMCID: PMC8017486 DOI: 10.3389/fphar.2021.625084] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies and also a leading cause of cancer-related mortality worldwide. Many studies have shown that epidermal growth factor receptor (EGFR) is highly expressed in PC, which provides a potential target for PC treatment. However, EGFR inhibitors use alone was proven ineffective in clinical trials, due to the persistence of cellular feedback mechanisms which foster therapeutic resistance to single targeting of EGFR. Specifically, the signal transducer and activator of transcription 3 (STAT3) is over-activated when receiving an EGFR inhibitor and is believed to be highly involved in the failure and resistance of EGFR inhibitor treatment. Therein, we hypothesized that dual inhibition of EGFR and STAT3 strategy could address the STAT3 induced resistance during EGFR inhibitor treatment. To this end, we tried to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles to co-load Alantolactone (ALA, a novel STAT3 inhibitor) and Erlotinib (ERL, an EGFR inhibitor) for pancreatic cancer to test our guess. The loading ratio of ALA and ERL was firstly optimized in vitro to achieve a combined cancer-killing effect. Then, the ALA- and ERL-co-loaded nanoparticles (AE@NPs) were successfully prepared and characterized, and the related anticancer effects and cellular uptake of AE@NPs were studied. We also further detailly explored the underlying mechanisms. The results suggested that AE@NPs with uniform particle size and high drug load could induce significant pancreatic cancer cell apoptosis and display an ideal anticancer effect. Mechanism studies showed that AE@NPs inhibited the phosphorylation of both EGFR and STAT3, indicating the dual suppression of these two signaling pathways. Additionally, AE@NPs could also activate the ROS-p38 axis, which is not observed in the single drug treatments. Collectively, the AE@NPs prepared in this study possess great potential for pancreatic cancer treatment by dual suppressing of EGFR and STAT3 pathways and activating ROS-responsive p38 MAPK pathway.
Collapse
Affiliation(s)
- Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Jinyao Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| |
Collapse
|
36
|
Zhao YZ, Huang ZW, Zhai YY, Shi Y, Du CC, Zhai J, Xu HL, Xiao J, Kou L, Yao Q. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization. Acta Biomater 2021; 122:172-185. [PMID: 33387663 DOI: 10.1016/j.actbio.2020.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.
Collapse
|
37
|
Yao Q, Chen R, Ganapathy V, Kou L. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 2020; 328:407-424. [DOI: 10.1016/j.jconrel.2020.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
38
|
Jiang X, Zheng YW, Bao S, Zhang H, Chen R, Yao Q, Kou L. Drug discovery and formulation development for acute pancreatitis. Drug Deliv 2020; 27:1562-1580. [PMID: 33118404 PMCID: PMC7598990 DOI: 10.1080/10717544.2020.1840665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis is a sudden inflammation and only last for a short time, but might lead to a life-threatening emergency. Traditional drug therapy is an essential supportive method for acute pancreatitis treatment, yet, failed to achieve satisfactory therapeutic outcomes. To date, it is still challenging to develop therapeutic medicine to redress the intricate microenvironment promptly in the inflamed pancreas, and more importantly, avoid multi-organ failure. The understanding of the acute pancreatitis, including the causes, mechanism, and severity judgment, could help the scientists bring up more effective intervention and treatment strategies. New formulation approaches have been investigated to precisely deliver therapeutics to inflammatory lesions in the pancreas, and some even could directly attenuate the pancreatic damages. In this review, we will briefly introduce the involved pathogenesis and underlying mechanisms of acute pancreatitis, as well as the traditional Chinese medicine and the new drug option. Most of all, we will summarize the drug delivery strategies to reduce inflammation and potentially prevent the further development of pancreatitis, with an emphasis on the bifunctional nanoparticles that act as both drug delivery carriers and therapeutics.
Collapse
Affiliation(s)
- Xue Jiang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers (Basel) 2020; 12:E2837. [PMID: 33019627 PMCID: PMC7599460 DOI: 10.3390/cancers12102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
40
|
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020; 10:11719-11736. [PMID: 33052243 PMCID: PMC7545989 DOI: 10.7150/thno.47682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.
Collapse
|
41
|
Zhao YZ, Lin MT, Lan QH, Zhai YY, Xu HL, Xiao J, Kou L, Yao Q. Silk Fibroin-Modified Disulfiram/Zinc Oxide Nanocomposites for pH Triggered Release of Zn 2+ and Synergistic Antitumor Efficacy. Mol Pharm 2020; 17:3857-3869. [PMID: 32833457 DOI: 10.1021/acs.molpharmaceut.0c00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Ting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
42
|
Yao Q, Sun R, Bao S, Chen R, Kou L. Bilirubin Protects Transplanted Islets by Targeting Ferroptosis. Front Pharmacol 2020; 11:907. [PMID: 32612533 PMCID: PMC7308534 DOI: 10.3389/fphar.2020.00907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is an attractive treatment for type 1 diabetic patients. However, transplanted islets suffered from considerable cell death due to inflammatory reactions and oxidative stress. Ferroptosis is a programmed death characterized by iron-dependent lipid peroxidation, which has been implicated in the islet loss and dysfunction. Our previous studies showed that bilirubin displayed protection effect for islets by inhibiting early inflammation and oxidative stress. However, whether bilirubin protects islets by targeting ferroptosis has not yet been elucidated. Here, the isolated islet was exposed to ferroptosis-inducing agents with or without bilirubin. Islet viability, insulin secretion, and oxidative stress levels were assessed. Subsequently, the pretreated islets were transplanted into the subrenal site of streptozotocin-induced diabetic mice. Bilirubin could significantly attenuate ferroptosis in isolated islets, along with reduced oxidative stress, elevated GPX4 expression and upregulation of Nrf2/HO-1. Experimental data also confirmed that bilirubin could chelate iron. In vivo graft study demonstrated that euglycemia was achieved in diabetic mice receiving bilirubin-pretreated islets within 24 hours, while the control islets required at least 7 days. Bilirubin could improve islet viability and function through inhibiting ferroptosis, which could be of clinic interest to apply bilirubin into the islet transplantation system.
Collapse
Affiliation(s)
- Qing Yao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Chen Z, Vong CT, Gao C, Chen S, Wu X, Wang S, Wang Y. Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases. Mol Pharm 2020; 17:2260-2274. [PMID: 32433886 DOI: 10.1021/acs.molpharmaceut.0c00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are chemically reactive species that are produced in cellular aerobic metabolism. They mainly include superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet oxygen, ozone, and nitric oxide and are implicated in many physiological and pathological processes. Bilirubin, a cardinal pigment in the bile, has been increasingly investigated to treat cancer, diabetes, ischemia-reperfusion injury, asthma, and inflammatory bowel diseases (IBD). Indeed, bilirubin has been shown to eliminate ROS production, so it is now considered as a promising therapeutic agent for ROS-mediated diseases and can be used for the development of antioxidative nanomedicines. This review summarizes the current knowledge of the physiological mechanisms of ROS production and its role in pathological changes and focuses on discussing the antioxidative effects of bilirubin and its application in the experimental studies of nanomedicines. Previous studies have shown that bilirubin was mainly used as a responsive molecule in the microenvironment of ROS overproduction in neoplastic tissues for the development of anticancer nanodrugs; however, it could also exert powerful ROS scavenging activity in chronic inflammation and ischemia-reperfusion injury. Therefore, bilirubin, as an inartificial ROS scavenger, is expected to be used for the development of nanomedicines against more diseases due to the universality of ROS involvement in human pathological conditions.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Shiyun Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999087, China
| |
Collapse
|
44
|
Nanoparticle mediated codelivery of nifuratel and doxorubicin for synergistic anticancer therapy through STAT3 inhibition. Colloids Surf B Biointerfaces 2020; 193:111109. [PMID: 32416521 DOI: 10.1016/j.colsurfb.2020.111109] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/09/2020] [Accepted: 05/03/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is one of the most potent strategies to treat gastric cancer in clinic. However, the resistance of cancer cells to chemotherapeutics is a remarkable impediment to the treatment. Moreover, signal transducer and activator of transcription 3 (STAT3) is a critical transcriptional factor that over-activated in gastric cancer, and highly involved in the induction of chemoresistance. In this study, we developed poly (lactic-co-glycolic acid) (PLGA) nanoparticles to achieve the simultaneous codelivery of doxorubicin (DOX) and nifuratel (NIF, a novel STAT3 inhibitor) for enhanced cancer therapy. The synergistic effect of DOX and NIF against cancer cells was evaluated in gastric cancer cells. PLGA nanoparticles with an optimal ratio of DOX and NIF (DNNPs) were prepared and characterized. The cellular uptake and anticancer effects of DNNPs were investigated, and the underlying mechanisms were further explored. DNNPs presented as a spherical shape, provided sustained release profiles, and exhibited significantly increased uptake and cytotoxicity in gastric cancer cells. Mechanism studies showed that DNNPs significantly induced mitochondrial-dependent apoptosis and inhibited STAT3 phosphorylation, explaining the enhanced anticancer effect. These results suggested that DNNPs represented a promising strategy against gastric cancer by inhibiting the STAT3 pathway and amplifying apoptosis.
Collapse
|