1
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
2
|
Sun Z, Yin Y, Jiang T, Zhou B, Ding H, Gai S, Yang P. Stretchable Unsymmetrical Piezoelectric BiO 2-x Deposited-Hydrogel as Multimodal Triboelectric Nanogenerators for Biomechanical Motion Harvesting. SMALL METHODS 2024; 8:e2400480. [PMID: 38803307 DOI: 10.1002/smtd.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Enhancing the output performance of triboelectric nanogenerators (TENGs) is essential for increasing their application in smart devices. Oxygen-vacancy-rich BiO2-x nanosheets (BiO2-x NSs) are advanced-engineered nanomaterials with excellent piezoelectric properties. Herein, a stretchable unsymmetrical BiO2-x NSs deposited-hydrogel made of polyacrylamide (PAM) as a multimodal TENG is rationally fabricated, and the performance of TENG can be tailored by controlling the BiO2-x NSs deposition amount and spatial distribution. The alteration of resistance caused by the Poisson effect of PAM/BiO2-x composite hydrogel (H-BiO2-x) can be used as a piezoresistive sensor, and the piezoelectricity of BiO2-x NSs can effectively enhance the density of transfer charge, thus improving the output performance of the H-BiO2-x-based TENG. In addition, the chemical cross-linking between the BiO2-x NSs and the PAM polymer chain allows the hydrogel electrode to have a higher tensile capacity (867%). Used for biomechanical motion signal detection, the sensors made of H-BiO2-x have high sensitivity (gauge factor = 6.93) and can discriminate a range of forces (0.1-5.0 N) at low frequencies (0.5-2.0 Hz). Finally, the prepared TENG can collect biological energy and convert it into electricity. Consequently, the improved TENG shows a good application prospect as multimodal biomechanical sensors by combining piezoresistive, piezoelectric, and triboelectric effects.
Collapse
Affiliation(s)
- Zewei Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanqi Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tianzong Jiang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
3
|
Zhu Q, Sun E, Sun Y, Cao X, Wang N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1885. [PMID: 39683273 DOI: 10.3390/nano14231885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Wang S, Fan P, Liu W, Hu B, Guo J, Wang Z, Zhu S, Zhao Y, Fan J, Li G, Xu L. Research Progress of Flexible Electronic Devices Based on Electrospun Nanofibers. ACS NANO 2024; 18:31737-31772. [PMID: 39499656 DOI: 10.1021/acsnano.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized. After briefly discussing the principle of electrospinning, process parameters that affect electrospinning, and two major electrospinning techniques (i.e., single-fluid electrospinning and multifluid electrospinning), the review shines a spotlight on the recent breakthroughs in multifunctional and stretchable electronic devices that are based on electrospun substrates. These advancements include flexible sensors, flexible energy harvesting and storage devices, flexible accessories for electronic devices, and flexible environmental monitoring devices. In particular, the review outlines the challenges and potential solutions of developing electrospun nanofibers for flexible electronic devices, including overcoming the incompatibility of multiple interfaces, developing 3D microstructure sensor arrays with gradient geometry for various imperceptible on-skin devices, etc. This review may provide a comprehensive understanding of the rational design of application-oriented flexible electronic devices based on electrospun nanofibers.
Collapse
Affiliation(s)
- Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Wenbo Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zizhao Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shengke Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yipu Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Wu M, Li Z. A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring. Heliyon 2024; 10:e30845. [PMID: 38765035 PMCID: PMC11097072 DOI: 10.1016/j.heliyon.2024.e30845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, textile materials used for wearable flexible sensors have received much attention. Wearable textile based triboelectric nanogenerator (TENG) not only has unique advantages in mechanical energy harvesting, but also has application value in the direction of motion sensing. Here, we proposed a non-woven fabric triboelectric nanogenerator (NW-TENG) for mechanical energy harvesting and badminton monitoring. The non-woven fabric play the role of positive triboelectric, and the fluffy fiber structure endows NW-TENG with a sensitive response to pressure. The pressure sensing sensitivity of NW-TENG sensor can reach 1.22 V N-1 (Pressure range: 0-7 N) and 0.18 V N-1 (Pressure range: 8 N-55 N). Furthermore, the NW-TENG can be installed on the body joints of badminton players for analyzing joint movements, thereby achieving data-driven badminton training and facilitating the evaluation of training effectiveness. This research provide a new path to promote TENG to the badminton monitoring field.
Collapse
Affiliation(s)
- Min Wu
- Physical Education Department, Dalian Ocean University, Dalian, 116023, Liaoning, China
| | - Zheng Li
- Physical Education Department, Dalian Ocean University, Dalian, 116023, Liaoning, China
| |
Collapse
|
6
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
7
|
Zhao Q, Fan L, Zhao N, He H, Zhang L, Tan Q. Synergistic advancements in high-performance flexible capacitive pressure sensors: structural modifications, AI integration, and diverse applications. NANOSCALE 2024. [PMID: 38415750 DOI: 10.1039/d3nr05155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The development of flexible pressure sensors for monitoring human motion and physiological signals has attracted extensive scientific research. However, achieving low monitoring limits, a wide detection range, large bending stresses, and excellent mechanical stability simultaneously remains a serious challenge. With the aim of developing a high-performance capacitive pressure sensor (CPS), this paper introduces the successful preparation of a single-walled carbon nanotube (SWNT)/polydimethylsiloxane (S-PDMS) composite dielectric with a foam-like structure (high permittivity and low elasticity modulus) and MXene/SWNT (S-MXene) composite film electrodes with a micro-crumpled structure. The above structurally modified CPS (SMCPS) demonstrated an excellent response output during pressure loading, achieving a wide pressure detection range (up to 700 kPa), a low detection limit (16.55 Pa), fast response/recovery characteristics (48/60 ms), enhanced sensitivity across a wide pressure range, long-term stability under repeated heavy loading and unloading (40 kPa, >2000 cycles), and reliable performance under various temperature and humidity conditions. The SMCPS demonstrated a precise and stable capacitive response in monitoring subtle physiological signals and detecting motion, owing to its unique electrode structure. The flexible device was integrated with an Internet of Things module to create a smart glove system that enables real-time tracking of dynamic gestures. This system demonstrates exceptional performance in gesture recognition and prediction with artificial intelligence analysis, highlighting the potential of the SMCPS in human-machine interface applications.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Lei Fan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Nan Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoyun He
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Lei Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Qiulin Tan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| |
Collapse
|
8
|
Wu L, Xue P, Fang S, Gao M, Yan X, Jiang H, Liu Y, Wang H, Liu H, Cheng B. Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. MATERIALS HORIZONS 2024; 11:341-362. [PMID: 37901942 DOI: 10.1039/d3mh00614j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Triboelectric nanogenerators (TENGs) have been utilized in a wide range of applications, including smart wearable devices, self-powered sensors, energy harvesting, and high-voltage power sources. The surface morphology and structure of TENGs play a critical role in their output performance. In this review, we analyze the working mechanism of TENGs with the aim to improve their output performance and systematically summarize the morphological engineering and structural design strategies for TENGs. Additionally, we present the emerging applications of TENGs with specific structures and surfaces. Finally, we discuss the potential future development and industrial application of TENGs. By deeply exploring the surface and structural design strategy of high-performance TENGs, it is conducive to further promote the application of TENGs in actual production. We hope that this review provides insights and guidance for the morphological and structural design of TENGs in the future.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shangdong 252000, P. R. China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Shize Fang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaojie Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hong Jiang
- Research and Development Department, Jiangxi Changshuo Outdoor Leisure Products Co, Jiangxi 335500, P. R. China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huihui Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
9
|
Wang Y, Wang X, Nie S, Meng K, Lin Z. Recent Progress of Wearable Triboelectric Nanogenerator-Based Sensor for Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 24:36. [PMID: 38202897 PMCID: PMC10780409 DOI: 10.3390/s24010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Today, cardiovascular diseases threaten human health worldwide. In clinical practice, it has been concluded that analyzing the pulse waveform can provide clinically valuable information for the diagnosis of cardiovascular diseases. Accordingly, continuous and accurate monitoring of the pulse wave is essential for the prevention and detection of cardiovascular diseases. Wearable triboelectric nanogenerators (TENGs) are emerging as a pulse wave monitoring biotechnology due to their compelling characteristics, including being self-powered, light-weight, and wear-resistant, as well as featuring user-friendliness and superior sensitivity. Herein, a comprehensive review is conducted on the progress of wearable TENGs for pulse wave monitoring. Firstly, the four modes of operation of TENG are briefly described. Secondly, TENGs for pulse wave monitoring are classified into two categories, namely wearable flexible film-based TENG sensors and textile-based TENG sensors. Next, the materials, fabrication methods, working mechanisms, and experimental performance of various TENG-based sensors are summarized. It concludes by comparing the characteristics of the two types of TENGs and discussing the potential development and challenges of TENG-based sensors in the diagnosis of cardiovascular diseases and personalized healthcare.
Collapse
Affiliation(s)
- Yiming Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Xiaoke Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Shijin Nie
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Keyu Meng
- School of Electronic and Information Engineering, Changchun University, Changchun 130022, China;
| | - Zhiming Lin
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| |
Collapse
|
10
|
Gu J, Shen Y, Tian S, Xue Z, Meng X. Recent Advances in Nanowire-Based Wearable Physical Sensors. BIOSENSORS 2023; 13:1025. [PMID: 38131785 PMCID: PMC10742341 DOI: 10.3390/bios13121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Wearable electronics is a technology that closely integrates electronic devices with the human body or clothing, which can realize human-computer interaction, health monitoring, smart medical, and other functions. Wearable physical sensors are an important part of wearable electronics. They can sense various physical signals from the human body or the surrounding environment and convert them into electrical signals for processing and analysis. Nanowires (NW) have unique properties such as a high surface-to-volume ratio, high flexibility, high carrier mobility, a tunable bandgap, a large piezoresistive coefficient, and a strong light-matter interaction. They are one of the ideal candidates for the fabrication of wearable physical sensors with high sensitivity, fast response, and low power consumption. In this review, we summarize recent advances in various types of NW-based wearable physical sensors, specifically including mechanical, photoelectric, temperature, and multifunctional sensors. The discussion revolves around the structural design, sensing mechanisms, manufacture, and practical applications of these sensors, highlighting the positive role that NWs play in the sensing process. Finally, we present the conclusions with perspectives on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Zhaoguo Xue
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xianhong Meng
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
12
|
Hu J, Dun G, Geng X, Chen J, Wu X, Ren TL. Recent progress in flexible micro-pressure sensors for wearable health monitoring. NANOSCALE ADVANCES 2023; 5:3131-3145. [PMID: 37325539 PMCID: PMC10262959 DOI: 10.1039/d2na00866a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 06/17/2023]
Abstract
In recent years, flexible micro-pressure sensors have been used widely in wearable health monitoring applications due to their excellent flexibility, stretchability, non-invasiveness, comfort wearing and real-time detection. According to the working mechanism of the flexible micro-pressure sensor, it can be classified as piezoresistive, piezoelectric, capacitive and triboelectric types. Herein, an overview of flexible micro-pressure sensors for wearable health monitoring is presented. The physiological signaling and body motions contain a lot of health status information. Thus, this review focuses on the applications of flexible micro-pressure sensors in these fields. Additionally, the contents of sensing mechanism, sensing materials and performance of flexible micro-pressure sensors are introduced in detail. Finally, we predict the future research directions of the flexible micro-pressure sensors, and discuss the challenges in practical applications.
Collapse
Affiliation(s)
- Jianguo Hu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| | - Guanhua Dun
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| | - Xiangshun Geng
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| | - Jing Chen
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| | - Xiaoming Wu
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| | - Tian-Ling Ren
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023; 19:100565. [PMID: 36816602 PMCID: PMC9932217 DOI: 10.1016/j.mtbio.2023.100565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
14
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
15
|
Liu E, Cai Z, Ye Y, Zhou M, Liao H, Yi Y. An Overview of Flexible Sensors: Development, Application, and Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:817. [PMID: 36679612 PMCID: PMC9863693 DOI: 10.3390/s23020817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The emergence and advancement of flexible electronics have great potential to lead development trends in many fields, such as "smart electronic skin" and wearable electronics. By acting as intermediates to detect a variety of external stimuli or physiological parameters, flexible sensors are regarded as a core component of flexible electronic systems and have been extensively studied. Unlike conventional rigid sensors requiring costly instruments and complicated fabrication processes, flexible sensors can be manufactured by simple procedures with excellent production efficiency, reliable output performance, and superior adaptability to the irregular surface of the surroundings where they are applied. Here, recent studies on flexible sensors for sensing humidity and strain/pressure are outlined, emphasizing their sensory materials, working mechanisms, structures, fabrication methods, and particular applications. Furthermore, a conclusion, including future perspectives and a short overview of the market share in this field, is given for further advancing this field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Yi
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
16
|
Yin J, Reddy VS, Chinnappan A, Ramakrishna S, Xu L. Electrospun Micro/Nanofiber with Various Structures and Functions for Wearable Physical Sensors. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2158467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Amutha Chinnappan
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- Jiangsu Engineering Research Center of Textile, Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, China
| |
Collapse
|
17
|
Feng H, Liu Y, Feng L, Zhan L, Meng S, Ji H, Zhang J, Li M, He P, Zhao W, Wei J. Additively Manufactured Flexible Electronics with Ultrabroad Range and High Sensitivity for Multiple Physiological Signals' Detection. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9871489. [PMID: 36061822 PMCID: PMC9394051 DOI: 10.34133/2022/9871489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, most flexible electronics do not possess both high sensitivity and wide detection range simultaneously; their sensitivity drops rapidly when they are subjected to even just medium pressure. In this study, ultrabroad-range, high-sensitivity flexible electronics are fabricated through additive manufacturing to address this issue. The key to possess high sensitivity and a wide detection range simultaneously is to fabricate flexible electronics with large depth-width ratio circuit channels using the additive manufacturing inner-rinsing template method. These electronics exhibit an unprecedented high sensitivity of 320 kPa-1 over the whole detection range, which ranges from 0.3 to 30,000 Pa (five orders of magnitude). Their minimum detectable weight is 0.02 g (the weight of a fly), which is comparable with human skin. They can stretch to over 500% strain without breaking and show no tensile fatigue after 1000 repetitions of stretching to 100% strain. A highly sensitive and flexible electronic epidermal pulse monitor is fabricated to detect multiple physiological signals, such as pulse signal, breathing rhythm, and real-time beat-to-beat cuffless blood pressure. All of these signals can be obtained simultaneously for detailed health detection and monitoring. The fabrication method does not involve complex expensive equipment or complicated operational processes, so it is especially suitable for the fabrication of large-area, complex flexible electronics. We believe this approach will pave the way for the application of flexible electronics in biomedical detection and health monitoring.
Collapse
Affiliation(s)
- Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Yaming Liu
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Liang Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Shuaishuai Meng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Peng He
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| | - Jun Wei
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), China
| |
Collapse
|
18
|
Xia G, Song B, Fang J. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9896274. [PMID: 36061820 PMCID: PMC9394050 DOI: 10.34133/2022/9896274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Electrical stimulation has demonstrated great effectiveness in the modulation of cell fate in vitro and regeneration therapy in vivo. Conventionally, the employment of electrical signal comes with the electrodes, battery, and connectors in an invasive fashion. This tedious procedure and possible infection hinder the translation of electrical stimulation technologies in regenerative therapy. Given electromechanical coupling and flexibility, piezoelectric polymers can overcome these limitations as they can serve as a self-powered stimulator via scavenging mechanical force from the organism and external stimuli wirelessly. Wireless electrical cue mediated by electrospun piezoelectric polymeric nanofibers constitutes a promising paradigm allowing the generation of localized electrical stimulation both in a noninvasive manner and at cell level. Recently, numerous studies based on electrospun piezoelectric nanofibers have been carried out in electrically regenerative therapy. In this review, brief introduction of piezoelectric polymer and electrospinning technology is elucidated first. Afterward, we highlight the activating strategies (e.g., cell traction, physiological activity, and ultrasound) of piezoelectric stimulation and the interaction of piezoelectric cue with nonelectrically/electrically excitable cells in regeneration medicine. Then, quantitative comparison of the electrical stimulation effects using various activating strategies on specific cell behavior and various cell types is outlined. Followingly, this review explores the present challenges in electrospun nanofiber-based piezoelectric stimulation for regeneration therapy and summarizes the methodologies which may be contributed to future efforts in this field for the reality of this technology in the clinical scene. In the end, a summary of this review and future perspectives toward electrospun nanofiber-based piezoelectric stimulation in tissue regeneration are elucidated.
Collapse
Affiliation(s)
- Guangbo Xia
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Beibei Song
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Li W, Wang C, Shao D, Lu L, Cao J, Wang X, Lu J, Yang W. Red carbon dot directed biocrystalline alignment for piezoelectric energy harvesting. NANOSCALE 2022; 14:9031-9044. [PMID: 35703451 DOI: 10.1039/d2nr01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, using chitin-derived chitosan, we first demonstrate the luminous carbon dot-directed large-scale biocrystalline piezo-phase alignment. This further significantly facilitates the piezo-energy harvesting of Earth-abundant natural biopolymers. A very small, yet moderate, number of red-emission carbon quantum dots (R-CQDs) allow a highly preferential macroscopic alignment of chitosan based, electrospun hybrid nanofibers and a highly preferential microscopic alignment of internal chitosan piezo-phase crystalline lamellae. Meanwhile, R-CQD hybridized bionanofibers maintain the long-wavelength photoluminescence excitation/emission of encapsulated, monodisperse R-CQDs. The piezoelectric voltage output and piezoelectric current output of hybrid bionanofibers reach up to 125 V cm-3 and 1.5 μA cm-3, respectively. They are more than 5 and 6 times higher than those of the state-of-the-art pristine ones, respectively. Moreover, the proof-of-concept red-emission bionanofibrous piezoelectric nanogenerator shows a highly durable, highly stable, and highly reproducible piezoresponse in over 10 000 continuous load cycles. As a reliable renewable energy source, it demonstrates the fast charging of external capacitors and the direct operation of commercial electronics. In particular, as a self-powered wearable tactile healthcare sensor, it attains ultrahigh mechanosensitivity in sensing a broad range of human biophysiological pressures and strains.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chuanfeng Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Dingyun Shao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Liang Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jingjing Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Xuanlun Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
20
|
Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng 2022; 6:021505. [PMID: 35783456 PMCID: PMC9249212 DOI: 10.1063/5.0088136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Collapse
Affiliation(s)
- Riddha Das
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
21
|
From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. BIOSENSORS 2022; 12:bios12050323. [PMID: 35624624 PMCID: PMC9138307 DOI: 10.3390/bios12050323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Nowadays, self-powered wearable biosensors that are based on triboelectric nanogenerators (TENGs) are playing an important role in the continuous efforts towards the miniaturization, energy saving, and intelligence of healthcare devices and Internets of Things (IoTs). In this review, we cover the remarkable developments in TENG−based biosensors developed from various polymer materials and their functionalities, with a focus on wearable and implantable self-powered sensors for health monitoring and therapeutic devices. The functions of TENGs as power sources for third-party biosensors are also discussed, and their applications in a number of related fields are concisely illustrated. Finally, we conclude the review with a discussion of the challenges and problems of leveraging TENG−based intelligent biosensors.
Collapse
|
22
|
Yang P, Shi Y, Li S, Tao X, Liu Z, Wang X, Wang ZL, Chen X. Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS NANO 2022; 16:4654-4665. [PMID: 35171554 DOI: 10.1021/acsnano.1c11321] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Shoes play an important role in sports and human daily life. Here, an in-shoe sensor pad (ISSP) attached to the vamp lining is based on a triboelectric nanogenerator (TENG) for monitoring the real-time stress distribution on the top side of a foot. Each sensor unit on this ISSP is an air-capsule TENG (AC-TENG) consisting of activated carbon/polyurethane (AC/PU) and microsphere array electrodes. The detection range of each AC-TENG reaches 7.27 MPa, which is enough for monitoring the pressure change during different sports. This multifunctional ISSP can realize many typical functions of conventional smart shoes, including step counting and human-machine interaction. Moreover, it can also reveal special information, including the fitness of shoes, the stress concentration on toes, and the in-motion comfort degree. The signal processing and data transmission modules in the system have a hybrid power supply with wireless power transfer, while the real-time information about feet can be observed on a cell phone. Hence, this ISSP provides a potential approach to study the feet motion and comfort degree of shoes in long-term operations, which can guide both athlete training and the customized design of shoes.
Collapse
Affiliation(s)
- Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xingling Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
23
|
Feng W, Chen Y, Wang W, Yu D. A waterproof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhao Y, Shen T, Zhang M, Yin R, Zheng Y, Liu H, Sun H, Liu C, Shen C. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Duan Y, You G, Sun K, Zhu Z, Liao X, Lv L, Tang H, Xu B, He L. Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. NANOSCALE ADVANCES 2021; 3:6271-6293. [PMID: 36133490 PMCID: PMC9416975 DOI: 10.1039/d1na00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
The continuous expansion of smart microelectronics has put forward higher requirements for energy conversion, mechanical performance, and biocompatibility of micro-energy storage devices (MESDs). Unique porosity, superior flexibility and comfortable breathability make the textile-based structure a great potential in wearable MESDs. Herein, a timely and comprehensive review of this field is provided according to recent research advances. The following aspects, device construction of textile-based MESDs (TMESDs), fabric processing of textile components and smart functionalization (e.g., mechanical reliability, energy harvesting, sensing, self-charging and self-healing, etc.) are discussed and summarized thoroughly. Also, the perspectives on the microfabrication processes and multiple applications of TMESDs are elaborated.
Collapse
Affiliation(s)
- Yixue Duan
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Gongchuan You
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Kaien Sun
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Zhe Zhu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Xiaoqiao Liao
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Linfeng Lv
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Bin Xu
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- Science and Technology on Reactor Fuel and Materials Laboratory Chengdu 610095 P. R. China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
26
|
Bunea AC, Dediu V, Laszlo EA, Pistriţu F, Carp M, Iliescu FS, Ionescu ON, Iliescu C. E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. MICROMACHINES 2021; 12:1091. [PMID: 34577734 PMCID: PMC8470991 DOI: 10.3390/mi12091091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Real-time "on-body" monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.
Collapse
Affiliation(s)
- Alina-Cristina Bunea
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Edwin Alexandru Laszlo
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florian Pistriţu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Mihaela Carp
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Faculty of Electrical and Mechanical Engineering, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
27
|
Huang J, Hao Y, Zhao M, Li W, Huang F, Wei Q. All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24774-24784. [PMID: 34015919 DOI: 10.1021/acsami.1c03894] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the rapid development in wearable electronics, self-powered devices have recently attracted tremendous attention to overcome the restriction of conventional power sources. In this regard, a simple, scalable, and one-pot electrospinning fabrication technique was utilized to construct an all-fiber-structured triboelectric nanogenerator (TENG). Ethyl cellulose was co-electrospun with polyamide 6 to serve as the triboelectric positive material, and a kind of strongly electronegative conductive material of MXene sheet was innovatively incorporated into poly(vinylidene fluoride) nanofiber to act as a triboelectric negative material. The assembled all-fiber TENG exhibited excellent durability and stability, as well as excellent output performance, which reached a peak power density of 290 mW/m2 at a load resistance of 100 MΩ. More importantly, the TENG was capable of harvesting energy to power various light-emitting diodes (LEDs) and monitoring human movements as a self-powered sensor, providing a promising application prospect in wearable electronics.
Collapse
Affiliation(s)
- Jieyu Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi Hao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Zhao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Tian Z, Zhang H, Xiu F, Zhang M, Zou J, Ban C, Nie Y, Jiang W, Hu B, Liu J. Wearable and washable light/thermal emitting textiles. NANOSCALE ADVANCES 2021; 3:2475-2480. [PMID: 36134169 PMCID: PMC9417798 DOI: 10.1039/d1na00063b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Electronic textiles (e-textiles) typically comprise fabric substrates with electronic components capable of heating, sensing, lighting and data storage. In this work, we rationally designed and fabricated anisotropic light/thermal emitting e-textiles with great mechanical stability based on a sandwich-structured tri-electrode device. By coating silver nanowire network/thermal insulation bilayer on fabrics, an anisotropic thermal emitter can be realized for smart heat management. By further covering the emissive film and the top electrode on the bilayer, light emitters with desirable patterns and colors are extracted from the top surface via an alternative current derived electroluminescence. Both the light and thermal emitting functions can be operated simultaneously or separately. Particularly, our textiles exhibit reliable heating and lighting performance in water, revealing excellent waterproof feature and washing stability.
Collapse
Affiliation(s)
- Zhihui Tian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Heshan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Fei Xiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Minjie Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiahao Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Chaoyi Ban
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yijie Nie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Wenjie Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Bin Hu
- School of Optics and Photonics, Beijing Institute of Technology Beijing 100081 China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
29
|
A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS2 Nanometer 2D Material for Self-Powered Sensors. ENERGIES 2021. [DOI: 10.3390/en14082097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A piezoelectric sensor is a typical self-powered sensor. With the advantages of a high sensitivity, high frequency band, high signal-to-noise ratio, simple structure, light weight, and reliable operation, it has gradually been applied to the field of smart wearable devices. Here, we first report a flexible piezoelectric sensor (FPS) based on tungsten disulfide (WS2) monolayers that generate electricity when subjected to human movement. The generator maximum voltage was 2.26 V, and the produced energy was 55.45 μJ of the electrical charge on the capacitor (capacity: 220 μF) when applying periodic pressing by 13 kg. The generator demonstrated here can meet the requirements of human motion energy because it generates an average voltage of 7.74 V (a knee), 8.7 V (a sole), and 4.58 V (an elbow) when used on a running human (weight: 75 kg). Output voltages embody distinct patterns for different human parts, the movement-recognition capability of the cellphone application. This generator is quite promising for smart sensors in human–machine interaction detecting personal movement.
Collapse
|
30
|
Affiliation(s)
- Jia-wen Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yuan-yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
31
|
He F, You X, Wang W, Bai T, Xue G, Ye M. Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications. SMALL METHODS 2021; 5:e2001041. [PMID: 34927827 DOI: 10.1002/smtd.202001041] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Indexed: 05/19/2023]
Abstract
With the rapid growth of artificial intelligence, wearable electronic devices have caught intensive research interest recently. Flexible sensors, as the significant part of them, have become the focus of research. Particularly, flexible microstructural pressure sensors (FMPSs) have attracted extensive attention because of their controllable shape, small size, and high sensitivity. Microstructures are of great significance to improve the sensitivity and response time of FMPSs. The FMPSs present great application prospects in medical health, human-machine interaction, electronic products, and so on. In this review, a series of microstructures (e.g., wave, pillar, and pyramid shapes) which have been elaborately designed to effectively enhance the sensing performance of FMPSs are introduced in detail. Various fabrication strategies of these FMPSs are comprehensively summarized, including template (e.g., silica, anodic aluminum oxide, and bionic patterns), pre-stressing, and magnetic field regulation methods. In addition, the materials (e.g., carbon, polymer, and piezoelectric materials) used to prepare FMPSs are also discussed. Moreover, the potential applications of FMPSs in human-machine interaction and healthcare fields are emphasized as well. Finally, the advantages and latest development of FMPSs are further highlighted, and the challenges and potential prospects of high-performance FMPSs are outlined.
Collapse
Affiliation(s)
- Faliang He
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xingyan You
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Weiguo Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Tian Bai
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gaofei Xue
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
32
|
Chen G, Au C, Chen J. Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends Biotechnol 2021; 39:1078-1092. [PMID: 33551177 DOI: 10.1016/j.tibtech.2020.12.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
Arterial pulse waves are regarded as vital diagnostic tools in the assessment of cardiovascular disease (CVD). Because of their high sensitivity, rapid response time, wearability, and low cost, textile triboelectric nanogenerators (TENGs) are emerging as a compelling biotechnology for wearable pulse wave monitoring. We discuss sensing mechanisms for pulse-to-electricity conversion, analytical models for calculating cardiovascular parameters, and application scenarios for textile TENGs. We provide a prospective on the challenges that limit the wider application of this technology and suggest some future research directions. In the future, textile TENGs are expected to make an impact in the fields of wearable pulse wave monitoring and CVD diagnosis.
Collapse
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Shen S, Xiao X, Xiao X, Chen J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun (Camb) 2021; 57:5871-5879. [DOI: 10.1039/d1cc02091a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triboelectric nanogenerator emerges as a cost-effective biotechnology that could convert the subtle skin deformation caused by arterial pressure fluctuation into high voltage output, creating electrical signals with an extremely high signal-to-noise ratio for high-fidelity continuous pulse waveform monitoring.
Collapse
Affiliation(s)
- Sophia Shen
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Xiao Xiao
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Xiao Xiao
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| | - Jun Chen
- Department of Bioengineering
- University of California
- Los Angeles
- Los Angeles
- USA
| |
Collapse
|
34
|
Chen T, Zhang SH, Lin QH, Wang MJ, Yang Z, Zhang YL, Wang FX, Sun LN. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. NANOSCALE 2020; 12:21271-21279. [PMID: 33063798 DOI: 10.1039/d0nr05976e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the booming development of flexible pressure sensors, the need for multifunctional and high-performance pressure sensor has become increasingly important. Although great progress has been made in the novel structure and sensing mechanism of the pressure sensor, the trade-off between the sensitivity and the wide-detection range has prevented its development, further restricting its application in wearable human-machine interfaces (WHMIs). Herein, a novel pressure sensor based on the hierarchical conductive fabric was fabricated and purposed as a WHMI. Poly(3,4-ethylenedioxythiophene) nanowires (PEDOT NWs) and cellulose nanofibers (CNF) were stacked on a conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fabric to form a special spatial multi-level hierarchical structure inside the fabric, which is a breakthrough for the improvement of the sensor's performance and makes the fabrication process of in situ polymerization suitable for large-scale production. The multi-level hierarchical structures endowed the pressure sensor with characteristics of high sensitivity (15.78 kPa-1), a wide-detection range from 30 Pa to 700 kPa, and outstanding stability toward compression and bending deformation. Benefiting from its excellent performance, a human-machine interface based on arrayed pressure sensors and signal processing system can control the illumination of the LED array and effectively capture finger motion to control the eight-direction movement of an unmanned aerial vehicle (UAV). This improved performance of the pressure sensor based on the hierarchical conductive fabric made it a widespread application in intelligent fabric, electronic skin, human-machine interfaces, and robotics.
Collapse
Affiliation(s)
- Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Shao-Hui Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qi-Hang Lin
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Ming-Jiong Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Zhan Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Yun-Lin Zhang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Feng-Xia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Li-Ning Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
35
|
Abolhasani MM, Naebe M, Hassanpour Amiri M, Shirvanimoghaddam K, Anwar S, Michels JJ, Asadi K. Hierarchically Structured Porous Piezoelectric Polymer Nanofibers for Energy Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000517. [PMID: 32670767 PMCID: PMC7341085 DOI: 10.1002/advs.202000517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Hierarchically porous piezoelectric polymer nanofibers are prepared through precise control over the thermodynamics and kinetics of liquid-liquid phase separation of nonsolvent (water) in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) solution. Hierarchy is achieved by fabricating fibers with pores only on the surface of the fiber, or pores only inside the fiber with a closed surface, or pores that are homogeneously distributed in both the volume and surface of the nanofiber. For the fabrication of hierarchically porous nanofibers, guidelines are formulated. A detailed experimental and simulation study of the influence of different porosities on the electrical output of piezoelectric nanogenerators is presented. It is shown that bulk porosity significantly increases the power output of the comprising nanogenerator, whereas surface porosity deteriorates electrical performance. Finite element method simulations attribute the better performance to increased volumetric strain in bulk porous nanofibers.
Collapse
Affiliation(s)
- Mohammad Mahdi Abolhasani
- Max‐Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Chemical Engineering DepartmentUniversity of KashanKashan8731753153Iran
| | - Minoo Naebe
- Carbon NexusInstitute for Frontier MaterialsDeakin UniversityGeelong3217Australia
| | | | | | - Saleem Anwar
- Max‐Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- School of Chemical & Materials EngineeringNational University of Sciences & TechnologySector H‐12IslamabadPakistan
| | - Jasper J. Michels
- Max‐Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kamal Asadi
- Max‐Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
36
|
Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B. Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19965-19973. [PMID: 32275380 DOI: 10.1021/acsami.0c03670] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At present, pressure sensor textiles are of great significance in the area of wearable electronics, especially for making smart or intelligent textiles. However, the design of these textile-based devices with sensitive ability, simple fabrication, and low cost is still challenging. In this study, we developed a triboelectric sensing textile constructed with core-shell yarns. Nylon filament and polytetrafluoroethylene filament were selected as the positive and negative layers, respectively, in the woven structure while the built-in helical stainless steel yarn was serving as the inner electrode layer. The sensitivity of the sensing textile can reach up to 1.33 V·kPa-1 and 0.32 V·kPa-1 in the pressure range of 1.95-3.13 kPa and 3.20-4.61 kPa, respectively. This sensing textile presented good mechanical stability and sensing capability even after 4200 cycles of continuous operation or after 4 h continuous water washing. Benefiting from the favorable merits of being highly flexible, breathable, lightweight, and even dyeable, the fabricated device was capable of being placed on any desired body parts for quantifying the dynamic human motions. It can be effectively used to measure and monitor various human movements associated with different joints, such as the hand, elbow, knee, and underarm. Moreover, the sensing textile was able to capture real-time pulse signals and reflect the current health status for human beings. This study affords an innovative and promising track for multifunctional pressure sensor textiles with wide applications in smart textiles and personalized healthcare.
Collapse
Affiliation(s)
- Mengna Lou
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Ibrahim Abdalla
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Miaomiao Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xuedian Wei
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| | - Zhaoling Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, P. R. China
| |
Collapse
|
38
|
Han Y, Han Y, Zhang X, Li L, Zhang C, Liu J, Lu G, Yu HD, Huang W. Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16442-16450. [PMID: 32172560 DOI: 10.1021/acsami.0c01061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Triboelectric nanogenerator (TENG) has been proven effective in converting biomechanical energy into electrical energy, which is expected to be a new energy supply device for wearable electronics and can be utilized as a self-powered sensor. In this work, we have developed a flexible, eco-friendly, and multifunctional fish gelatin based triboelectric nanogenerator (FG-TENG) composed of fish gelatin (FG) film and poly(tetrafluoroethylene)/poly(dimethylsiloxane) (PTFE/PDMS) composite film. The open-circuit voltage (Voc), short-circuit current (Isc), and output power density of this FG-TENG could reach up to 130 V, 0.35 μA, and 45.8 μW cm-2, respectively, which were significantly higher than those of TENGs based on other commonly used positive friction materials such as aluminum foil, poly(ethylene terephthalate) (PET), and print paper. The superior performance of the FG-TENG is attributed to the strong electron-donating ability of the FG during the triboelectric process. The generated electric energy was high enough to light up 50 commercial light-emitting diodes (LEDs) directly. Importantly, owing to the high stability and excellent sensitivity of the FG-TENG, it has been used as a self-powered sensor for real-time monitoring of the human physiological signals such as finger touch, joint movement, and respiration. Furthermore, to expand the usages in real-life applications, a foldable FG-TENG was fabricated by adopting the Miura folding to monitor human movements in real time. This work provides an economical, simple, and environmental-friendly approach to fabricate a biomechanical energy harvester, which has a great potential in powering next-generation wearable electronics and monitoring human physiological signals.
Collapse
Affiliation(s)
- Yaojie Han
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yufeng Han
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xiaopan Zhang
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lin Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengwu Zhang
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinhua Liu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gang Lu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hai-Dong Yu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Xi'an Institute of Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Xi'an Institute of Flexible Electronics, MIIT Key Laboratory of Flexible Electronics, Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| |
Collapse
|
39
|
Fan J, Zhang S, Li F, Yang Y, Du M. Recent advances in cellulose-based membranes for their sensing applications. CELLULOSE (LONDON, ENGLAND) 2020; 27:9157-9179. [PMID: 32934443 PMCID: PMC7483080 DOI: 10.1007/s10570-020-03445-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 05/13/2023]
Abstract
ABSTRACT In recent years, sensing applications have played a very important role in various fields. As a novel natural material, cellulose-based membranes with many merits can be served as all kinds of sensors. This review summarizes the recent progress of cellulose membranes as sensors, mainly focusing on their preparation processes and sensing properties. In addition, the opportunities and challenges of cellulose membrane-based sensors are also prospected. This review provides some references for the design of cellulose membrane materials for sensing applications in the future.
Collapse
Affiliation(s)
- Jiang Fan
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Fei Li
- The Second Kindergarten, Economic and Technological Development Zone, Xi’an, 710021 People’s Republic of China
| | - Yonglin Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Min Du
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| |
Collapse
|