1
|
Tang W, Deng S, Zou Y, Li H, Deng S, Ma Z. Porous-dual-shell structure and heterojunction Co 3O 4@NiCo 2O 4 accelerating polysulfides conversion for all-solid-state lithium sulfur batteries. J Colloid Interface Sci 2025; 693:137590. [PMID: 40245834 DOI: 10.1016/j.jcis.2025.137590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/15/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
All-solid-state lithium sulfur batteries (ASSLSBs) hold significant promise in the application of high energy density batteries, yet they suffer from poor ionic conductivity, low Li+ transference number and unsatisfactory lithium polysulfides (LiPSs) conversion. In this paper, porous-dual-shell structure and heterojunction Co3O4@NiCo2O4 is prepared and composited with polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs) to address these problems. The superimposed electric field for Co3O4@NiCo2O4 composed of the heterointerfaces -build-in electric field and the surface oxygen-rich vacancies-build-in electric field facilitates the dissociation of Li salts, thus improving the ionic conductivity. It exhibits high ionic conductivity of 1.04 × 10-3 S/cm and Li+ transference number of 0.48 at 60 °C. Besides, the incorporation of Co3O4@NiCo2O4 heterojunction enables fast LiPSs conversion and improves the electrochemical kinetics. The Li//Li cell can work stably for 1100 h at 0.1 mA/cm2. The Li//S cell provides an initial capacity of 1170 mA h/g, a reversible capacity of 620.1mA h/g after 100 cycles and 308.3 mA h/g after 450 cycles at 0.2 C.
Collapse
Affiliation(s)
- Wenhao Tang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China
| | - Shiyan Deng
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China
| | - Youlan Zou
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China.
| | - Huiyao Li
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China
| | - Shuang Deng
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China
| | - Zengsheng Ma
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 Hunan, PR China.
| |
Collapse
|
2
|
Wang W, Jia A, Wang Y, Qu Y, Huang J, Zhang W, Zhang H. Room-Temperature CsPbI 3-Quantum-Dot Reinforced Solid-State Li-Polymer Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407713. [PMID: 39797485 DOI: 10.1002/smll.202407713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/05/2025] [Indexed: 01/13/2025]
Abstract
A novel polymer electrolyte based on CsPbI3 quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI3 QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.56 mS cm-1, and its Li-ion transference number (τ L i + ${{\tau }_{{\mathrm{L}}{{{\mathrm{i}}}^ + }}}$ ) from 0.20 to 0.63. It is revealed that the synergistic enhancement of Li-ion transport and interface stability is realized by CsPbI3 QDs through Lewis acid-base interaction, ordered polarization of PAN, and interface chemical regulation. These two effects guarantee the robust solid-electrolyte interface (SEI) in PIL-based solid-state batteries. Consequently, PIL electrolyte enables solid-state Li-metal batteries to deliver extraordinary RT cycling performance as verified by excellent cycling stability (>2000 h at 0.1 mA cm-2) of Li|PIL|Li symmetric batteries. Moreover, Li|PIL|LFP (LFP is LiFePO4) and Li|PIL|NCM811 (NCM811 is Li(Ni0.8Co0.1Mn0.1)O2) batteries maintain capacity retention of 81.2% and 77.9%, respectively, after 600 cycles at 0.5 C, as well as good rate-capability and very high Coulombic efficiency at RT.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Aili Jia
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yiping Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanxiao Qu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junfeng Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wen Zhang
- School of Mathematics and Statistics, Hainan University, Haikou, 570228, China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China
- Institute of Hydrogen & Energy Storage Technologies, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
3
|
Shao Y, Mei Y, Liu T, Li Z, Zhang Y, Liu S, Liu Y. Enhanced electrochemical stability and ion transfer rate: A polymer/ceramic composite electrolyte for high-performance all-solid-state lithium-sulfur batteries. J Colloid Interface Sci 2025; 678:682-689. [PMID: 39307057 DOI: 10.1016/j.jcis.2024.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
All-solid-state (ASS) lithium-sulfur (LiS) batteries utilizing composite polymer electrolytes (CPEs) represent a promising avenue in the domain of electric vehicles and large-scale energy storage systems, leveraging the combined benefits of polymer electrolytes (PEs) and ceramic electrolytes (CEs). However, the inherent weak interface compatibility between PEs and CEs often leads to phase separation, thereby impeding the transposition of Li+. In this study, the trimethoxy-[3-(2-methoxyethoxy)propyl]silane (TM-MES) is introduced as a chemical agent to form bonds with polyethylene oxide (PEO) and Li10GeP2S12 (LGPS), resulting in the development of a novel composite polymer electrolyte (CPETM-MES). This innovative approach mitigates phase separation between PEs and CEs while concurrently enhancing the protective capabilities of LGPS against decomposition at the interfaces of both the Li anode and sulfur cathode. Moreover, the CPETM-MES exhibits superior mechanical toughness, an expanded electrochemical window, and elevated ionic conductivity. In the symmetric cell, it demonstrates an extended operational lifespan exceeding 1800 h, and the current density can reach up to 1.05 mA/cm2. Furthermore, the initial discharge capacity of ASS LiS batteries utilizing CPETM-MES attains 1227 mAh/g and maintains a capacity of 904 mAh/g after 100 cycles. Notably, a high-energy-density of 2454 Wh/kg is achieved based on the sulfur cathode.
Collapse
Affiliation(s)
- Yaxin Shao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuhan Mei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Tao Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Zhenhu Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yulin Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuping Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China.
| |
Collapse
|
4
|
Song Y, Su M, Xiang H, Kang J, Yu W, Peng Z, Wang H, Cheng B, Deng N, Kang W. PEO-Based Solid-State Polymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408045. [PMID: 39593246 DOI: 10.1002/smll.202408045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Developing solid-state lithium metal batteries with wide operating temperature range is important in future. Polyethylene oxide (PEO)-based solid-state electrolytes are extensively studied for merits including superior flexibility and low glass transition temperature. However, ideal usage temperatures for conventional PEO-based solid-state electrolytes are between 60 and 65 °C, and unequable temperature degrades their electrochemical performances at low and high temperatures (≤25 °C and ≥80 °C). Herein, modification methods of PEO electrolytes for low, high especially wide-temperature applications are reviewed based on detailed analyses of mechanisms involved in its modification at different temperatures. First, shortcomings of PEO solid electrolytes due to influence of temperature are pointed out. Second, existing modification strategies are summarized in detail from three aspects of high, low especially wide temperatures, including application of PEO derivatives or chain segment modification treatment of PEO, addition of fillers, and other modification methods such as reasonable regulation of lithium salts, introduction of functional layers and addition of metal-organic frameworks (MOFs) or covalent organic frameworks (COFs). Finally, a summary and description of PEO-based solid electrolyte research and development trends for wide-temperature applications are provided. The review aims to offer some guidance for the creation of PEO solid batteries with wider working temperature ranges.
Collapse
Affiliation(s)
- Yunxuan Song
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Meng Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hengying Xiang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Junbao Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wen Yu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaozhao Peng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hang Wang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tiangong University, Tianin, 300387, P. R. China
| |
Collapse
|
5
|
Jamal H, Khan F, Kim JH, Kim E, Lee SU, Kim JH. Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402001. [PMID: 38966882 DOI: 10.1002/smll.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/15/2024] [Indexed: 07/06/2024]
Abstract
The implementation of polymer-based Li-metal batteries is hindered by their low coulombic efficiency and poor cycling stability attributed to continuous electrolyte decomposition. Enhancement of the solid electrolyte interface (SEI) stability is key to mitigating electrolyte decomposition. This study proposes surface-functionalized silica mesoball fillers to fabricate a composite polymer electrolyte (MSBM-CPE). As a result of surface modification, the polyethylene oxide matrix benefits from the uniform distribution of the filler, which provides a large surface area and Lewis acid sites. Molecular dynamics simulations reveal that the dissociation energy of lithium bis(trifluoromethanesulfonyl)imide in the filler is fourfold higher (-1.95 eV) than that of the filler-free electrolyte. Consequently, the MSMB-CPE diffusivity is 30 times higher than its filler-free counterpart. The MSMB-CPE of ionic conductivity of 1.16 × 10-2 S cm-1 @60 °C and a venerable Li-ion transference number of 0.81. The excellent compatibility of MSMB-CPE with the Li anode is demonstrated by its stable symmetric cell performance under high current density (200 µA cm-2 @60 °C) for over 5000 h. Approximately 85.60% retention capacity of the [Li/MSMB-CPE/LiFePO4] full cell after 700 cycles. Furthermore, compositional analysis reveals that the SEI layer in MSMB-CPE is smooth with fewer by-products at the electrolyte/Li interface.
Collapse
Affiliation(s)
- Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Firoz Khan
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Ji Hoon Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16149, Republic of Korea
| | - Eunhui Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
- School of Materials Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16149, Republic of Korea
| | - Jae Hyun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
6
|
Liu H, Ye Y, Zhu F, Zhong X, Luo D, Zhang Y, Deng W, Zou G, Hou H, Ji X. Optimizing the Microenvironment in Solid Polymer Electrolytes by Anion Vacancy Coupled with Carbon Dots. Angew Chem Int Ed Engl 2024; 63:e202409044. [PMID: 39005168 DOI: 10.1002/anie.202409044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.
Collapse
Affiliation(s)
- Huaxin Liu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yu Ye
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Fangjun Zhu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xue Zhong
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Dingzhong Luo
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
7
|
Lin Q, Kundu D, Skyllas-Kazacos M, Lu J, Zhao D, Amine K, Dai L, Wang DW. Perspective on Lewis Acid-Base Interactions in Emerging Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406151. [PMID: 39030779 DOI: 10.1002/adma.202406151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.
Collapse
Affiliation(s)
- Qiaowei Lin
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| | - Dipan Kundu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria Skyllas-Kazacos
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| |
Collapse
|
8
|
Zhang X, Cheng S, Fu C, Yin G, Wang L, Wu Y, Huo H. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. NANO-MICRO LETTERS 2024; 17:2. [PMID: 39302512 DOI: 10.1007/s40820-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic-inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shichao Cheng
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yongmin Wu
- State Key Laboratory of Space Power-Sources, 2965 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
9
|
Hu L, Gao X, Wang H, Song Y, Zhu Y, Tao Z, Yuan B, Hu R. Progress of Polymer Electrolytes Worked in Solid-State Lithium Batteries for Wide-Temperature Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312251. [PMID: 38461521 DOI: 10.1002/smll.202312251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Solid-state Li-ion batteries have emerged as the most promising next-generation energy storage systems, offering theoretical advantages such as superior safety and higher energy density. However, polymer-based solid-state Li-ion batteries face challenges across wide temperature ranges. The primary issue lies in the fact that most polymer electrolytes exhibit relatively low ionic conductivity at or below room temperature. This sensitivity to temperature variations poses challenges in operating solid-state lithium batteries at sub-zero temperatures. Moreover, elevated working temperatures lead to polymer shrinkage and deformation, ultimately resulting in battery failure. To address this challenge of polymer-based solid-state batteries, this review presents an overview of various promising polymer electrolyte systems. The review provides insights into the temperature-dependent physical and electrochemical properties of polymers, aiming to expand the temperature range of operation. The review also further summarizes modification strategies for polymer electrolytes suited to diverse temperatures. The final section summarizes the performance of various polymer-based solid-state batteries at different temperatures. Valuable insights and potential future research directions for designing wide-temperature polymer electrolytes are presented based on the differences in battery performance. This information is intended to inspire practical applications of wide-temperature polymer-based solid-state batteries.
Collapse
Affiliation(s)
- Long Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Xue Gao
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Hui Wang
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
| | - Yun Song
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yongli Zhu
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Zhijun Tao
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Bin Yuan
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China
- Guangdong Huajing New Energy Technology Co. Ltd, Foshan, 528313, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
10
|
Zhao W, Tian P, Gao T, Wang W, Mu C, Pang H, Ye J, Ning G. Different-grain-sized boehmite nanoparticles for stable all-solid-state lithium metal batteries. NANOSCALE 2024; 16:11163-11173. [PMID: 38758041 DOI: 10.1039/d4nr01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PEO is one of the common composite polymer electrolyte vehicles; however, the presence of crystalline phase at room temperature, high interface impedance, and low oxidation resistance (<4.0 V) limit its application in stable all-solid-state lithium metal batteries. Herein, we designed a PEO-based solid polymer electrolyte (SPE) by adding boehmite nanoparticles to address the above-mentioned issues. Different-grain-sized boehmite nanoparticles were synthesized by adjusting the hydrothermal temperature. Moreover, the impacts of these distinct grain-sized boehmite nanoparticles used to fabricate boehmite/PEO polymer electrolytes (BPEs) on the performance of all-solid-state lithium metal batteries were investigated. It was found that with the increase in boehmite's grain size, BPEs show better performance. The best BPE exhibited an improved Li+ transference number (0.59), high ionic conductivity (1.25 × 10-4 S m-1), and wide electrochemical window (∼4.5 V) at 60 °C. The assembled lithium symmetric battery can stably undergo 500 hours of lithium plating/stripping at 0.1 mA cm-2. At the same time, the LiFePO4/BPE/Li battery exhibits excellent cycling stability after 100 cycles at 0.5C. This reasonable design strategy with a superior capacity retention rate (86%) demonstrates great potential in achieving high ionic conductivity and good interface stability for all-solid-state lithium metal batteries simultaneously.
Collapse
Affiliation(s)
- Weiran Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Peng Tian
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Tingting Gao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Wu Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Chenxi Mu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Hongchang Pang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Junwei Ye
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| | - Guiling Ning
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, PR China.
| |
Collapse
|
11
|
Zhou X, Zhou Y, Yu L, Qi L, Oh KS, Hu P, Lee SY, Chen C. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem Soc Rev 2024; 53:5291-5337. [PMID: 38634467 DOI: 10.1039/d3cs00551h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Rechargeable batteries, typically represented by lithium-ion batteries, have taken a huge leap in energy density over the last two decades. However, they still face material/chemical challenges in ensuring safety and long service life at temperatures beyond the optimum range, primarily due to the chemical/electrochemical instabilities of conventional liquid electrolytes against aggressive electrode reactions and temperature variation. In this regard, a gel polymer electrolyte (GPE) with its liquid components immobilized and stabilized by a solid matrix, capable of retaining almost all the advantageous natures of the liquid electrolytes and circumventing the interfacial issues that exist in the all-solid-state electrolytes, is of great significance to realize rechargeable batteries with extended working temperature range. We begin this review with the main challenges faced in the development of GPEs, based on extensive literature research and our practical experience. Then, a significant section is dedicated to the requirements and design principles of GPEs for wide-temperature applications, with special attention paid to the feasibility, cost, and environmental impact. Next, the research progress of GPEs is thoroughly reviewed according to the strategies applied. In the end, we outline some prospects of GPEs related to innovations in material sciences, advanced characterizations, artificial intelligence, and environmental impact analysis, hoping to spark new research activities that ultimately bring us a step closer to realizing wide-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Yifang Zhou
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Luhe Qi
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| | - Kyeong-Seok Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Pei Hu
- School of Science, Hubei University of Technology, Wuhan 430070, P. R. China.
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China.
| |
Collapse
|
12
|
He X, Zhu Z, Wen G, Lv S, Yang S, Hu T, Cao Z, Ji Y, Fu X, Yang W, Wang Y. Design of High-Entropy Tape Electrolytes for Compression-Free Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307599. [PMID: 37797262 DOI: 10.1002/adma.202307599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Advanced solid electrolytes with strong adhesion to other components are the key for the successes of solid-state batteries. Unfortunately, traditional solid electrolytes have to work under high compression to maintain the contact inside owing to their poor adhesion. Here, a concept of high-entropy tape electrolyte (HETE) is proposed to simultaneously achieve tape-like adhesion, liquid-like ion conduction, and separator-like mechanical properties. This HETE is designed with adhesive skin layer on both sides and robust skeleton layer in the middle. The significant properties of the three layers are enabled by high-entropy microstructures which are realized by harnessing polymer-ion interactions. As a result, the HETE shows high ionic conductivity (3.50 ± 0.53 × 10-4 S cm-1 at room temperature), good mechanical properties (toughness 11.28 ± 1.12 MJ m-3, strength 8.18 ± 0.28 MPa), and importantly, tape-like adhesion (interfacial toughness 231.6 ± 9.6 J m-2). Moreover, a compression-free solid-state tape battery is finally demonstrated by adhesion-based assembling, which shows good interfacial and electrochemical stability even under harsh mechanical conditions, such as twisting and bending. The concept of HETE and compression-free solid-state tape batteries may bring promising solutions and inspiration to conquer the interface challenges in solid-state batteries and their manufacturing.
Collapse
Affiliation(s)
- Xuewei He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiwei Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Guojiang Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shanshan Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Sifan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ting Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zheng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuewei Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
13
|
Zheng F, Li C, Li Z, Cao X, Luo H, Liang J, Zhao X, Kong J. Advanced Composite Solid Electrolytes for Lithium Batteries: Filler Dimensional Design and Ion Path Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206355. [PMID: 36843226 DOI: 10.1002/smll.202206355] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Indexed: 05/25/2023]
Abstract
Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D-2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.
Collapse
Affiliation(s)
- Feifan Zheng
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunwei Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zongcheng Li
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Cao
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hebin Luo
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jin Liang
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaodong Zhao
- Fujian Blue Ocean & Black Stone Technology Co., Ltd. , Changtai, Fujian Province, 363900, China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
14
|
Zou Y, Ao Z, Zhang Z, Chen N, Zou H, Lv Y, Huang Y. Metal-organic framework modified PEO-based solid electrolyte for high-performance all-solid-state lithium metal batteries. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
15
|
Chang R, Liang Y, Hao Q, Xu J, Li N. Hexamethylene diisocyanate-modified Al2O3 as inorganic fillers enabling low resistance and high stable cross-linked polymer electrolyte of lithium metal batteries. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Liang H, Wang L, Wang A, Song Y, Wu Y, Yang Y, He X. Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. NANO-MICRO LETTERS 2023; 15:42. [PMID: 36719552 PMCID: PMC9889599 DOI: 10.1007/s40820-022-00996-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Highlights The current issues and recent advances in polymer/inorganic composite electrolytes are reviewed. The molecular interaction between different components in the composite environment is highlighted for designing high-performance polymer/inorganic composite electrolytes. Inorganic filler properties that affect polymer/inorganic composite electrolyte performance are pointed out. Future research directions for polymer/inorganic composite electrolytes compatible with high-voltage lithium metal batteries are outlined. Abstract Solid-state electrolytes (SSEs) are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density. Among them, polymer solid-state electrolytes (PSEs) are competitive candidates for replacing commercial liquid electrolytes due to their flexibility, shape versatility and easy machinability. Despite the rapid development of PSEs, their practical application still faces obstacles including poor ionic conductivity, narrow electrochemical stable window and inferior mechanical strength. Polymer/inorganic composite electrolytes (PIEs) formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes (ISEs), exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics. Some PIEs are highly compatible with high-voltage cathode and lithium metal anode, which offer desirable access to obtaining lithium metal batteries with high energy density. This review elucidates the current issues and recent advances in PIEs. The performance of PIEs was remarkably influenced by the characteristics of the fillers including type, content, morphology, arrangement and surface groups. We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs. Finally, the obstacles and opportunities for creating high-performance PIEs are outlined. This review aims to provide some theoretical guidance and direction for the development of PIEs.
Collapse
Affiliation(s)
- Hongmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Aiping Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yanzhou Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
17
|
Zhou J, Dong L, Zeng X, Chen L, Wei X, Shi L, Fu J. An Asymmetric Cross-Linked Ionic Copolymer Hybrid Solid Electrolyte with Super Stretchability for Lithium-Ion Batteries. Macromol Rapid Commun 2023; 44:e2200648. [PMID: 36153838 DOI: 10.1002/marc.202200648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Indexed: 01/26/2023]
Abstract
Composite solid electrolytes are recommended to be the most promissing strategy for solid-state batteries because they combine the advantages of inorganic ceramics and polymers. However, the huge interfacial resistance between the inorganic ceramic and polymer results in low ionic conductivity, which is still the major impediment that limits their applications. Herein, a novel highly elastic and weakly coordinated ionic copolymer hybrid electrolyte with asymmetric structure based on surface-modified Li1.5 Al0.5 Ge1.5 (PO4 )3 by "in situ" polymerization is proposed to improve ionic conductivity and mechanical properties simultaneously. The all-solid hybrids electrolytes exhibit room-temperature ionic conductivity up to 2.61 × 10-4 S cm-1 and lithium-ion transference number of 0.41. The hybrids electrolytes can be repeatedly stretching-releasing-stretching, showing a super stretchability with the elongation at break up to 496%. The Li symmetrical cells assembled with the hybrid electrolytes can continuously operate for 800 h at 0.1 mA cm-2 without discernable dendrites, indicating good interfacial compatibility between the hybrid electrolytes and lithium electrodes. The Li|LiFePO4 batteries assembled with the hybrid electrolytes deliver an initial discharge specific capacity of 165.5 mAh g-1 with an initial coulombic efficiency of 94.8% and 154 mAh g-1 after 100 cycles at 0.1 C, and maintain 95.4% capacity retention after 100 cycles at 0.5 C.
Collapse
Affiliation(s)
- Jia Zhou
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Linna Dong
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xingfa Zeng
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liya Chen
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiangrong Wei
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liyi Shi
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.,Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang, 314006, P. R. China
| | - Jifang Fu
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
18
|
Xi W, Jin J, Zhang Y, Wang R, Gong Y, He B, Wang H. Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. NANOSCALE 2022; 14:11923-11944. [PMID: 35920652 DOI: 10.1039/d2nr02802f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2D MXenes have attracted considerable attention due to their high electronic conductivity, tunable metal compositions, functional termination groups, low ion diffusion barriers, and abundant active sites. However, MXenes suffer from sheet stacking and partial surface oxidation, limiting their energy storage and water treatment development. To solve these problems and enhance the performance of MXenes in practical applications, various hierarchical MXene/transition metal oxide (MXene/TMO) heterostructures are rationally designed and constructed. The hierarchical MXene/TMO heterostructures can not only prevent the stacking of MXene sheets and improve the electronic conductivity and buffer the volume change of TMOs during the electrochemical reaction process. The synergistic effect of conductive MXenes and active TMOs also makes MXene/TMO heterostructures promising electrode materials for energy storage and seawater desalination. This review mainly introduces and discusses the recent research progress in MXene/TMO heterostructures, focusing on their synthetic strategies, heterointerface engineering, and applications in rechargeable batteries, capacitors, and capacitive deionization (CDI). Finally, the key challenges and prospects for the future development of the MXene/TMO heterostructures in rechargeable batteries, capacitors, and CDI are proposed.
Collapse
Affiliation(s)
- Wen Xi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Youfang Zhang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
19
|
Xu Y, Li J, Li W. A Strategy for Preparing Solid Polymer Electrolytes Containing In Situ Synthesized ZnO Nanoparticles with Excellent Electrochemical Performance. NANOMATERIALS 2022; 12:nano12152680. [PMID: 35957111 PMCID: PMC9370296 DOI: 10.3390/nano12152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023]
Abstract
ZnO nanoparticles were successfully in situ synthesized in the form of PEO–COO− modified ZnO by a three-step method, based on which the solid polymer electrolytes (SPEs), based on polyethylene oxide (PEO) with excellent electrochemical performance, were prepared. The evolution of the electrochemical and mechanical performances of the SPEs with the ZnO content (0–5 wt.%) was investigated in detail. The mechanical property of the SPEs demonstrated a Λ-shaped change trend as increasing the ZnO content, so that the highest value was acquired at 3 wt.% ZnO. The SPE containing 3 wt.% ZnO had the most outstanding electrochemical performance, which was significantly better than that containing directly-added ZnO (2 wt.%). Compared with the latter, the ion conductivity of the former was improved by approximately 299.05% (1.255 × 10−3 S·cm−1 at 60 °C). The lithium-ion migration number was improved from 0.768 to 0.858. The electrochemical window was enhanced from 5.25 V to 5.50 V. When the coin cell was subject to the cycling (three cycles in turn from 0.1 C to 3 C, and subsequent fifty cycles at 1 C), the 68.73% specific capacity was retained (106.8 mAh·g−1). This investigation provides a feasible approach to prepare the SPEs with excellent service performance.
Collapse
Affiliation(s)
| | - Jun Li
- Correspondence: ; Tel.: +86-21-6779-1198; Fax: +86-21-6779-1377
| | | |
Collapse
|
20
|
Zheng T, Cui X, Chu Y, Li H, Pan Q. Ultrahigh Elastic Polymer Electrolytes for Solid-State Lithium Batteries with Robust Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5932-5939. [PMID: 35041373 DOI: 10.1021/acsami.1c20243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid polymer electrolytes (SPEs) are promising for solid-state lithium batteries, but their practical application is significantly impeded by their low ionic conductivity and poor compatibility. Here, we report an ultrahigh elastic SPE based on cross-linked polyurethane (PU), succinonitrile (SN), and lithium bistrifluoromethanesulfonimide (LiTFSI). The resulting electrolyte (PU-SN-LiTFSI) exhibits an ionic conductivity of 2.86 × 10-4 S cm-1, a tensile strength of 3.8 MPa, and a breaking elongation exceeding 3000% at room temperature. A solid-state lithium battery using the electrolyte exhibits a high specific capacity of 150 mAh g-1 at 0.2C and a long cycling life of up to 700 cycles at 0.5C at room temperature, showing one of the best performances among its counterparts. The excellent performances are attributed to the fact that its ultrahigh elasticity, good ionic conductivity, tensile strength, and electrochemical stability contribute to robust electrode/electrolyte interfaces, thus greatly decreasing the charge-transfer resistance in charge/discharge processes. Our investigations provide a novel strategy to address the intrinsic interfacial issue of solid-state batteries.
Collapse
Affiliation(s)
- Tianxiang Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ximing Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ying Chu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Haijuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Qinmin Pan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
21
|
A simple low-cost method to prepare gel electrolytes incorporating graphene oxide with increased ionic conductivity and electrochemical stability. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhou X, Fu J, Li Z, Yu R, Liu S, Li Z, Wei L, Guo X. Research progress on solid polymer electrolytes. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Zhan H, Wu M, Wang R, Wu S, Li H, Tian T, Tang H. Excellent Performances of Composite Polymer Electrolytes with Porous Vinyl-Functionalized SiO 2 Nanoparticles for Lithium Metal Batteries. Polymers (Basel) 2021; 13:polym13152468. [PMID: 34372070 PMCID: PMC8347765 DOI: 10.3390/polym13152468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Composite polymer electrolytes (CPEs) incorporate the advantages of solid polymer electrolytes (SPEs) and inorganic solid electrolytes (ISEs), which have shown huge potential in the application of safe lithium-metal batteries (LMBs). Effectively avoiding the agglomeration of inorganic fillers in the polymer matrix during the organic–inorganic mixing process is very important for the properties of the composite electrolyte. Herein, a partial cross-linked PEO-based CPE was prepared by porous vinyl-functionalized silicon (p-V-SiO2) nanoparticles as fillers and poly (ethylene glycol diacrylate) (PEGDA) as cross-linkers. By combining the mechanical rigidity of ceramic fillers and the flexibility of PEO, the as-made electrolyte membranes had excellent mechanical properties. The big special surface area and pore volume of nanoparticles inhibited PEO recrystallization and promoted the dissolution of lithium salt. Chemical bonding improved the interfacial compatibility between organic and inorganic materials and facilitated the homogenization of lithium-ion flow. As a result, the symmetric Li|CPE|Li cells could operate stably over 450 h without a short circuit. All solid Li|LiFePO4 batteries were constructed with this composite electrolyte and showed excellent rate and cycling performances. The first discharge-specific capacity of the assembled battery was 155.1 mA h g−1, and the capacity retention was 91% after operating for 300 cycles at 0.5 C. These results demonstrated that the chemical grafting of porous inorganic materials and cross-linking polymerization can greatly improve the properties of CPEs.
Collapse
Affiliation(s)
- Hui Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Mengjun Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Shuohao Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Tian Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
- Guangdong Hydrogen Energy Institute of WHUT Xianhu Hydrogen Valley, Foshan 528200, China
- Correspondence: (T.T.); (H.T.)
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
- Guangdong Hydrogen Energy Institute of WHUT Xianhu Hydrogen Valley, Foshan 528200, China
- Correspondence: (T.T.); (H.T.)
| |
Collapse
|
24
|
Méry A, Rousselot S, Lepage D, Dollé M. A Critical Review for an Accurate Electrochemical Stability Window Measurement of Solid Polymer and Composite Electrolytes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3840. [PMID: 34300757 PMCID: PMC8304043 DOI: 10.3390/ma14143840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
All-solid-state lithium batteries (ASSLB) are very promising for the future development of next generation lithium battery systems due to their increased energy density and improved safety. ASSLB employing Solid Polymer Electrolytes (SPE) and Solid Composite Electrolytes (SCE) in particular have attracted significant attention. Among the several expected requirements for a battery system (high ionic conductivity, safety, mechanical stability), increasing the energy density and the cycle life relies on the electrochemical stability window of the SPE or SCE. Most published works target the importance of ionic conductivity (undoubtedly a crucial parameter) and often identify the Electrochemical Stability Window (ESW) of the electrolyte as a secondary parameter. In this review, we first present a summary of recent publications on SPE and SCE with a particular focus on the analysis of their electrochemical stability. The goal of the second part is to propose a review of optimized and improved electrochemical methods, leading to a better understanding and a better evaluation of the ESW of the SPE and the SCE which is, once again, a critical parameter for high stability and high performance ASSLB applications.
Collapse
Affiliation(s)
| | | | | | - Mickaël Dollé
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (A.M.); (S.R.); (D.L.)
| |
Collapse
|
25
|
Zhang Y, Yu L, Wang J, Li S, Gan H, Xue Z. Fabrication of polymer electrolyte via lithium salt-induced surface-initiated radical polymerization for lithium metal batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
He K, Cheng SH, Hu J, Zhang Y, Yang H, Liu Y, Liao W, Chen D, Liao C, Cheng X, Lu Z, He J, Tang J, Li RKY, Liu C. In‐Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi‐Solid‐State Lithium Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kangqiang He
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong P. R. China
| | - Samson Ho‐Sum Cheng
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Yangqian Zhang
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong P. R. China
| | - Huiwen Yang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Yingying Liu
- Hefei Institutes of Physical Science Institute of Intelligent Machines Chinese Academy of Sciences Hefei 230031 P. R. China
| | - Wenchao Liao
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Chengzhu Liao
- Shenzhen Key Laboratory of Solid State Batteries Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Xin Cheng
- Shenzhen Key Laboratory of Solid State Batteries Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Solid State Batteries Guangdong Provincial Key Laboratory of Energy Materials for Electric Power Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Jiaoning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Robert K. Y. Li
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong P. R. China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
27
|
He K, Cheng SHS, Hu J, Zhang Y, Yang H, Liu Y, Liao W, Chen D, Liao C, Cheng X, Lu Z, He J, Tang J, Li RKY, Liu C. In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2021; 60:12116-12123. [PMID: 33723915 DOI: 10.1002/anie.202103403] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/10/2022]
Abstract
Solid-state lithium metal batteries built with composite polymer electrolytes using cubic garnets as active fillers are particularly attractive owing to their high energy density, easy manufacturing and inherent safety. However, the uncontrollable formation of intractable contaminant on garnet surface usually aggravates poor interfacial contact with polymer matrix and deteriorates Li+ pathways. Here we report a rational designed intermolecular interaction in composite electrolytes that utilizing contaminants as reaction initiator to generate Li+ conducting ether oligomers, which further emerge as molecular cross-linkers between inorganic fillers and polymer matrix, creating dense and homogeneous interfacial Li+ immigration channels in the composite electrolytes. The delicate design results in a remarkable ionic conductivity of 1.43×10-3 S cm-1 and an unprecedented 1000 cycles with 90 % capacity retention at room temperature is achieved for the assembled solid-state batteries.
Collapse
Affiliation(s)
- Kangqiang He
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Samson Ho-Sum Cheng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China
| | - Yangqian Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Huiwen Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yingying Liu
- Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wenchao Liao
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengzhu Liao
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xin Cheng
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China
| | - Jiaoning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
28
|
Foran G, Verdier N, Lepage D, Malveau C, Dupré N, Dollé M. Use of Solid-State NMR Spectroscopy for the Characterization of Molecular Structure and Dynamics in Solid Polymer and Hybrid Electrolytes. Polymers (Basel) 2021; 13:1207. [PMID: 33917831 PMCID: PMC8068304 DOI: 10.3390/polym13081207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
Solid-state NMR spectroscopy is an established experimental technique which is used for the characterization of structural and dynamic properties of materials in their native state. Many types of solid-state NMR experiments have been used to characterize both lithium-based and sodium-based solid polymer and polymer-ceramic hybrid electrolyte materials. This review describes several solid-state NMR experiments that are commonly employed in the analysis of these systems: pulse field gradient NMR, electrophoretic NMR, variable temperature T1 relaxation, T2 relaxation and linewidth analysis, exchange spectroscopy, cross polarization, Rotational Echo Double Resonance, and isotope enrichment. In this review, each technique is introduced with a short description of the pulse sequence, and examples of experiments that have been performed in real solid-state polymer and/or hybrid electrolyte systems are provided. The results and conclusions of these experiments are discussed to inform readers of the strengths and weaknesses of each technique when applied to polymer and hybrid electrolyte systems. It is anticipated that this review may be used to aid in the selection of solid-state NMR experiments for the analysis of these systems.
Collapse
Affiliation(s)
- Gabrielle Foran
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Nina Verdier
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - David Lepage
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Cédric Malveau
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| | - Nicolas Dupré
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France;
| | - Mickaël Dollé
- Département of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; (N.V.); (D.L.); (C.M.)
| |
Collapse
|
29
|
Wang L, Yan J, Zhang R, Li Y, Shen W, Zhang J, Zhong M, Guo S. Core-Shell PMIA@PVdF-HFP/Al 2O 3 Nanofiber Mats In Situ Coaxial Electrospun on LiFePO 4 Electrode as Matrices for Gel Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9875-9884. [PMID: 33606490 DOI: 10.1021/acsami.0c20854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gel electrolytes show certain advantages over conventional liquid and solid electrolytes, but their mechanical strength and surface adhesion to the electrode remain to be improved. To address the challenges, we design and fabricate herein the core-shell nanofiber mats in situ on the LiFePO4 electrode as matrices for gel electrolytes, in which the core is poly(m-phenylene isophthalamide) (PMIA) nanofiber and the shell are composite of Al2O3 nanoparticles and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). The mechanical property of the core-shell polymeric nanofiber mats and their surface interaction with LiFePO4 electrode are characterized complementarily using dynamic thermomechanical analysis and scanning electron microscopy. The electrochemical properties of the gel electrolytes based on the as-prepared matrices after being loaded with lithium salt solution are studied systematically on half coin cells. It is found that the ultimate strength of the core-shell PMIA@PVdF-HFP/Al2O3 mat can reach 6.70 MPa, 2 times higher than that of the PVdF-HFP/Al2O3 nanofiber mat. Meanwhile, the shell PVdF-HFP/Al2O3 can ensure manifest surface affinity to the LiFePO4 electrode and enhance lithium-ion conductance. Thus, the as-assembled LiFePO4 half coin cells using PMIA@PVdF-HFP/Al2O3 gel electrolyte show good electrochemical performances, especially the long cycle stability with the capacity retention of 96.6% after 600 cycles under 1C.
Collapse
Affiliation(s)
- Lei Wang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiawei Yan
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ran Zhang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanfang Li
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenzhuo Shen
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiali Zhang
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Zhong
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
30
|
Yang K, Su H, Ding M, Li Y, Xue B, Gu X. The role of nickel–iron based layered double hydroxide on the crystallinity, electrochemical performance, and thermal and mechanical properties of the poly(ethylene-oxide) solid electrolyte. NEW J CHEM 2021. [DOI: 10.1039/d1nj04467b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical performance and physical properties of PEO-based composite electrolytes were improved with the addition of a NILDH filler.
Collapse
Affiliation(s)
- Kuo Yang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| | - Hao Su
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| | - Mingtao Ding
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| | - Ye Li
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| | - Bing Xue
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| | - Xiaopeng Gu
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China
| |
Collapse
|
31
|
Zhao S, Wu Q, Ma W, Yang L. Polyethylene Oxide-Based Composites as Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Mini Review. Front Chem 2020; 8:640. [PMID: 32850656 PMCID: PMC7431671 DOI: 10.3389/fchem.2020.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023] Open
Abstract
Solid-state polymer electrolytes (SPEs) have great processing flexibility and electrode-electrolyte contact and have been employed as the promising electrolytes for lithium metal batteries. Among them, poly(ethylene oxide) (PEO)-based SPEs have attracted widespread attention because of easy synthesis, low mass density, good mechanical stability, low binding energy with lithium salts, and excellent mobility of charge carriers. In order to overcome the low room-temperature ionic conductivity and the poor thermodynamic stability in high-voltage devices (>4.2 V) of the PEO materials, composition modulations by incorporating PEO with inorganic and/or organic components have been designed, which could effectively enable the applications of PEO-based SPEs with widened electro-stable voltage ranges. In this mini review, we describe recent progresses of several kinds of PEO composite structures for SPEs, and we compare the synthesis strategies and properties of these SPEs in lithium batteries. Further developments and improvements of the PEO-based materials for building better rechargeable batteries are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Qinxia Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Wenqing Ma
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lishan Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|