1
|
Zhang C, Fan S, Zhang J, Yang G, Cai C, Chen S, Fang Y, Wan W. A multifunctional trap-capture-kill antibacterial system for enhanced wound healing via modified decellularized mushroom aerogels. Bioact Mater 2025; 50:232-245. [PMID: 40276540 PMCID: PMC12019855 DOI: 10.1016/j.bioactmat.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Wound infections are prevalent and can result in prolonged healing times. In this study, we referred to the "trap-capture-kill" antibacterial strategy to create a wound dressing (DS/PDA@GO-L) by coupling graphene oxide (GO) with lysine and coating it onto the decellularized mushroom stem (DS) using polydopamine (PDA). The mechanism of action of the bacteria-killing process involves lysine chemotaxis and the siphoning effect of DS aerogel, with the process of killing the bacteria being initiated via near-infrared photothermal treatment. In vitro studies demonstrated that DS/PDA@GO-L exhibited excellent blood and cell compatibility, while in vivo experiments revealed its remarkable efficacy in combating bacterial infections. Specifically, the combination of DS/PDA@GO-L with photothermal therapy led to the elimination of over 95 % of S. aureus, E. coli, and Pseudomonas aeruginosa. Furthermore, the aerogel, when used in conjunction with photothermal therapy, significantly reduced bacterial infection at the wound site and accelerated wound healing. During the wound's proliferative phase, it notably enhanced vascularization and extracellular matrix deposition. Furthermore, immunohistochemical staining revealed that bacterial clearance led to a reduction in pro-inflammatory responses and a decrease in the expression of pro-inflammatory cytokines, thereby restoring the wound's inflammatory environment to a pro-regenerative state. Taken together, the developed DS/PDA@GO-L holds great potential in the field of infected skin wound healing.
Collapse
Affiliation(s)
- Chuwei Zhang
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Shuai Fan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jing Zhang
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ganghua Yang
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chao Cai
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Shixuan Chen
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yongjin Fang
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
2
|
Wu L, Wei S, He N, Shen J, Cheng X, Zhou H, Kang X, Cai Y, Ye Y, Li P, Liang C. Photo-enhanced synergistic sterilization and self-regulated ion release in rGO-Ag nanocomposites under NIR irradiation. Colloids Surf B Biointerfaces 2025; 253:114744. [PMID: 40319732 DOI: 10.1016/j.colsurfb.2025.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Silver ions (Ag+) released from silver nanoparticles (Ag NPs) can help to improve the inhibition and killing ability of particles to bacteria. The leakage of Ag+ ions released from Ag NPs will lead to possible risks in cytotoxicity and environmental damage. It is still a challenge to balance particles' ions release and leakage to environment. Here, a nanocomposite of Ag NPs combined with reduced graphene oxide (rGO), labeled as rGO-Ag, was prepared by laser-induced photoreduction of Ag+ ions in solution. This composite exhibits not only a synergistic effect of Ag NPs and rGO in sterilization under normal circumstances, but also another synergistic effect from photothermal function under the 808 nm near-infrared (NIR) laser irradiation and the subsequent enhanced Ag+ ions release at high temperature. In experiments, rGO works as photothermal converter, which can directly cause the death of bacteria and force Ag+ ions to leave particle surface to assist in killing bacteria, and also as a catcher to intercepts the leakage of the released ions. After treating a 50 mg/L rGO-Ag solution with an NIR laser for 30 min, the concentration of released Ag+ ions increased, but these ions were subsequently adsorbed back onto the rGO. Compared with the no-light treatment group, the mortality rates of E. coli and S. aureus exposed to rGO-Ag under NIR irradiation increased by 39.06 % and 17.48 %, respectively. The clever combination between Ag NPs and rGO makes their composite exhibit a photo-enhanced synergistic sterilizing function, as well as a self-controlled ion release capability under NIR stimulation.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Jiayue Shen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Nguyen D, Bhattacharyya S, Richman H, Yu Y, Li Y. Targeting the Weak Spot: Preferential Disruption of Bacterial Poles by Janus Nanoparticles. NANO LETTERS 2024; 24:15886-15895. [PMID: 39584791 DOI: 10.1021/acs.nanolett.4c04946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The interaction between nanoparticles (NPs) and bacterial cell envelopes is crucial for designing effective antibacterial materials against multi-drug-resistant pathogens. However, the current understanding assumes a uniform bacterial cell wall. This study challenges that assumption by investigating how bacterial cell wall curvature impacts antibacterial NP action. Focusing on Janus NPs, which feature segregated hydrophobic and polycationic ligands and previously demonstrated high efficacy against diverse bacteria, we found that these NPs preferentially target and disrupt bacterial poles. Experimental and computational approaches reveal that curvature at E. coli poles induces conformational changes in lipopolysaccharide (LPS) polymers on the outer membrane, exposing underlying lipids for NP-mediated disruption. We establish that curvature-induced targeting by Janus NPs depends on the outer membrane composition and is most pronounced at physiologically relevant LPS densities. This work demonstrates that high-curvature regions of bacterial cell walls are "weak spots" for Janus NPs, thereby aiding the development of more effective targeted therapies.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Swagata Bhattacharyya
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Hunter Richman
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Sotiriou GA. Optimizing nanosilver for implant success: from marketing hype to medical reality. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2024; 26:264. [PMID: 39575364 PMCID: PMC11576619 DOI: 10.1007/s11051-024-06181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Bacterial infections leading to implant failure pose a significant global health issue. Despite its antimicrobial properties, nanosilver is not commonly used in commercially available titanium implant coatings. This underutilization stems from an insufficient understanding of fundamental factors, such as particle size, coating, composition, and stability that dictate the antimicrobial performance of nanosilver coatings. A deeper understanding of these factors is crucial for designing effective nanosilver coatings to prevent biofilm formation on implants. Without this knowledge, nanosilver technology risks being merely a marketing tool rather than a functional component in medical devices. Another limiting factor is the potential cytotoxicity of nanosilver coatings, which necessitates a delicate balance between anti-biofilm activity and host tissue toxicity. Addressing these issues could involve the development of multifunctional coatings as well as the optimization of manufacturing processes with a specific focus on the durability of the coatings. Furthermore, to demonstrate the efficacy of these coatings, rigorous in vitro and in vivo assessments are required. As our understanding of the fundamental parameters of nanosilver coatings improves and we find ways to mitigate their toxicity, their utilization will be strengthened by clinicians and approved by regulatory agencies. The development of personalized implant coatings with well-defined nanosilver properties and multiple functionalities will further advance the field and address the challenge of implant failure.
Collapse
Affiliation(s)
- Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 17 Stockholm, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Wu L, Wei S, Cheng X, He N, Kang X, Zhou H, Cai Y, Ye Y, Li P, Liang C. Release of ions enhanced the antibacterial performance of laser-generated, uncoated Ag nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114131. [PMID: 39094211 DOI: 10.1016/j.colsurfb.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Identifying the antibacterial mechanisms of elemental silver at the nanoscale remains a significant challenge due to the intertwining behaviors between the particles and their released ions. The open question is which of the above factor dominate the antibacterial behaviors when silver nanoparticles (Ag NPs) with different sizes. Considering the high reactivity of Ag NPs, prior research has primarily concentrated on coated particles, which inevitably hinder the release of Ag+ ions due to additional chemical agents. In this study, we synthesized various Ag NPs, both coated and uncoated, using the laser ablation in liquids (LAL) technique. By analyzing both the changes in particle size and Ag+ ions release, the impacts of various Ag NPs on the cellular activity and morphological changes of gram-negative (E. coil) and gram-positive (S. aureus) bacteria were evaluated. Our findings revealed that for uncoated Ag NPs, smaller particles exhibited greater ions release efficiency and enhanced antibacterial efficacy. Specifically, particles approximately 1.5 nm in size released up to 55 % of their Ag+ ions within 4 h, significantly inhibiting bacterial growth. Additionally, larger particles tended to aggregate on the bacterial cell membrane surface, whereas smaller particles were more likely to be internalized by the bacteria. Notably, treatment with smaller Ag NPs led to more pronounced bacterial morphological changes and elevated levels of intracellular reactive oxygen species (ROS). We proposed that the bactericidal activity of Ag NPs stems from the synergistic effect between particle-cell interaction and the ionic silver, which is dependent on the crucial parameter of particle size.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| |
Collapse
|
7
|
Hu M, Jiang W, Liu Q, Wang Q, Chen X, Chang C, Rao S, Zheng G, Shi Z, Meng Y. One-step construction of silver nanoparticles immersed hydrogels by triple-helix β-glucans and the application in infectious wound healing. Int J Biol Macromol 2024; 282:137146. [PMID: 39488321 DOI: 10.1016/j.ijbiomac.2024.137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Hydrogels composed of polysaccharides and silver nanoparticles (AgNPs) are widely recognized for their applications in wound dressings, particularly for healing wounds prone to infection. Traditional methods for preparing AgNPs immersed hydrogels are often complex, costly, and may lead to sustained cytotoxicity. To address these challenges, we developed a biocompatible, one-step green reduction strategy to generate AgNPs within hydrogels using a triple-helix β-glucan (PCPA) derived from Poria cocos, a renowned Chinese traditional herb. PCPA serves as a reducing agent, converting silver ions into AgNPs while its triple-helix conformation prevents AgNPs aggregation. The resulting hydrogel (PAg-G) is injectable and contains uniformly distributed AgNPs. PAg-G exhibits broad-spectrum antimicrobial activity and enhanced bioactivity. The in vivo study on S.aureus-infected SD rats demonstrated that PAg-G can accelerate wound healing within 12 days by down-regulating inflammatory factors such as IL-6 and TNF-α, and up-regulating VEGF and CD31 expression, promoting neovascularization in wound tissues. This innovative one-step construction of AgNPs immersed hydrogels offers a promising approach for the development of antimicrobial hydrogels, especially for treating bacterial-infected wounds.
Collapse
Affiliation(s)
- Mingjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Qian Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Zhaohua Shi
- Hubei Shizhen Laboratory, Wuhan, China; Key Laboratory of Chinese Medicine-Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
8
|
Li Y, Sun J, Wang Q, Su C, Chen X, Ma C, Yang X, Feng C, Shi C. Lysis-Free Isolation and Direct Amplification of Pathogenic Bacterial DNA Using Diatom Frustules. Anal Chem 2024; 96:9113-9121. [PMID: 38771353 DOI: 10.1021/acs.analchem.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA has been implicated as an important biomarker for the diagnosis of bacterial infections. Herein, we developed a streamlined methodology that uses diatom frustules (DFs) to liberate and capture bacterial DNA and allows direct downstream amplification tests without any lysis, washing, or elution steps. Unlike most conventional DNA isolation methods that rely on cell lysis to release bacterial DNA, DFs can trigger the oxidative stress response of bacterial cells to promote bacterial membrane vesicle formation and DNA release by generating reactive oxygen species in aqueous solutions. Due to the hierarchical porous structure, DFs provided high DNA capture efficiency exceeding 80% over a wide range of DNA amounts from 10 pg to 10 ng, making only 10 μg DFs sufficient for each test. Since laborious liquid handling steps are not required, the entire DNA sample preparation process using DFs can be completed within 3 min. The diagnostic use of this DF-based methodology was illustrated, which showed that the DNA of the pathogenic bacteria in serum samples was isolated by DFs and directly detected using polymerase chain reaction (PCR) at concentrations as low as 102 CFU/mL, outperforming the most used approaches based on solid-phase DNA extraction. Furthermore, most of the bacterial cells were still alive after DNA isolation using DFs, providing the possibility of recycling samples for storage and further diagnosis. The proposed DF-based methodology is anticipated to simplify bacterial infection diagnosis and be broadly applied to various medical diagnoses and biological research.
Collapse
Affiliation(s)
- Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Jiachen Sun
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Qing Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Chang Su
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
| | - Xiguang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572025, P. R. China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuecheng Yang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Chao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, P. R. China
- Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572025, P. R. China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
- Qingdao JianMa Gene Technology Co., Ltd., Qingdao 266114, P. R. China
| |
Collapse
|
9
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
10
|
Sergeevichev DS, Dorovskikh SI, Vikulova ES, Chepeleva EV, Vasiliyeva MB, Koretskaya TP, Fedorenko AD, Nasimov DA, Guselnikova TY, Popovetsky PS, Morozova NB, Basova TV. Vapor-Phase-Deposited Ag/Ir and Ag/Au Film Heterostructures for Implant Materials: Cytotoxic, Antibacterial and Histological Studies. Int J Mol Sci 2024; 25:1100. [PMID: 38256173 PMCID: PMC10816904 DOI: 10.3390/ijms25021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag+ release rates, which led to rapid (2-4 h) inhibition of P. aeruginosa growth. In the case of Ag/Au type heterostructures, the inhibition of the growth of P. aeruginosa and S. aureus occurred more slowly (from 6 h), and the antibacterial activity appeared to be due to the contribution of two agents (Ag+ and Au+ ions). It was found, according to the in vitro cytotoxicity study, that heterostructures did not exhibit toxic effects (cell viability > 95-98%). An in vivo biocompatibility assessment based on the results of a morphohistological study showed that after implantation for a period of 30 days, the samples were characterized by the presence of a thin fibrous capsule without volume thickening and signs of inflammation.
Collapse
Affiliation(s)
- David S. Sergeevichev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Elena V. Chepeleva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
| | - Maria B. Vasiliyeva
- NMRC Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya St., Novosibirsk 630055, Russia; (E.V.C.); (M.B.V.)
- V. Zelman’s Institute of Medicine and Psychology, Novosibirsk State University, 2, Pirogov St., Novosibirsk 630090, Russia
| | - Tatiana P. Koretskaya
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Anastasiya D. Fedorenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., Novosibirsk 630090, Russia;
| | - Tatiana Y. Guselnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Pavel S. Popovetsky
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Ave., Novosibirsk 630090, Russia; (D.S.S.); (S.I.D.); (E.S.V.); (T.P.K.); (A.D.F.); (T.Y.G.); (P.S.P.); (N.B.M.)
| |
Collapse
|
11
|
Hu X, Xu Y, Liu S, Gudda FO, Ling W, Qin C, Gao Y. Graphene Quantum Dots Nonmonotonically Influence the Horizontal Transfer of Extracellular Antibiotic Resistance Genes via Bacterial Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301177. [PMID: 37144438 DOI: 10.1002/smll.202301177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Graphene quantum dots (GQDs) coexist with antibiotic resistance genes (ARGs) in the environment. Whether GQDs influence ARG spread needs investigation, since the resulting development of multidrug-resistant pathogens would threaten human health. This study investigates the effect of GQDs on the horizontal transfer of extracellular ARGs (i.e., transformation, a pivotal way that ARGs spread) mediated by plasmids into competent Escherichia coli cells. GQDs enhance ARG transfer at lower concentrations, which are close to their environmental residual concentrations. However, with further increases in concentration (closer to working concentrations needed for wastewater remediation), the effects of enhancement weaken or even become inhibitory. At lower concentrations, GQDs promote the gene expression related to pore-forming outer membrane proteins and the generation of intracellular reactive oxygen species, thus inducing pore formation and enhancing membrane permeability. GQDs may also act as carriers to transport ARGs into cells. These factors result in enhanced ARG transfer. At higher concentrations, GQD aggregation occurs, and aggregates attach to the cell surface, reducing the effective contact area of recipients for external plasmids. GQDs also form large agglomerates with plasmids and thus hindering ARG entrance. This study could promote the understanding of the GQD-caused ecological risks and benefit their safe application.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
12
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
13
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Ali M, Song X, Wang Q, Zhang Z, Zhang M, Chen X, Tang Z, Liu X. Thermally enhanced biodegradation of benzo[a]pyrene and benzene co-contaminated soil: Bioavailability and generation of ROS. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131494. [PMID: 37172381 DOI: 10.1016/j.jhazmat.2023.131494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
In this study, a set of comprehensive experiments were conducted to explore the effects of temperature on the biodegradation, bioavailability, and generation of reactive oxygen species (ROS) by thermally enhanced biodegradation (TEB) under benzene and BaP co-contaminated conditions. The biodegradation rates of benzene increased from 57.4% to 88.7% and 84.9%, and the biodegradation efficiency of BaP was enhanced from 15.8% to 34.6% and 28.6%, when the temperature was raised from the ambient temperature of 15 °C to 45 °C and 30 °C, respectively. In addition, the bioavailability analysis results demonstrated that the water- and butanol-extractable BaP increased with elevated temperatures. High enzymatic activities and PAH-RHDα gene in gram-positive bacteria favored the long-term elevated temperatures (30 and 45 °C) compared to gram-negative bacteria. Moreover, ROS species (O2•- and •OH) generation was detected which were scavenged by the increased superoxide dismutase and catalase activities at elevated temperatures. Soil properties (pH, TOC, moisture, total iron, Fe3+, and Fe2+) were affected by the temperature treatments, revealing that metal-organic-associated reactions occurred during the TEB of benzene-BaP co-contamination. The results concluded that biodegradation of benzene-BaP co-contamination was greatly improved at 45 °C and that microbial activities enhanced the biodegradation under TEB via the increased bioavailability and generation and degradation of ROS.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Szpiro L, Bourgeay C, Hoareau AL, Julien T, Menard C, Marie Y, Rosa-Calatrava M, Moules V. Antiviral Activity of Active Materials: Standard and Finger-Pad-Based Innovative Experimental Approaches. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2889. [PMID: 37049183 PMCID: PMC10096329 DOI: 10.3390/ma16072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.
Collapse
Affiliation(s)
- Lea Szpiro
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Clara Bourgeay
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Loic Hoareau
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Camille Menard
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Yana Marie
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- International Associated Laboratory RespiVir, Université Claude Bernard Lyon 1, 69008 Lyon, France
- International Associated Laboratory RespiVir, University Laval, Québec, QC G1V 0A6, Canada
| | - Vincent Moules
- VirHealth SAS, Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
- Joint Technology Research Laboratory on Pathogenic Respiratory Viruses (PRV TEchLab), Innovation Centre Lyonbiopole, 321 Avenue Jean Jaurès, 69007 Lyon, France
| |
Collapse
|
16
|
Alangari A, Mateen A, Alqahtani MS, Shahid M, Syed R, Shaik MR, Khan M, Adil SF, Kuniyil M. Antimicrobial, anticancer, and biofilm inhibition studies of highly reduced graphene oxide (HRG): In vitro and in silico analysis. Front Bioeng Biotechnol 2023; 11:1149588. [PMID: 37025362 PMCID: PMC10071309 DOI: 10.3389/fbioe.2023.1149588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Bacterial infections and cancers may cause various acute or chronic diseases, which have become serious global health issues. This requires suitable alternatives involving novel and efficient materials to replace ineffective existing therapies. In this regard, graphene composites are being continuously explored for a variety of purposes, including biomedical applications, due to their remarkable properties. Methods: Herein, we explore, in-vitro, the different biological properties of highly reduced graphene oxide (HRG), including anti-cancer, anti-bacterial, and anti-biofilm properties. Furthermore, to analyze the interactions of graphene with proteins of microbes, in silico docking analysis was also carried out. To do this, HRG was prepared using graphene oxide as a precursor, which was further chemically reduced to obtain the final product. The as-prepared HRG was characterized using different types of microscopic and spectroscopic techniques. Results: The HRG revealed significant cytotoxic ability, using a dose-dependent anti-cell proliferation approach, which substantially killed human breast cancer cells (MCF-7) with IC50 of 29.51 ± 2.68 μg/mL. The HRG demonstrated efficient biological properties, i.e., even at low concentrations, HRG exhibited efficient anti-microbial properties against a variety of microorganisms. Among the different strains, Gram-positive bacteria, such as B. subtilis, MRSA, and S. aureus are more sensitive to HRG compared to Gram-negative bacteria. The bactericidal properties of HRG are almost similar to a commercially available effective antibiotic (ampicillin). To evaluate the efficacy of HRG against bacterial biofilms, Pseudomonas aeruginosa and MRSA were applied, and the results were compared with gentamycin and ampicillin, which are commonly applied standard antibiotics. Notably, HRG demonstrated high inhibition (94.23%) against P.aeruginosa, with lower MIC (50 μg/mL) and IC50 (26.53 μg/mL) values, whereas ampicillin and gentamicin showed similar inhibition (90.45% and 91.31% respectively) but much higher MIC and IC50 values. Conclusion: Therefore, these results reveal the excellent biopotential of HRG in different biomedical applications, including cancer therapy; antimicrobial activity, especially anti-biofilm activity; and other biomedicine-based therapies. Based on the molecular docking results of Binding energy, it is predicted that pelB protein and HRG would form the best stable docking complex, and high hydrogen and hydrophobic interactions between the pelB protein and HRG have been revealed. Therefore, we conclude that HRG could be used as an antibiofilm agent against P. aeruginosa infections.
Collapse
Affiliation(s)
- Abdulaziz Alangari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayesha Mateen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
McNeilly O, Mann R, Cummins ML, Djordjevic SP, Hamidian M, Gunawan C. Development of Nanoparticle Adaptation Phenomena in Acinetobacter baumannii: Physiological Change and Defense Response. Microbiol Spectr 2023; 11:e0285722. [PMID: 36625664 PMCID: PMC9927149 DOI: 10.1128/spectrum.02857-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The present work describes the evolution of a resistance phenotype to a multitargeting antimicrobial agent, namely, silver nanoparticles (nanosilver; NAg), in the globally prevalent bacterial pathogen Acinetobacter baumannii. The Gram-negative bacterium has recently been listed as a critical priority pathogen requiring novel treatment options by the World Health Organization. Through prolonged exposure to the important antimicrobial nanoparticle, the bacterium developed mutations in genes that encode the protein subunits of organelle structures that are involved in cell-to-surface attachment as well as in a cell envelope capsular polysaccharide synthesis-related gene. These mutations are potentially correlated with stable physiological changes in the biofilm growth behavior and with an evident protective effect against oxidative stress, most likely as a feature of toxicity defense. We further report a different adaptation response of A. baumannii to the cationic form of silver (Ag+). The bacterium developed a tolerance phenotype to Ag+, which was correlated with an indicative surge in respiratory activity and changes in cell morphology, of which these are reported characteristics of tolerant bacterial populations. The findings regarding adaptation phenomena to NAg highlight the risks of the long-term use of the nanoparticle on a priority pathogen. The findings urge the implementation of strategies to overcome bacterial NAg adaptation, to better elucidate the toxicity mechanisms of the nanoparticle, and preserve the efficacy of the potent alternative antimicrobial agent in this era of antimicrobial resistance. IMPORTANCE Several recent studies have reported on the development of bacterial resistance to broad-spectrum antimicrobial silver nanoparticles (nanosilver; NAg). NAg is currently one of the most important alternative antimicrobial agents. However, no studies have yet established whether Acinetobacter baumannii, a globally prevalent nosocomial pathogen, can develop resistance to the nanoparticle. The study herein describes how a model strain of A. baumannii with no inherent silver resistance determinants developed resistance to NAg, following prolonged exposure. The stable physiological changes are correlated with mutations detected in the bacterium genome. These mutations render the bacterium capable of proliferating at a toxic NAg concentration. It was also found that A. baumannii developed a "slower-to-kill" tolerance trait to Ag+, which highlights the unique antimicrobial activities between the nanoparticulate and the ionic forms of silver. Despite the proven efficacy of NAg, the observation of NAg resistance in A. baumannii emphasises the potential risks of the repeated overuse of this agent on a priority pathogen.
Collapse
Affiliation(s)
- Oliver McNeilly
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Riti Mann
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Max Laurence Cummins
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mehrad Hamidian
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Cindy Gunawan
- Australian Institute of Microbiology and Infection, University of Technology Sydney, Broadway, New South Wales, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
19
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
20
|
Gupta G, Hamawandi B, Sheward DJ, Murrell B, Hanke L, McInerney G, Blosi M, Costa AL, Toprak MS, Fadeel B. Silver nanoparticles with excellent biocompatibility block pseudotyped SARS-CoV-2 in the presence of lung surfactant. Front Bioeng Biotechnol 2022; 10:1083232. [PMID: 36578508 PMCID: PMC9790969 DOI: 10.3389/fbioe.2022.1083232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Silver (Ag) is known to possess antimicrobial properties which is commonly attributed to soluble Ag ions. Here, we showed that Ag nanoparticles (NPs) potently inhibited SARS-CoV-2 infection using two different pseudovirus neutralization assays. We also evaluated a set of Ag nanoparticles of different sizes with varying surface properties, including polyvinylpyrrolidone (PVP)-coated and poly (ethylene glycol) (PEG)-modified Ag nanoparticles, and found that only the bare (unmodified) nanoparticles were able to prevent virus infection. For comparison, TiO2 nanoparticles failed to intercept the virus. Proteins and lipids may adsorb to nanoparticles forming a so-called bio-corona; however, Ag nanoparticles pre-incubated with pulmonary surfactant retained their ability to block virus infection in the present model. Furthermore, the secondary structure of the spike protein of SARS-CoV-2 was perturbed by the Ag nanoparticles, but not by the ionic control (AgNO3) nor by the TiO2 nanoparticles. Finally, Ag nanoparticles were shown to be non-cytotoxic towards the human lung epithelial cell line BEAS-2B and this was confirmed by using primary human nasal epithelial cells. These results further support that Ag nanoparticles may find use as anti-viral agents.
Collapse
Affiliation(s)
- Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bejan Hamawandi
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Anna L. Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, Italy
| | - Muhammet S. Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Bengt Fadeel,
| |
Collapse
|
21
|
|
22
|
Ayala‐Peña VB, Martin MJ, Favatela F, Otarola J, Morán P, Ventura M, Gentili C, Salcedo MF, Mansilla A, Pérez S, Dolcini G, Alvarez V, Lassalle V. Chitosan-Based Formulations Intended as Protective Spray for Mask Surfaces in Prevention of Coronavirus Dissemination. ChemistrySelect 2022; 7:e202202410. [PMID: 36711229 PMCID: PMC9874787 DOI: 10.1002/slct.202202410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
The extraordinary occurrence of COVID-19 by the fast expansion of viral infections has propelled particular interest in developing novel antiviral and virucidal agents to guarantee personal security. The main objective of this work is to propose novel formulations able to optimize the use of personal protection elements. In recent years, chitosan (CH) has attracted attention for being an interesting multifunctional, biodegradable, non-antigenic, non-toxic, and biocompatible natural polymer with antimicrobial properties. In this work, formulations based on a CH matrix containing silver, and Copper based nanoparticles have been developed. The novelty of this proposal is that almost liquid formulations have been reached, possessing verified properties to inhibit evolved virus such as herpes simplex type 1 (HSV-1) and bovine betacoronavirus (BCoV), the latter belonging to the same family of the well-known the well-known SARS-CoV-2. Besides antibacterial bioactivity; as well as the ability of these formulations to be easily sprayed on various surfaces, including conventional face masks, have been verified and discussed. The results presented in this contribution provide strong evidence on CH films as an ideal biosafe surface-protective for several daily used materials including the conventional face masks.
Collapse
Affiliation(s)
- Victoria Belen Ayala‐Peña
- INIBIBBDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICET.Camino La Carrindanga km 7B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - María Julia Martin
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
- INBIOSURDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETSan Juan 671B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Florencia Favatela
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Jessica Otarola
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Pedro Morán
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - María Ventura
- IAE-Instituto Analítico EspecializadoCórdoba3935, B1653BJKVilla Ballester - Pcia.deBuenos AiresArgentina
| | - Claudia Gentili
- INBIOSURDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETSan Juan 671B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - María Florencia Salcedo
- Instituto de Investigaciones BiológicasUE-CONICET-UNMdPFacultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata. DéanFunes 3240B7600Mar del PlataArgentina
| | - Andrea Mansilla
- Instituto de Investigaciones BiológicasUE-CONICET-UNMdPFacultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata. DéanFunes 3240B7600Mar del PlataArgentina
| | - Sandra Pérez
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - Guillermina Dolcini
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - Vera Alvarez
- INTEMAFacultad de IngenieríaUniversidad Nacional de Mar del Plata (UNMdP)-CONICET.Av. Cristóbal Colón 10850B7600Mar del PlataArgentina
| | - Verónica Lassalle
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| |
Collapse
|
23
|
Mohamed AM, Abbas WA, Khedr GE, Abass W, Allam NK. Computational and experimental elucidation of the boosted stability and antibacterial activity of ZIF-67 upon optimized encapsulation with polyoxometalates. Sci Rep 2022; 12:15989. [PMID: 36163449 PMCID: PMC9512935 DOI: 10.1038/s41598-022-20392-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Water microbial purification is one of the hottest topics that threats human morbidity and mortality. It is indispensable to purify water using antimicrobial agents combined with several technologies and systems. Herein, we introduce a class of nanosized metal organic framework; Zeolitic imidazolate framework (ZIF-67) cages encapsulated with polyoxometalates synthesized via facile one-step co-precipitation method. We employed two types of polyoxometalates bioactive agents; phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) that act as novel antibacterial purification agents. Several characterization techniques were utilized to investigate the morphological, structural, chemical, and physical properties such as FESEM, EDS, FTIR, XRD, and N2 adsorption/desorption isotherms techniques. The antibacterial assessment was evaluated using colony forming unit (CFU) against both Escherichia coli and Staphylococcus aureus as models of Gram-negative and Gram-positive bacteria, respectively. The PTA@ZIF-67 showed higher microbial inhibition against both Gram-positive and Gram-negative bacteria by 98.8% and 84.6%, respectively. Furthermore, computational modeling using density functional theory was conducted to evaluate the antibacterial efficacy of PTA when compared to PMA. The computational and experimental findings demonstrate that the fabricated POM@ZIF-67 materials exhibited outstanding bactericidal effect against both Gram-negative and Gram-positive bacteria and effectively purify contaminated water.
Collapse
Affiliation(s)
- Aya M Mohamed
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Walaa A Abbas
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ghada E Khedr
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.,Department of Evaluation and Analysis, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Wessam Abass
- Sustainable Development Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
24
|
He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release 2022; 351:301-323. [PMID: 36165865 DOI: 10.1016/j.jconrel.2022.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022]
Abstract
Drug-resistant bacterial infections are increasingly heightening, which lead to more severe illness, higher cost of treatment and increased risk of death. Nanomaterials-based therapy, an "outrider", serving as a kind of innovative antimicrobial therapeutics, showing promise in replacing antimicrobial agents and enhancing the activity of antibiotics, generally bases on the various inorganic and/or organic materials. When the size of those materials is below to a certain nano-level and the content of nanomaterials is above a certain amount, they are lethal to the resistant bacteria, which bypass the traditional bacterial resistance mechanisms. This review highlights the effect of nanomaterials in combating extracellular/intracellular bacteria and eradicating biofilms. Based on the studies searched on the Web of Science through relevant keywords, this review article starts with analyzing the current situation, resistance mechanisms, and treatment difficulties of bacteria resistance. Then, the efficacy of nanomaterials against resistant bacteria and their mechanisms (e.g., physical impairment, biofilm lysis, regulating bacterial metabolism, protein and DNA replication as well as enhancing the antibiotics concentration in infected cells) are collected. Lastly, the factors affecting the antibacterial efficacy are argued from the side of nanomatrials and bacterium, which followed by the emerging challenges and recent perspectives of achieving higher targeting released nanomaterials as antibacterial therapeutics.
Collapse
Affiliation(s)
- Jian He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Wenqing Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China.
| |
Collapse
|
25
|
Jin W, Song P, Wu Y, Tao Y, Yang K, Gui L, Zhang W, Ge F. Biofilm Microenvironment-Mediated MoS 2 Nanoplatform with Its Photothermal/Photodynamic Synergistic Antibacterial Molecular Mechanism and Wound Healing Study. ACS Biomater Sci Eng 2022; 8:4274-4288. [PMID: 36095153 DOI: 10.1021/acsbiomaterials.2c00856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-resistant bacterial infections pose a serious threat to human public health. Biofilm formation is one of the main factors contributing to the development of bacterial resistance, characterized by a hypoxic and microacidic microenvironment. Traditional antibiotic treatments have been ineffective against multidrug-resistant (MDR) bacteria. Novel monotherapies have had little success. On the basis of the photothermal effect, molybdenum disulfide (MoS2) nanoparticles were used to link quaternized polyethylenimine (QPEI), dihydroporphyrin e6 (Ce6), and Panax notoginseng saponins (PNS) in a zeolitic imidazolate framework-8 (ZIF-8). A multifunctional nanoplatform (MQCP@ZIF-8) was constructed with dual response to pH and near-infrared light (NIR), which resulted in synergistic photothermal and photodynamic antibacterial effects. The nanoplatform exhibited a photothermal conversion efficiency of 56%. It inhibited MDR Escherichia coli (E. coli) and MDR Staphylococcus aureus (S. aureus) by more than 95% and effectively promoted wound healing in mice infected with MDR S. aureus. The nanoplatform induced the death of MDR bacteria by promoting biofilm ablation, disrupting bacterial cell membranes and intracellular DNA, and interfering with intracellular material and energy metabolism. In this study, a multifunctional nanoplatform with good antibacterial effect was developed. The molecular mechanisms of MDR bacteria were also elucidated for possible clinical application.
Collapse
Affiliation(s)
- Weihao Jin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yujia Wu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
26
|
Ren ZQ, Yu LQ, Wang H, Li GF, Zhang LG, Du XN, Huang BC, Jin RC. Inorganic quantum dots - anammox consortia hybrid for stable nitrogen elimination under high-intensity solar-simulated irradiation. WATER RESEARCH 2022; 223:119033. [PMID: 36058096 DOI: 10.1016/j.watres.2022.119033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
External stimulus such as light irradiation is able to deteriorate intracellular redox homeostasis and induce photooxidative damage to non-photogenic bacteria. Exploiting effective strategies to help bacteria resisting infaust stress is meaningful for achieving a stable operation of biological treatment system. In this work, selenium-doped carbon quantum dots (Se-CQDs) were blended into anaerobic ammonia oxidation (anammox) bacteria and an inorganic nanoparticle-microbe hybrid was successfully fabricated to evaluate its nitrogen removal performance under solar-simulated irradiation. It was found that the specific anammox activity decreased by 29.7 ± 5.2% and reactive oxygen species (ROS) content increased by 134.8 ± 4.1% under 50,000 lux light. Sludge activity could be completely recovered under the optimum dosage of 0.42 mL·(g volatile suspended solid) -1 Se-CQDs. Hydroxyl radical (·OH) and superoxide anion radical (·O2-) were identified as the leading ROS inducing lipid peroxidation and antioxidase function detriment. Also, the structure of ladderane lipids located on anammoxosome was destroyed by ROS and functional genes abundances declined accordingly. Although cell surface coated Se-CQDs could absorb ultraviolet light and partially mitigated the photoinhibition, the direct scavenging of ROS by intracellular Se-CQDs primarily contributed to the cellular redox homeostasis, antioxidase activity recovery and sludge activity improvement. The findings of this work provide in-depth understanding the metabolic response mechanism of anammox consortia to light irradiation and might be valuable for a more stable and sustainable nitrogen removal technology, i.e., algal-bacterial symbiotic system, development.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin-Qian Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Ge Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ning Du
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
27
|
Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens. CRYSTALS 2022. [DOI: 10.3390/cryst12081057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The high frequency of nosocomial bacterial infections caused by multidrug-resistant pathogens contributes to significant morbidity and mortality worldwide. As a result, finding effective antibacterial agents is of critical importance. Hence, the aim of the present study was to greenly synthesize silver nanoparticles (AgNPs) utilizing Salvia officinalis aqueous leaf extract. The biogenic AgNPs were characterized utilizing different physicochemical techniques such as energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectrophotometry (UV-Vis), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) analysis. Additionally, the synergistic antimicrobial effectiveness of the biosynthesized AgNPs with colistin antibiotic against multidrug-resistant bacterial strains was evaluated utilizing the standard disk diffusion assay. The bioformulated AgNPs revealed significant physicochemical features, such as a small particle size of 17.615 ± 1.24 nm and net zeta potential value of −16.2 mV. The elemental mapping of AgNPs revealed that silver was the main element, recording a relative mass percent of 83.16%, followed by carbon (9.51%), oxygen (5.80%), silicon (0.87%), and chloride (0.67%). The disc diffusion assay revealed that AgNPs showed antibacterial potency against different tested bacterial pathogens, recording the highest efficiency against the Escherichia coli strain with an inhibitory zone diameter of 37.86 ± 0.21 mm at an AgNPs concentration of 100 µg/disk. In addition, the antibacterial activity of AgNPs was significantly higher than that of colistin (p ≤ 0.05) against the multidrug resistant bacterial strain namely, Acinetobacter baumannii. The biosynthesized AgNPs revealed synergistic antibacterial activity with colistin antibiotic, demonstrating the highest synergistic percent against the A. baumannii strain (85.57%) followed by Enterobacter cloacae (53.63%), E. coli (35.76%), Klebsiella pneumoniae (35.19%), Salmonella typhimurium (33.06%), and Pseudomonas aeruginosa (13.75%). In conclusion, the biogenic AgNPs revealed unique physicochemical characteristics and significant antibacterial activities against different multidrug-resistant bacterial pathogens. Consequently, the potent synergistic effect of the AgNPs–colistin combination highlights the potential of utilizing this combination for fabrication of highly effective antibacterial coatings in intensive care units for successful control of the spread of nosocomial bacterial infections.
Collapse
|
28
|
Yu Z, Guo J. Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128840. [PMID: 35398799 DOI: 10.1016/j.jhazmat.2022.128840] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Non-caloric artificial sweeteners are being widely used as safe table sugar substitutes with highly intensive sweetness but low calories. Previous studies have suggested that some of the sweeteners can alter the gut microbiota composition and promote horizontal transfer of antibiotic resistance genes across bacterial genera. However, little is known about whether these sweeteners could show antibiotic-like antimicrobial activity against bacteria, especially gut relevant bacteria. Whether they could affect evolutional trajectory of antibiotic resistance or tolerance in bacteria is also not clear yet. Here we investigated four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) against both Gram-negative (Escherichia coli and Klebsiella pneumoniae) and positive (Bacillus subtilis) strains. Results show that all four sweeteners exhibit antimicrobial effects on these strains. The antimicrobial mechanism is due to increased reactive oxygen species (ROS) and cell envelope damage. Compared to sucrose and glucose, the treatment of artificial sweeteners stimulates bacterial efflux pumps and promotes bacterial evolution of antibiotic tolerance. Collectively, our finding provides insights into roles of artificial sweeteners in the emergence of antibiotic tolerance and calls for a re-evaluation of risks due to their intensive usage.
Collapse
Affiliation(s)
- Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
29
|
Swolana D, Wojtyczka RD. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci 2022; 23:ijms23084298. [PMID: 35457115 PMCID: PMC9028791 DOI: 10.3390/ijms23084298] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that is part of the human microbiota. It is most abundant on the skin, in the respiratory system and in the human digestive tract. Also, Staphylococcus aureus contributes to human infections and has a high mortality rate. Both of these bacterial species produce biofilm, a pathogenic factor increasing their resistance to antibiotics. For this reason, we are looking for new substances that can neutralize bacterial cells. One of the best-known substances with such effects are silver nanoparticles. They exhibited antibacterial and antibiofilm formation activity that depended on their size, shape and the concentration used. In this review, we presented the data related to the use of silver nanoparticles in counteracting bacterial growth and biofilm formation published in scientific papers between 2017 and 2021. Based on the review of experimental results, the properties of nanoparticles prompt the expansion of research on their activity.
Collapse
|
30
|
Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano Silver-Induced Toxicity and Associated Mechanisms. Int J Nanomedicine 2022; 17:1851-1864. [PMID: 35502235 PMCID: PMC9056105 DOI: 10.2147/ijn.s355131] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nano silver is one of the most widely used engineering nanomaterials with antimicrobial activity against bacteria, fungi, and viruses. However, the widespread application of nano silver preparations in daily life raises concerns about public health. Although several review articles have described the toxicity of nano silver to specific major organs, an updated comprehensive review that clearly and systematically outlines the harmful effects of nano silver is lacking. This review begins with the routes of exposure to nano silver and its distribution in vivo. The toxic reactions are then discussed on three levels, from the organ to the cellular and subcellular levels. This review also provides new insights on adjusting the toxicity of nano silver by changing their size and surface functionalization and their combination with other materials to form a composite formulation. Finally, future development, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | | | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Yi Jin
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, People’s Republic of China
- Correspondence: Xiang Li, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China, Email
| |
Collapse
|
31
|
Rao SQ, Zhang RY, Chen R, Gao YJ, Gao L, Yang ZQ. Nanoarchitectonics for enhanced antibacterial activity with Lactobacillus buchneri S-layer proteins-coated silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128029. [PMID: 34942455 DOI: 10.1016/j.jhazmat.2021.128029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Various multi-drug-resistant microorganisms have appeared while a single antibacterial agent is increasingly no longer adequate for dealing with these resistant microorganisms. Herein, commercially purchased 50 nm-average-diameter silver nanoparticles (AgNPs) and Lactobacillus buchneri-isolated surface-layer proteins (SLPs) as a capping agent were used to fabricate a hybrid antibacterial agent (SLP-AgNPs) with enhanced antibacterial activity, and the possible synergistic antibacterial mechanism was explored. Characterization results revealed that SLP-AgNPs were uniformly surrounded by protein corona provided from SLP, and the formulations were mainly mediated by the electrostatic interactions and hydrogen bonding, which was evidenced by the results of Fourier transform infrared spectroscopy. According to the antibacterial tests, the minimum inhibitory concentration of SLP-AgNPs against Salmonella enterica (0.010 mg/mL) and Staphylococcus aureus (0.005 mg/mL) was 5-10 times lower than that of bare AgNPs, and while SLP-AgNPs showed a higher antibiofilm activity. Furthermore, bacterial cells exposed to SLP-AgNPs exhibited higher cell membrane permeability and stronger inhibition of respiratory-chain dehydrogenase activity, resulting in more severe cell death compared with bare AgNPs. The synergistic effect of SLP on AgNPs was probably carried out by enhanced function of adhesion to bacteria and antibacterial ability of SLP and SLP's supramolecular lattice structure on the sustained release of silver ion.
Collapse
Affiliation(s)
- Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China; Postdoctoral Mobile Station of Biology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Rui Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
32
|
Xie P, Zhang L, Shen H, Wu H, Zhao J, Wang S, Hu L. Biodegradable MoSe 2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis. J Nanobiotechnology 2022; 20:113. [PMID: 35248068 PMCID: PMC8898412 DOI: 10.1186/s12951-022-01288-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Exogenous antioxidant materials mimicking endogenous antioxidant systems are commonly used for the treatment of oxidative stress-induced injuries. Thus, artificial enzymes have emerged as promising candidates for balancing and treating the dysregulation of redox homeostasis in vivo. Herein, a one-pot hydrothermal strategy for the facile preparation of MoSe2-polyvinylpyrrolidone (PVP) nanoparticles (NPs) is reported. The synthesized NPs were biodegradable due to their exposure to oxygen and exhibited high stability. Moreover, they effectively mimicked various naturally occurring enzymes (including catalase, superoxide dismutase, peroxidase, and glutathione peroxidase) and scavenged free radicals, such as 3-ethylbenzothiazoline-6-sulfonic acid, ·OH, ·O2-, and 1,1-diphenyl-2-picrylhydrazyl radical. Further apoptosis detection studies revealed that MoSe2-PVP NPs significantly increased the cell survival probability in H2O2 in a concentration-dependent manner. The cytoprotective effect of MoSe2-PVP NPs was explored for an animal model of acute pancreatitis, which confirmed its remarkable therapeutic efficacy. Owing to the biodegradable and biocompatible nature of MoSe2-PVP NPs, the findings of this work can stimulate the development of other artificial nanoenzymes for antioxidant therapies.
Collapse
Affiliation(s)
- Pei Xie
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Liying Zhang
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Hui Shen
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| | - Shige Wang
- Department of Chemistry, School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
33
|
Geissel FJ, Platania V, Gogos A, Herrmann IK, Belibasakis GN, Chatzinikolaidou M, Sotiriou GA. Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. J Colloid Interface Sci 2022; 608:3141-3150. [PMID: 34815083 DOI: 10.1016/j.jcis.2021.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Implant infections due to bacterial biofilms constitute a major healthcare challenge today. One way to address this clinical need is to modify the implant surface with an antimicrobial nanomaterial. Among such nanomaterials, nanosilver is arguably the most powerful one, due to its strong and broad antimicrobial activity. However, there is still a lack of understanding on how physicochemical characteristics of nanosilver coatings affect their antibiofilm activity. More specifically, the contributions of silver (Ag)+ ion-mediated vs. contact-based mechanisms to the observed antimicrobial activity are yet to be elucidated. To address this knowledge gap, we produce here nanosilver coatings on substrates by flame aerosol direct deposition that allows for facile control of the coating composition and Ag particle size. We systematically study the effect of (i) nanosilver content in composite Ag silica (SiO2) coatings from 0 (pure SiO2) up to 50 wt%, (ii) the Ag particle size and (iii) the coating thickness on the antibiofilm activity against Staphylococcus aureus (S. aureus), a clinically-relevant pathogen often present on the surface of surgically-installed implants. We show that the Ag+ ion concentration in solution largely drives the observed antibiofilm effect independently of Ag size and coating thickness. Furthermore, co-incubation of both pure SiO2 and nanosilver coatings in the same well also reveals that the antibiofilm effect stems predominantly from the released Ag+ ions, which is especially pronounced for coatings featuring the smallest Ag particle sizes, rather than direct bacterial contact inhibition. We also examine the biocompatibility of the developed nanosilver coatings in terms of pre-osteoblastic cell viability and proliferation, comparing it to that of pure SiO2. This study lays the foundation for the rational design of nanosilver-based antibiofilm implant coatings.
Collapse
Affiliation(s)
- Felix J Geissel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland and Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland and Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Luo S, Liu R, Zhang X, Chen R, Yan M, Huang K, Sun J, Wang R, Wang J. Mechanism investigation for ultra-efficient photocatalytic water disinfection based on rational design of indirect Z-scheme heterojunction black phosphorus QDs/Cu 2O nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127281. [PMID: 34583158 DOI: 10.1016/j.jhazmat.2021.127281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has been regarded as a promising inactivation technology targeting to reduce drug-resistant bacteria contamination, but developing efficient photocatalysts with broad visible light harvesting capability is still a challenge. Here we report a MOFs-derived BPQDs/Cu2O/N-doped hollow porous carbon (BP/CNC) with indirect Z-scheme heterojunctions (BPQDs/Cu2O), which can inactivate 99.99999% Methicillin-resistant Staphylococcus aureus (MRSA) at a concentration of only 10 mg/L. Combining photoelectrochemical techniques and electrochemical measurements, the efficient inactivation process was attributed to the synergistic effect of enhanced light utilization and effective suppression of photogenerated carrier recombination. The mechanism of gradually damaged cell membrane for MRSA was studied by employing scanning electron microscopy (SEM), fluorescence staining and coagulase titer test to further decipher the changes in bacterial cells. We propose that reactive oxygen species (ROS) destroys the cell wall membrane and causes the leakage of cell contents, eventually leading to death. In addition, a series of in vitro and in vivo toxicity tests were conducted to evaluate the biocompatibility of the antibacterial system and its potential use in practice. This strategy of BPQDs/Cu2O indirect heterojunction fabrication can spatially inhibit the recombination of photogenerated carriers, expands the light absorption range, providing a feasible method for disinfecting microbial contaminated water.
Collapse
Affiliation(s)
- Shijia Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Ruixi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xixi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Mingming Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Kerang Huang
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, PR China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
35
|
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022; 10:microorganisms10020437. [PMID: 35208891 PMCID: PMC8877623 DOI: 10.3390/microorganisms10020437] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.
Collapse
|
36
|
Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118506. [PMID: 34793904 DOI: 10.1016/j.envpol.2021.118506] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage.
Collapse
Affiliation(s)
- Kevin Yonathan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; South Australian Research and Development Institute, Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
37
|
Li X, Ahmad KZ, He J, Li H, Wang X, Feng Z, Wang X, Shen G, Ding X. Silver nanoflowers coupled with low dose antibiotics enable the highly effective eradication of drug-resistant bacteria. J Mater Chem B 2021; 9:9839-9851. [PMID: 34854864 DOI: 10.1039/d1tb01773j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to the global overuse of antibiotics, the issue of multidrug-resistant bacteria (MDR) continuously calls for effective strategies to tackle the antibiotic resistance crisis. Here, we develop a silver nanomaterial with a petal-like structure (namely Ag Nano Flowers, AgNFs). AgNFs are synthesized in an eco-friendly way with bovine serum albumin as an assisting template and stabilizing agent under mild conditions. These AgNFs have desired physical properties, including good dispersion, high stability, and large surface area with an average size in the range of 700-800 nm. We demonstrate AgNFs as a highly effective drug carrier and an adjuvant to restore the susceptibility of drug-resistant E. coli towards standard antibiotics such as norfloxacin and streptomycin. The doses of AgNFs and norfloxacin are reduced by 80% and 90%, respectively, in the combined treatment compared to those used individually. The dose reductions of AgNFs and streptomycin are 80% and 50% in the combined treatment of streptomycin and AgNFs. Through further analysis of the metabolomics and activities of bacteria, we speculate that the synergistic antibacterial efficacy between AgNFs and antibiotics could be explained by the enhanced respiration of bacteria and the up-regulation of the tricarboxylic acid cycle, which in turn increase the release of reactive oxygen species and promote the uptake of antibiotics, thereby eventually eradicating the drug-resistant bacteria.
Collapse
Affiliation(s)
- Xin Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Khan Zara Ahmad
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jie He
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Hongxia Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xin Wang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zijian Feng
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xiansong Wang
- Department of Thoracic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Guangxia Shen
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
38
|
Mann R, Holmes A, McNeilly O, Cavaliere R, Sotiriou GA, Rice SA, Gunawan C. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. J Nanobiotechnology 2021; 19:291. [PMID: 34579731 PMCID: PMC8474960 DOI: 10.1186/s12951-021-01027-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Treatment of bacterial biofilms are difficult and in many cases, expensive. Bacterial biofilms are naturally more resilient to antimicrobial agents than their free-living planktonic counterparts, rendering the community growth harder to control. The present work described the risks of long-term use of an important alternative antimicrobial, silver nanoparticles (NAg), for the first time, on the dominant mode of bacterial growth. Results NAg could inhibit the formation as well as eradicating an already grown biofilm of Pseudomonas aeruginosa, a pathogen notorious for its resilience to antibiotics. The biofilm-forming bacterium however, evolved a reduced sensitivity to the nanoparticle. Evidence suggests that survival is linked to the development of persister cells within the population. A similar adaptation was also seen upon prolonged exposures to ionic silver (Ag+). The persister population resumed normal growth after subsequent passage in the absence of silver, highlighting the potential risks of recurrent infections with long-term NAg (and Ag+) treatments of biofilm growth. The present study further observed a potential silver/antibiotic cross-resistance, whereby NAg (as well as Ag+) could not eradicate an already growing gentamicin-resistant P. aeruginosa biofilm. The phenomena is thought to result from the hindered biofilm penetration of the silver species. In contrast, both silver formulations inhibited biofilm formation of the resistant strain, presenting a promising avenue for the control of biofilm-forming antibiotic-resistant bacteria. Conclusion The findings signify the importance to study the nanoparticle adaptation phenomena in the biofilm mode of bacterial growth, which are apparently unique to those already reported with the planktonic growth counterparts. This work sets the foundation for future studies in other globally significant bacterial pathogens when present as biofilms. Scientifically based strategies for management of pathogenic growth is necessary, particularly in this era of increasing antibiotic resistance. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01027-8.
Collapse
Affiliation(s)
- Riti Mann
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amy Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - Oliver McNeilly
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rosalia Cavaliere
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Scott A Rice
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Cindy Gunawan
- The iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia. .,School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
39
|
Linzner N, Antelmann H. The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus. Front Microbiol 2021; 12:731564. [PMID: 34456898 PMCID: PMC8387631 DOI: 10.3389/fmicb.2021.731564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates are often resistant to multiple antibiotics and pose a major health burden due to limited treatment options. The novel AGXX® surface coating exerts strong antimicrobial activity and successfully kills multi-resistant pathogens, including MRSA. The mode of action of AGXX® particles involves the generation of reactive oxygen species (ROS), which induce an oxidative and metal stress response, increased protein thiol-oxidations, protein aggregations, and an oxidized bacillithiol (BSH) redox state in S. aureus. In this work, we report that the AGXX® particle size determines the effective dose and time-course of S. aureus USA300JE2 killing. We found that the two charges AGXX®373 and AGXX®383 differ strongly in their effective concentrations and times required for microbial killing. While 20–40 μg/ml AGXX®373 of the smaller particle size of 1.5–2.5 μm resulted in >99.9% killing after 2 h, much higher amounts of 60–80 μg/ml AGXX®383 of the larger particle size of >3.2 μm led to a >99% killing of S. aureus USA300JE2 within 3 h. Smaller AGXX® particles have a higher surface/volume ratio and therefore higher antimicrobial activity to kill at lower concentrations in a shorter time period compared to the larger particles. Thus, in future preparations of AGXX® particles, the size of the particles should be kept at a minimum for maximal antimicrobial activity.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| |
Collapse
|
40
|
Abbas WA, Shaheen BS, Ghanem LG, Badawy IM, Abodouh MM, Abdou SM, Zada S, Allam NK. Cost-Effective Face Mask Filter Based on Hybrid Composite Nanofibrous Layers with High Filtration Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7492-7502. [PMID: 34101479 DOI: 10.1021/acs.langmuir.1c00926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the main protective measures against COVID-19's spread is the use of face masks. It is therefore of the utmost importance for face masks to be high functioning in terms of their filtration ability and comfort. Notwithstanding the prevalence of the commercial polypropylene face masks, its effectiveness is under contention, leaving vast room for improvement. During the pandemic, the use of at least one mask per day for each individual results in a massive number of masks that need to be safely disposed of. Fabricating biodegradable filters of high efficiency not only can protect individuals and save the environment but also can be sewed on reusable/washable cloth masks to reduce expenses. Wearing surgical masks for long periods of time, especially in hot regions, causes discomfort by irritating sensitive facial skin and warmed inhaled air. Herein, we demonstrate the fabrication of novel electrospun composites layers as face mask filters for protection against pathogens and tiny particulates. The combinatorial filter layers are made by integrating TiO2 nanotubes as fillers into chitosan/poly(vinyl alcohol) polymeric electrospun nanofibers as the outer layer. The other two filler-free layers, chitosan/poly(vinyl alcohol) and silk/poly(vinyl alcohol) as the middle and inner composite layers, respectively, were used for controlled protection, contamination prevention, and comfort for prolonged usage. The ASTM standards evaluation tests were adopted to evaluate the efficacy of the assembled filter, revealing high filtration efficiency compared to that of commercial surgical masks. The TiO2/Cs/PVA outer layer significantly reduced Staphylococcus aureus bacteria by 44.8% compared to the control, revealing the dual effect of TiO2 and chitosan toward the infectious bacterial colonies. Additionally, molecular dynamics calculations were used to assess the mechanical properties of the filter layers.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basamat S Shaheen
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Loujain G Ghanem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim M Badawy
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed M Abodouh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shrouk M Abdou
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Suher Zada
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
41
|
Merkl P, Long S, McInerney GM, Sotiriou GA. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. NANOMATERIALS 2021; 11:nano11051312. [PMID: 34067553 PMCID: PMC8155969 DOI: 10.3390/nano11051312] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 is responsible for several million deaths to date globally, and both fomite transmission from surfaces as well as airborne transmission from aerosols may be largely responsible for the spread of the virus. Here, nanoparticle coatings of three antimicrobial materials (Ag, CuO and ZnO) are deposited on both solid flat surfaces as well as porous filter media, and their activity against SARS-CoV-2 viability is compared with a viral plaque assay. These nanocoatings are manufactured by aerosol nanoparticle self-assembly during their flame synthesis. Nanosilver particles as a coating exhibit the strongest antiviral activity of the three studied nanomaterials, while copper oxide exhibits moderate activity, and zinc oxide does not appear to significantly reduce the virus infectivity. Thus, nanosilver and copper oxide show potential as antiviral coatings on solid surfaces and on filter media to minimize transmission and super-spreading events while also providing critical information for the current and any future pandemic mitigation efforts.
Collapse
|
42
|
McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021; 12:652863. [PMID: 33936010 PMCID: PMC8085274 DOI: 10.3389/fmicb.2021.652863] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics combined with a lack of newly developed ones is the main contributors to the current antibiotic resistance crisis. There is a dire need for new and alternative antibacterial options and nanotechnology could be a solution. Metal-based nanoparticles, particularly silver nanoparticles (NAg), have garnered widespread popularity due to their unique physicochemical properties and broad-spectrum antibacterial activity. Consequently, NAg has seen extensive incorporation in many types of products across the healthcare and consumer market. Despite clear evidence of the strong antibacterial efficacy of NAg, studies have raised concerns over the development of silver-resistant bacteria. Resistance to cationic silver (Ag+) has been recognised for many years, but it has recently been found that bacterial resistance to NAg is also possible. It is also understood that exposure of bacteria to toxic heavy metals like silver can induce the emergence of antibiotic resistance through the process of co-selection. Acinetobacter baumannii is a Gram-negative coccobacillus and opportunistic nosocomial bacterial pathogen. It was recently listed as the "number one" critical level priority pathogen because of the significant rise of antibiotic resistance in this species. NAg has proven bactericidal activity towards A. baumannii, even against strains that display multi-drug resistance. However, despite ample evidence of heavy metal (including silver; Ag+) resistance in this bacterium, combined with reports of heavy metal-driven co-selection of antibiotic resistance, little research has been dedicated to assessing the potential for NAg resistance development in A. baumannii. This is worrisome, as the increasingly indiscriminate use of NAg could promote the development of silver resistance in this species, like what has occurred with antibiotics.
Collapse
Affiliation(s)
- Oliver McNeilly
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Hamidian
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Morena AG, Bassegoda A, Hoyo J, Tzanov T. Hybrid Tellurium-Lignin Nanoparticles with Enhanced Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14885-14893. [PMID: 33754695 PMCID: PMC8480780 DOI: 10.1021/acsami.0c22301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The surge of antibiotic-resistant bacteria is leading to the loss of effectiveness of antibiotic treatment, resulting in prolonged infections and even death. Against this healthcare threat, antimicrobial nanoparticles that hamper the evolution of resistance mechanisms are promising alternatives to antibiotics. Herein, we used Kraft lignin, a poorly valorized polymer derived from plant biomass, to develop novel hybrid tellurium-lignin nanoparticles (TeLigNPs) as alternative antimicrobial agents. The sonochemically synthesized TeLigNPs are comprised of a lignin matrix with embedded Te clusters, revealing the role of lignin as both a reducing agent and a structural component. The hybrid NPs showed strong bactericidal effects against the Gram-negative Escherichia coli and Pseudomonas aeruginosa, achieving more than 5 log bacteria reduction, while they only slightly inhibited the growth of the Gram-positive Staphylococcus aureus. Exposure of TeLigNPs to human cells did not cause morphological changes or reduction in cell viability. Studies on the antimicrobial mechanism of action demonstrated that the novel TeLigNPs were able to disturb bacterial model membranes and generate reactive oxygen species (ROS) in Gram-negative bacteria.
Collapse
|
44
|
Yang TY, Hsieh YJ, Lu PL, Lin L, Wang LC, Wang HY, Tsai TH, Shih CJ, Tseng SP. In vitro and in vivo assessments of inspired Ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112093. [PMID: 33965103 DOI: 10.1016/j.msec.2021.112093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 01/06/2023]
Abstract
In 2017 the World Health Organization listed carbapenem-resistant K. pneumoniae as a critical priority for developing a novel antimicrobial agent. Here we report on our investigation of the antibacterial efficacy of silver nanoparticles (AgNPs), confined to a mesostructured material and designated as an Ag/80S bioactive nanocomposite, against carbapenem-resistant K. pneumoniae. Results from a textural analysis indicate a 7.5 nm mesopore size and 307.6 m2/g surface area for Ag/80S. UV-Vis spectrum and transmission electron microscope images of Ag/80S revealed a uniform AgNP size distribution with an approximately 3.5 nm average. ICP-MS analysis demonstrated a significantly higher silver content in TSB (a protein-rich environment) compared to ultrapure water, suggesting a controllable release of Ag/80S and thus designated as the inspired Ag/80S. Minimum inhibitory concentration (MIC) values against 16 K. pneumoniae isolates ranged from 0.25 to 0.5% (2.5 to 5.0 mg/ml). NIH 3T3 fibroblast viability at 0.25% exceeded 80% and at 0.5% just under 70%, suggesting low cytotoxicity. Mechanistic study results indicate that the inspired Ag/80S attached to and deformed bacterial cells and induced a time-dependent accumulation of reactive oxygen species, leading to bacterial death. Further, inspired Ag/80S significantly extended median survival time in a Caenorhabditis elegans animal model infected with carbapenem-resistant K. pneumoniae ATCC BAA-1705. Combined, we found a novel Ag/80S which could prevent aggregation of AgNP and control its release via a specific environment for medical use against carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Taiwan
| | - Po-Liang Lu
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Lin
- Department of Culinary Art, I-Shou University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsian-Yu Wang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tsung-Han Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Abu‐Dief AM, Abdel‐Rahman LH, Abd‐El Sayed MA, Zikry MM, Nafady A. Green Synthesis of AgNPs
()
Ultilizing
Delonix Regia
Extract as Anticancer and Antimicrobial Agents**. ChemistrySelect 2020. [DOI: 10.1002/slct.202003218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ahmed M. Abu‐Dief
- Chemistry Department, Faculty of Science Sohag University 82534 Sohag Egypt
| | | | - M. A. Abd‐El Sayed
- Medicinal and Aromatic Plants Researches Department Horti. Res. Institute (H.R.I.), Agri. Res. Center (A.R.C.) Giza Egypt
| | - Mallak Megalea Zikry
- Medicinal and Aromatic Plants Researches Department Horti. Res. Institute (H.R.I.), Agri. Res. Center (A.R.C.) Giza Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
46
|
NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. NANOMATERIALS 2020; 10:nano10081477. [PMID: 32731519 PMCID: PMC7466392 DOI: 10.3390/nano10081477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Novel silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials-possessing antimicrobial activity against Gram-positive and Gram-negative bacteria-have been synthesized and characterized in the solid state and aqueous solution by complex of modern physical-chemical and biologic methods. TEM-monitoring has revealed the main stages of microbial cell (E. coli) destruction by novel nanocomposite. The concept of direct polarized destruction of microbes by nanosilver proposed by the authors allows the relationship between physicochemical and antimicrobial properties of novel nanocomposites. At the same time, it was shown that the nanocomposite was nontoxic to the fibroblast cell culture. Thus, the synthesized nanocomposite combining antibacterial activity against Gram-positive and Gram-negative bacteria as well as the absence of toxic effects on mammalian cells is a promising material for the development of catheters, coatings for medical devices.
Collapse
|