1
|
Sanches PL, Vieira Carias RB, Alves GG, Catarino CM, Bosquetti B, De Castilho Costa MC, Di Pietro Micali A, Schuck DC, Granjeiro JM, Ribeiro AR. Pre-validation of a novel reconstructed skin equivalent model for skin irritation and nanoparticle risk assessment. NANOSCALE ADVANCES 2025; 7:1353-1367. [PMID: 39839224 PMCID: PMC11744681 DOI: 10.1039/d4na00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies. GB-RHE exhibits morphological, biochemical, and physiological attributes equivalent to the human epidermis, featuring well-differentiated multilayered viable keratinocytes with a robust barrier function. The performance of the GB-RHE model was evaluated using ten reference chemicals, following the performance standard of OECD TG 439. The results demonstrated commendable predictive capacity and showed that titanium dioxide nanoparticles (TiO2 NPs) are 'non-irritant' to the human epidermis following the globally harmonized classification system. However, although the histological analysis did not show morphological changes, transmission electron micrographs demonstrated that TiO2 NPs can be internalized, reaching the external viable layers of the epidermis. This study demonstrates that in addition to the potential of the GB-RHE model to evaluate skin irritation, this model also has the potential to evaluate the skin toxicity of NPs and carry out cell internalization studies.
Collapse
Affiliation(s)
- Priscila Laviola Sanches
- Postgraduate Program in Translational Biomedicine, University of Grande Rio Duque de Caxias Brazil
- Directorate of Scientific, Industrial and Technology Metrology, National Institute of Metrology, Quality and Technology Duque de Caxias Brazil
| | | | - Gutember Gomes Alves
- Department of Molecular and Cell Biology, Institute of Biology, Fluminense Federal University Niterói Rio de Janeiro Brazil
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University Niterói Brazil
| | | | - Bruna Bosquetti
- Product Safety Management, Grupo Boticário São José dos Pinhais Paraná Brazil
| | | | | | | | - José Mauro Granjeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio Duque de Caxias Brazil
- Directorate of Scientific, Industrial and Technology Metrology, National Institute of Metrology, Quality and Technology Duque de Caxias Brazil
- School of Dentistry, Fluminense Federal University Niterói Brazil
| | - Ana R Ribeiro
- Nanosafety Group, International Iberian Nanotechnology Laboratory Braga Portugal
| |
Collapse
|
2
|
Lin CH, Lin MH, Chung YK, Alalaiwe A, Hung CF, Fang JY. Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. CHEMOSPHERE 2024; 347:140702. [PMID: 37979799 DOI: 10.1016/j.chemosphere.2023.140702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Excessive exposure to sunlight, especially UV irradiation, causes skin photodamage. Sunscreens, such as TiO2 and ZnO, can potentially prevent UV via scattering, reflection, and absorption. Topical antioxidants are another means of skin photoprotection. Developing nanoparticles for sunscreens and antioxidants is recommended for photoaging prevention and treatment as it can improve uncomfortable skin appearance, stability, penetration, and safety. This study reviewed the effects of nano-sized sunscreens and antioxidants on skin photoprevention by examining published studies and articles from PubMed, Scopus, and Google Scholar, which explore the topics of skin photoaging, skin senescence, UV radiation, keratinocyte, dermal fibroblast, sunscreen, antioxidant, and nanoparticle. The researchers of this study also summarized the nano-based UV filters and therapeutics for mitigating skin photoaging. The skin photodamage mechanisms are presented, followed by the introduction of current skin photoaging treatment. The different nanoparticle types used for topical delivery were also explored in this study. This is followed by the mechanisms of how nanoparticles improve the UV filters and antioxidant performance. Lastly, recent investigations were reviewed on nanoparticulate sunscreens and antioxidants in skin photoaging management. Sunscreens and antioxidants for topical application have different concepts. Topical antioxidants are ideal for permeating into the skin to exhibit free radical scavenging activity, while UV filters are prescribed to remain on the skin surface without absorption to exert the UV-blocking effect without causing toxicity. The nanoparticle design strategy for meeting the different needs of sunscreens and antioxidants is also explored in this study. Although the benefits of using nanoparticles for alleviating photodamage are well-established, more animal-based and clinical studies are necessary.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Kuo Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Hong S, Peng Z, Wu M, Nie Y, Yi Y, Cai H, Zhang XZ. Human-Hair-Derived Natural Particles as Multifunctional Sunscreen for Effective UV Protection. ACS NANO 2023; 17:14943-14953. [PMID: 37485891 DOI: 10.1021/acsnano.3c03504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Excessive ultraviolet (UV) radiation can lead to a series of skin problems. Although commercial sunscreens can protect skin from UV-induced damage to an extent, the side effects caused by such products are still worrisome. Here, inspired by the natural photoprotection effect of human hair, we extracted the multifunctional particles from human hair as sunscreens for UV protection. Both in vitro and in vivo results indicate that hair-derived particles (HDPs) could effectively protect skin from UV radiation. Besides, HDPs retain the antioxidant capability of melanin in hair, which avoids UV-induced oxidative damage. In addition, the unique shape of HDPs can prevent them from penetrating into the skin, thus avoiding potential toxicity. Moreover, owing to their mesoporous structure, the particles can also be used as drug carriers. With the loading of octocrylene, the particles are more effective in blocking UV radiation. This study provides an ingenious tactic for the design and development of sunscreens from a natural substance.
Collapse
Affiliation(s)
- Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yichu Nie
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, People's Republic of China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
4
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Ma Q, Zhang Y, Huangfu Y, Gao S, Zhou C, Rong H, Deng L, Dong A, Zhang J. Solid SiO 2-Sealed Mesoporous Silica for Synergistically Combined Use of Inorganic and Organic Filters to Achieve Safe and Effective Skin Protection from All-Band UV Radiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12209-12220. [PMID: 36846915 DOI: 10.1021/acsami.2c21990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To effectively shield the full band of ultraviolet (UV) radiation and provide desirable protection, the combination of inorganic and organic filters was often used to protect human skin from the serious harm of UV exposure. However, the incompatibility of different filters and their mutual negative effect limit the production of multifilter sunscreen. In addition, the hazard of reactive oxygen species (ROS) produced by inorganic filters after UV exposure and the skin permeability of organic filters remain unresolved problems. In this study, titanium dioxide (TiO2) and diethylamino hydroxybenzoyl hexyl benzoate (DHHB), two kinds of common filters with complementary UV shielding range, were first encapsulated into large mesoporous silica nanoparticles (MSN, ∼300 nm) to obtain MSN-TiO2 and MSN-DHHB. Also, a SiO2 coating was then made to seal and stabilize the MSN-TiO2 and MSN-DHHB. The structure, UV screen function, and safety of the SiO2-coated filters, MSN-TiO2@SiO2 and MSN-DHHB@SiO2, were evaluated. The good mechanical stability exhibited by the solid SiO2 layer prevented the release and skin penetration of the sealed DHHB and the photocatalysis of TiO2. Furthermore, the combination of MSN-TiO2@SiO2 and MSN-DHHB@SiO2 in sunscreen cream showed excellent UV shielding performance on covering the whole UV radiation range without mutual interference. Therefore, coating SiO2 over MSN is a feasible strategy for entrapping various filters to improve their photostability, preventing skin penetration and ROS generation, and enhancing their compatibility with different sunscreen formulations.
Collapse
Affiliation(s)
- Qing Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yufeng Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shangdong Gao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Canhao Zhou
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Hui Rong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Nawaz H, Chen S, Zhang X, Li X, You T, Zhang J, Xu F. Cellulose-Based Fluorescent Material for Extreme pH Sensing and Smart Printing Applications. ACS NANO 2023; 17:3996-4008. [PMID: 36786234 DOI: 10.1021/acsnano.2c12846] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environment-responsive fluorescence materials are being widely investigated for instrument-free determination of various environmental factors. However, developing an eco-friendly cellulose-based fluorescent pH sensor for sensing extreme acidity and alkalinity is still challenging. Herein, a highly fluorescent and multifunctional material is developed from biopolymer-based cellulose acetate. A biopolymer-based structure containing responsive functional groups such as -C═O and -NH is constructed by chemically bonding 5-amino-2,3-dihydrophthalazine-1,4-dione (luminol) onto cellulose acetate using 4,4'-diphenylmethane diisocyanate (MDI) as a cross-linking agent. The prepared material (Lum-MDI-CA) is characterized by UV-vis, Fourier transform infrared, 1H NMR, 13C NMR spectroscopies, and fluorescence techniques. The material exhibits excellent aqua blue fluorescence and demonstrates extreme pH sensing applications. Interesting results are further revealed after adding a pH-unresponsive dye such as MTPP as the reference to develop the ratiometric method. The ratiometric system clearly differentiates the extreme acidic pH 1 from pH 2 and extreme alkaline pH 12, 13, and 14 by visual and fluorescence color change response under a narrow pH range. In addition, the material is fabricated into transparent flexible fluorescent films which demonstrate an outstanding UV shielding, security printing, and haze properties for smart food packaging and printing applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Ultrasmall organosilica nanoparticles with strong solid-state fluorescence for multifunctional applications. J Adv Res 2022; 47:93-103. [PMID: 35931324 PMCID: PMC10173175 DOI: 10.1016/j.jare.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Organosilica nanoparticles (ONs), which are a new type of photoluminescent nanomaterial (PM) with excellent biocompatibility, have caught more attention in recent years. However, their applications are significantly impeded by the complicated preparation process, poor photostability, and especially aggregation-induced quenching. OBJECTIVES The present study was aimed to design and prepare solid-state fluorescent ONs to avoid aggregation-induced quenching effect. In addition, the uses of ONs for fingerprint detection, white light-emitting diodes (WLEDs) and lysosome-targetable cellular imaging were demonstrated. METHODS Here, for the first time, we designed and prepared novel solid-state fluorescent ultrasmall ONs with orange-emitting photoluminescence via a one-step hydrothermal method. RESULTS The prepared solid-state fluorescent ONs could be successfully employed in fingerprint detection, WLEDs fabrication and cellular imaging. Intriguingly, the ultrasmall ONs specifically localized to lysosomes rather than other subcellular organelles across distinct cell lines, including cancer cells and noncancerous cells. CONCLUSION Collectively, these data showed that the new ONs presented in this study could be ideal candidates for PMs in biological and photoelectric applications.
Collapse
|
8
|
ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel. Int J Biol Macromol 2022; 210:1-10. [DOI: 10.1016/j.ijbiomac.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
|
9
|
Morais RP, Hochheim S, de Oliveira CC, Riegel-Vidotti IC, Marino CEB. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int J Pharm 2022; 614:121439. [PMID: 34990742 DOI: 10.1016/j.ijpharm.2021.121439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Silica nanoparticles (SNPs) received more attention with the emergence of nanotechnology with the aim and promise of becoming innovative drug delivery systems. They have been fulfilling this objective with excellence and nowadays they play a central role in biomedical applications. New SNPs application routes are being explored such as the epidermal, dermal, and transdermal routes. With that, novel models of synthesis, functionalization, and applications constantly appear. However, it is essential that such innovations are accompanied by in-depth studies on permeation, biodistribution, metabolization, and elimination of the generated by-products. Such studies are still incipient, if not rare. This article reviews significant findings on SNPs and their skin interactions. An extensive literature review on SNPs synthesis and functionalization methodologies was performed, as well as on the skin characteristics, skin permeation mechanisms, and in vivo toxicity assessments. Furthermore, studies of the past 5 years on the main therapeutic and cosmetic products employing SNPs, with greater emphasis on in vivo and ex vivo studies were included.
Collapse
Affiliation(s)
- Renata Pinho Morais
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| | - Sabrina Hochheim
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | - Cláudia E B Marino
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
10
|
Ono M, Nonomura Y, Gonome H. Optical Properties of Pickering Emulsions and Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1440-1447. [PMID: 35043620 DOI: 10.1021/acs.langmuir.1c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A significant number of studies have been conducted on particle adhesion phenomena as pertaining to the oil-water interface of droplets and the air-liquid interface of bubbles, known as Pickering emulsions and Pickering foams, respectively. However, few of the literature reports have discussed the optical properties of these materials. In this study, the optical properties of Pickering particles were calculated by using an electromagnetic field analysis via a finite element method, and their optical responses are discussed. The changes in scattering due to the differences in the number of adhering particles and particle size are compared for three composition systems: an oil-in-water Pickering emulsion, a water-in-oil Pickering emulsion, and a Pickering foam. It was determined that changes in the amount of scattering are due to the mixing of the phases in the scattering field. This effect is more pronounced when the size of the scatterer is significantly smaller than the wavelength. For systems with particles larger than the wavelength, changes in the amount of scattering were suppressed because of destructive interference of the electromagnetic waves. This work revealed that the variation in the amount of scattering due to the constituent material and size of the Pickering particles is affected by two different factors, and the change in the amount of scattering is 10 times greater than in a uniformly dispersed system.
Collapse
Affiliation(s)
- Mizuho Ono
- Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan
| | - Yoshimune Nonomura
- Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan
| | - Hiroki Gonome
- Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Wang X, Hu W, Chen H, Saeed MH, Huang J, Hu J, Ren Y, Xu J, Zhang L, Yu M, Zhang H, Yang H. Effects of chemically functionalized
TiO
2
nanoparticles on the
UV
‐shielding characteristics of polymer‐dispersed liquid crystals. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao China
| | - Wei Hu
- School of Materials Science and Engineering Peking University Beijing China
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Hongren Chen
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | | | - Junyi Huang
- School of Materials Science and Engineering Peking University Beijing China
| | - Junmei Hu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Yunxiao Ren
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Jianjun Xu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Lanying Zhang
- School of Materials Science and Engineering Peking University Beijing China
| | - Meina Yu
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Haiquan Zhang
- State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao China
| | - Huai Yang
- School of Materials Science and Engineering Peking University Beijing China
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
12
|
Zhang Y, Gu Z, Liu Y, Hu W, Liu C, Shu W, Wang Y, Yu C. Benzene-Bridged Organosilica Modified Mesoporous Silica Nanoparticles via an Acid-Catalysis Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2780-2786. [PMID: 33591191 DOI: 10.1021/acs.langmuir.0c03541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Surface functionalization of mesoporous silica nanoparticles is important for their applications but fairly challenging using benzene-bridged organosilane as the precursor through the postsynthesis approach. Herein, we report an acid-catalysis approach for the postmodification of benzene-bridged organosilica onto the surface of large-pore mesoporous silica nanoparticles. By using HCl (∼1 M) as the acid catalyst in a tetrahydrofuran solvent, the self-assembly of the bridged organosilica precursor is avoided, while surface modification of mesoporous silica nanoparticles is promoted with controllable organic contents and retained large pore sizes. This strategy can also be applied to the postmodification of organosilica with end benzene groups. The strategy developed in this study is expected to be applied for the postmodification of other organosilica precursors with various functions.
Collapse
Affiliation(s)
- Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yang Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - WenLi Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Zhang K, Yang Z, Mao X, Chen XL, Li HH, Wang YY. Multifunctional Textiles/Metal-Organic Frameworks Composites for Efficient Ultraviolet Radiation Blocking and Noise Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55316-55323. [PMID: 33258584 DOI: 10.1021/acsami.0c18147] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultraviolet radiation (UVR) and noise are the ubiquitous environmental hazards with considerable detrimental effects on the physiological and psychological health of humans. Exploiting efficient protective materials that can be extensively used in daily life for simultaneous anti-UVR and noise mitigation will be of crucial importance, but it is still a significant challenge in materials design. Herein, we developed a series of protective textiles for efficient anti-UVR and noise reduction via MOFs nanocrystal-modified cotton textiles. The formation of MOFs@cotton textiles was confirmed by using electron microscopy, X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. The fabricated MOFs@cotton textiles exhibited substantial improvement in the UVR blocking and acoustic absorption properties compared to blank cotton textiles. Therefore, this work provides a good strategy for designing and preparing multifunctional protective textiles.
Collapse
Affiliation(s)
- Kun Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an 710048, P. R. China
| | - Zhi Yang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an 710048, P. R. China
| | - Xue Mao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an 710048, P. R. China
| | - Xue-Li Chen
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510641, P. R. China
| | - Hai-Hong Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Yao-Yu Wang
- College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
14
|
Liu H, Hu D, Chen X, Ma W. Surface engineering of nanoparticles for highly efficient
UV
‐shielding composites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huaqing Liu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Xiaojun Chen
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|