1
|
Nitschke B, Butchko EA, Wahby MN, Breining KM, Konz AE, Grunlan MA. Shape Memory Polymer Bioglass Composite Scaffolds Designed to Heal Complex Bone Defects. ACS Biomater Sci Eng 2024; 10:6509-6519. [PMID: 39364678 PMCID: PMC11480937 DOI: 10.1021/acsbiomaterials.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
An off-the-shelf scaffold with requisite properties could enable the viable treatment of irregular craniomaxillofacial bone defects. Notably, the scaffold should be conformally fitting, innately bioactive, and bioresorbable. In prior work, we developed a series of shape memory polymer (SMP) scaffolds based on cross-linked poly(ε-caprolactone) (PCL). These were capable of "self-fitting" into complex bone defects when exposed to temperatures above the melt transition of the constituent PCL, either linear-PCL-diacrylate (linear-PCL-DA, Tm ∼55 °C) or star-PCL-tetraacrylate (star-PCL-TA, Tm ∼45 °C) for the potential to improve tissue safety. To achieve favorably increased degradation rates versus PCL-only scaffolds, semi-interpenetrating networks (semi-IPNs) were formed by including linear- or star-poly(l-lactic acid) (PLLA). A potential limitation of these self-fitting scaffolds is the lack of bioactivity, which is essential to osteoinductivity and osseointegration. Herein, analogous composite scaffolds were formed with 45S5 bioglass (BG) to impart bioactivity. The solvent-cast particulate leaching fabrication method was adapted to introduce BG to the fused salt template, resulting in composites with BG concentrated on the pore wall surfaces rather than within pore struts. Composite scaffolds with good pore wall integrity were produced with 2.5, 5, and 10 wt % BG. All composite scaffolds exhibited non-brittle behavior and did not fracture with 85% strain. For semi-IPN composite scaffolds, PLLA crystallinity was lost, and mechanical properties were not appreciably altered versus the non-BG controls. Sufficient retention of PCL crystallinity led to excellent shape memory behavior. The inclusion of 5 and 10 wt % BG led to hydroxyapatite mineralization after 1 day of exposure to simulated body fluid, as well as increased rates of in vitro degradation.
Collapse
Affiliation(s)
- Brandon
M. Nitschke
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth A. Butchko
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - MaryGrace N. Wahby
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kaylee M. Breining
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Alexander E. Konz
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Yu S, Sadaba N, Sanchez-Rexach E, Hilburg SL, Pozzo LD, Altin-Yavuzarslan G, Liz-Marzán LM, de Aberasturi DJ, Sardon H, Nelson A. 4D Printed Protein-AuNR Nanocomposites with Photothermal Shape Recovery. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2311209. [PMID: 38966003 PMCID: PMC11221775 DOI: 10.1002/adfm.202311209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 07/06/2024]
Abstract
4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.
Collapse
Affiliation(s)
- Siwei Yu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Eva Sanchez-Rexach
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Zhao Y, He P, Yao J, Li M, Wang B, Han L, Huang Z, Guo C, Bai J, Xue F, Cong Y, Cai W, Chu PK, Chu C. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials 2023; 301:122237. [PMID: 37467596 DOI: 10.1016/j.biomaterials.2023.122237] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Although biodegradable polymer coatings can impede corrosion of magnesium (Mg)-based orthopedic implants, they are prone to excessive degradation and accidental scratching in practice. Bone implant-related infection and limited osteointegration are other factors that adversely impact clinical application of Mg-based biomedical implants. Herein, a self-healing polymeric coating is constructed on the Mg alloy together with incorporation of a stimuli-responsive drug delivery nanoplatform by a spin-spray layer-by-layer (SSLbL) assembly technique. The nanocontainers are based on simvastatin (SIM)-encapsulated hollow mesoporous silica nanoparticles (S@HMSs) modified with polydopamine (PDA) and polycaprolactone diacrylate (PCL-DA) bilayer. Owing to the dynamic reversible reactions, the hybrid coating shows a fast, stable, and cyclical water-enabled self-healing capacity. The antibacterial assay indicates good bacteria-killing properties under near infrared (NIR) irradiation due to synergistic effects of hyperthermia, reactive oxygens species (ROS), and SIM leaching. In vitro results demonstrate that NIR laser irradiation promotes the cytocompatibility, osteogenesis, and angiogenesis. The coating facilitates alkaline phosphatase activity and expedites extracellular matrix mineralization as well as expression of osteogenesis-related genes. This study reveals a useful strategy to develop multifunctional coatings on bioabsorbable Mg alloys for orthopedic implants.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Linyuan Han
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, Southeast University, School of Medicine, Nanjing, 210002, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Pfau MR, Beltran FO, Woodard LN, Dobson LK, Gasson SB, Robbins AB, Lawson ZT, Brian Saunders W, Moreno MR, Grunlan MA. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model. Acta Biomater 2021; 136:233-242. [PMID: 34571270 PMCID: PMC8742656 DOI: 10.1016/j.actbio.2021.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Self-fitting scaffolds prepared from biodegradable poly(ε-caprolactone)-diacrylate (PCL-DA) have been developed for the treatment of craniomaxillofacial (CMF) bone defects. As a thermoresponsive shape memory polymer (SMP), with the mere exposure to warm saline, these porous scaffolds achieve a conformal fit in defects. This behavior was expected to be advantageous to osseointegration and thus bone healing. Herein, for an initial assessment of their regenerative potential, a pilot in vivo study was performed using a rabbit calvarial defect model. Exogenous growth factors and cells were excluded from the scaffolds. Key scaffold material properties were confirmed to be maintained following gamma sterilization. To assess scaffold integration and neotissue infiltration along the defect perimeter, non-critically sized (d = 8 mm) bilateral calvarial defects were created in 12 New Zealand white rabbits. Bone formation was assessed at 4 and 16 weeks using histological analysis and micro-CT, comparing defects treated with an SMP scaffold (d = 9 mm x t = 1 or 2 mm) to untreated defects (i.e. defects able to heal without intervention). To further assess osseointegration, push-out tests were performed at 16 weeks and compared to defects treated with poly(ether ether ketone) (PEEK) discs (d = 8.5 mm x t = 2 mm). The results of this study confirmed that the SMP scaffolds were biocompatible and highly conducive to bone formation and ingrowth at the perimeter. Ultimately, this resulted in similar bone volume and surface area versus untreated defects and superior performance in push-out testing versus defects treated with PEEK discs. STATEMENT OF SIGNIFICANCE: Current treatments of craniomaxillofacial (CMF) bone defects include biologic and synthetic grafts but they are limited in their ability to form good contact with adjacent tissue. A regenerative engineering approach using a biologic-free scaffold able to achieve conformal fitting represents a potential "off-the-shelf" surgical product to heal CMF bone defects. Having not yet been evaluated in vivo, this study provided the preliminary assessment of the bone healing potential of self-fitting PCL scaffolds using a rabbit calvarial defect model. The study was designed to assess scaffold biocompatibility as well as bone formation and ingrowth using histology, micro-CT, and biomechanical push-out tests. The favorable results provide a basis to pursue establishing self-fitting scaffolds as a treatment option for CMF defects.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Felipe O Beltran
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Lindsay N Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Shelby B Gasson
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Andrew B Robbins
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Zachary T Lawson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas 77843, US
| | - Michael R Moreno
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, US
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, US; Department of Chemistry, Texas A&M University, College Station, Texas 77843, US.
| |
Collapse
|
6
|
Houk CJ, Beltran FO, Grunlan MA. Suitability of EtO Sterilization for Polydopamine-coated, Self-fitting Bone Scaffolds. Polym Degrad Stab 2021; 194. [PMID: 34840360 DOI: 10.1016/j.polymdegradstab.2021.109763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Irregularly shaped craniomaxillofacial (CMF) defects may be advantageously treated by "self-fitting" shape memory polymer (SMP) scaffolds, namely those prepared from poly(ε-caprolactone)diacrylate (PCL-DA) networks and PCL-DA/poly(L-lactic acid) (PLLA) (75:25 wt%) semi-interpenetrating polymer networks (semi-IPNs). In addition to achieving good scaffold-tissue contact, a polydopamine (PD) coating can be leveraged to enhance bioactivity for improved osseointegration. Sterilization with ethylene oxide (EtO) represents a logical choice due to its low operating temperature and humidity. Herein, for the first time, the impact of EtO sterilization on the material properties of PD-coated SMP scaffolds was systematically assessed. Morphological features (i.e., pore size and pore interconnectivity), and in vitro bioactivity were preserved as were PCL crystallinity, PLLA crystallinity, and crosslinking. These latter features led to sustained shape memory properties, and compressive modulus. EtO-sterilized, PD-coated scaffolds displayed similar in vitro degradation behaviors versus analogous non-sterilized scaffolds. This included maintenance of compression modulus following 28 days of exposure to non-accelerated degradation conditions.
Collapse
Affiliation(s)
- Christopher J Houk
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Lawson ZT, Han J, Saunders WB, Grunlan MA, Moreno MR, Robbins AB. Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models. MethodsX 2021; 8:101541. [PMID: 34754809 PMCID: PMC8563681 DOI: 10.1016/j.mex.2021.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/07/2021] [Indexed: 11/03/2022] Open
Abstract
Push-out tests are frequently used to evaluate the bone-implant interfacial strength of orthopedic implants, particularly dental and craniomaxillofacial applications. There currently is no standard method for performing push-out tests on calvarial models, leading to a variety of inconsistent approaches. In this study, fixtures and methods were developed to perform push-out tests in accordance with the following design objectives: (i) the system rigidly fixes the explanted calvarial sample, (ii) it minimizes lateral bending, (iii) it positions the defect accurately, and (iv) it permits verification of the coaxial alignment of the defect with the push-out rod. The fixture and method was first validated by completing push-out experiments on 30 explanted murine cranial caps and two explanted leporine cranial caps, all induced with bilateral sub-critical defects (5.0 mm and 8.0 mm nominal diameter for the murine and leporine models, respectively). Defects were treated with an autograft (i.e., excised tissue flap), a shape memory polymer (SMP) scaffold, or a PEEK implant. Additional validation was performed on 24 murine cranial caps induced with a single, unilateral critically-sized defect (8.0 mm nominal diameter) and treated with an autograft or a SMP scaffold.A novel fixture was developed for performing push-out mechanical tests to characterize the strength of a bone-implant interface in calvarial defect repair. The fixture uses a 3D printed vertical clamp with mating alignment component to fix the sample in place without inducing lateral bending and verify coaxial alignment of push-out rod with the defect. The fixture can be scaled to different calvarial defect geometries as validated with 5.0 mm bilateral and 8.0 mm single diameter murine calvarial defect model and 8.0 mm bilateral leporine calvarial defect model.
Collapse
Affiliation(s)
- Zachary T Lawson
- Department of Biomedical Engineering, Texas A&M University, United States
| | - Jiwan Han
- Department of Mechanical Engineering, Texas A&M University, United States
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, United States
| | - Michael R Moreno
- Department of Biomedical Engineering, Texas A&M University, United States.,Department of Mechanical Engineering, Texas A&M University, United States
| | - Andrew B Robbins
- Department of Multidisciplinary Engineering, Texas A&M University, United States
| |
Collapse
|
8
|
Abstract
Smart scaffolds based on shape memory polymer (SMPs) have been increasingly studied in tissue engineering. The unique shape actuating ability of SMP scaffolds has been utilized to improve delivery and/or tissue defect filling. In this regard, these scaffolds may be self-deploying, self-expanding, or self-fitting. Smart scaffolds are generally thermoresponsive or hydroresponsive wherein shape recovery is driven by an increase in temperature or by hydration, respectively. Most smart scaffolds have been directed towards regenerating bone, cartilage, and cardiovascular tissues. A vast variety of smart scaffolds can be prepared with properties targeted for a specific tissue application. This breadth of smart scaffolds stems from the variety of compositions employed as well as the numerous methods used to fabricated scaffolds with the desired morphology. Smart scaffold compositions span across several distinct classes of SMPs, affording further tunability of properties using numerous approaches. Specifically, these SMPs include those based on physically cross-linked and chemically cross-linked networks and include widely studied shape memory polyurethanes (SMPUs). Various additives, ranging from nanoparticles to biologicals, have also been included to impart unique functionality to smart scaffolds. Thus, given their unique functionality and breadth of tunable properties, smart scaffolds have tremendous potential in tissue engineering.
Collapse
Affiliation(s)
- Michaela R Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|