1
|
Bożek J, Kurchakova O, Michel J, Groß I, Gerhards L, Zhang Y, Brand I, Bräuer AU. Pneumatic conveying inkjet bioprinting for the processing of living cells. Biofabrication 2025; 17:025003. [PMID: 39793206 DOI: 10.1088/1758-5090/ada8e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactlessmodus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles. Pneumatic conveying printing, a new type of inkjet-based printing technique, was applied for the bioprinting of both acellular and cellular fibrin-hydrogel droplets. Drops of a bioink containing 6 × 106HEK293H cells ml-1were supplied from a sterile nozzle connected to a syringe pump and deposited on a gas stream on a fibrinogen-coated glass slide, here referred to as biopaper. Fibrinogen film is the substrate of the polymerization reaction with thrombin and Ca2+present in the bioink. The pneumatic conveying printing technique operates on a mechanism by which drop ejection and deposition in a stream of gas occurs. The percentage of unprinted and printed dead HEK293H cells was 5 ± 2% and 7 ± 4%, respectively. Thus, compared to normal handling, pneumatic conveying printing causes only little damage to the cells. The velocity of the drop approaching the biopaper surface is below 0.2 m s-1and does not cause any damage to the cells. The cell viability of printed cells was 93%, being an excellent value for inkjet printing technology. The HEK293H cells exhibited approximately a 24 h lag time of proliferation that was preceded by intense migration and aggregation. Control experiments proved that the cell migration and lag time were associated with the chemical nature of the fibrin hydrogel and not with cell stress.
Collapse
Affiliation(s)
- Justyna Bożek
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Olga Kurchakova
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Johanna Michel
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Isabel Groß
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lena Gerhards
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Yanzhen Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
4
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
5
|
Bhattacharyya A, Janarthanan G, Kim T, Taheri S, Shin J, Kim J, Bae HC, Han HS, Noh I. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res 2022; 26:54. [PMID: 36209133 PMCID: PMC9548207 DOI: 10.1186/s40824-022-00301-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate. Method In this study, amorphous calcium phosphates micro/nanoparticles (CNP) incorporated GelMA is synthesized by developing specific sites for gelatin structure-based nucleation and stabilization in a one-pot processing. The process ensures homogenous distribution of CNPs while different concentrations of gelatin control their growth and morphologies. After micro/nanoparticles synthesis in the gelatin matrix, methacrylation is carried out to prepare homogeneously distributed CNP-reinforced gelatin methacryloyl (CNP GelMA) polymer. After synthesis of CNP and CNP GelMA gel, the properties of photo-crosslinked 3D bioprinting scaffolds were compared with those of the conventionally fabricated ones. Results The shape (spindle to spherical) and size (1.753 μm to 296 nm) of the micro/nanoparticles in the GelMA matrix are modulated by adjusting the gelatin concentrations during the synthesis. UV cross-linked CNP GelMA (using Irgacure 2955) has significantly improved mechanical (three times compressive strength), 3D printability (160 layers, 2 cm self-standing 3D printed height) and biological properties (cell supportiveness with osteogenic differentiation). The photo-crosslinking becomes faster due to better methacrylation, facilitating continuous 3D bioprinting or printing. Conclusion For 3D bioprinting using GelMA like photo cross-linkable polymers, where structural stability and homogeneous control of nanoparticles are major concerns, CNP GelMA is beneficial for even bone tissue regeneration within short period. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00301-6.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Taeyang Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jisun Shin
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyeon Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea. .,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
6
|
Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractComposites offer the option of coupling the individual benefits of their constituents to achieve unique material properties, which can be of extra value in many tissue engineering applications. Strategies combining hydrogels with fibre-based scaffolds can create tissue constructs with enhanced biological and structural functionality. However, developing efficient and scalable approaches to manufacture such composites is challenging. Here, we use a droplet-based bioprinting system called reactive jet impingement (ReJI) to integrate a cell-laden hydrogel with a microfibrous mesh. This system uses microvalves connected to different bioink reservoirs and directed to continuously jet bioink droplets at one another in mid-air, where the droplets react and form a hydrogel that lands on a microfibrous mesh. Cell–hydrogel–fibre composites are produced by embedding human dermal fibroblasts at two different concentrations (5 × 106 and 30 × 106 cells/mL) in a collagen–alginate–fibrin hydrogel matrix and bioprinted onto a fibre-based substrate. Our results show that both types of cell–hydrogel–microfibre composite maintain high cell viability and promote cell–cell and cell–biomaterial interactions. The lower fibroblast density triggers cell proliferation, whereas the higher fibroblast density facilitates faster cellular organisation and infiltration into the microfibres. Additionally, the fibrous component of the composite is characterised by high swelling properties and the quick release of calcium ions. The data indicate that the created composite constructs offer an efficient way to create highly functional tissue precursors for laminar tissue engineering, particularly for wound healing and skin tissue engineering applications.
Graphic abstract
Collapse
|
7
|
Coatings Functionalization via Laser versus Other Deposition Techniques for Medical Applications: A Comparative Review. COATINGS 2022. [DOI: 10.3390/coatings12010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of new biological devices in response to market demands requires continuous efforts for the improvement of products’ functionalization based upon expansion of the materials used and their fabrication techniques. One viable solution consists of a functionalization substrate covered by layers via an appropriate deposition technique. Laser techniques ensure an enhanced coating’s adherence to the substrate and improved biological characteristics, not compromising the mechanical properties of the functionalized medical device. This is a review of the main laser techniques involved. We mainly refer to pulse laser deposition, matrix-assisted, and laser simple and double writing versus some other well-known deposition methods as magnetron sputtering, 3D bioprinting, inkjet printing, extrusion, solenoid, fuse-deposition modeling, plasma spray (PS), and dip coating. All these techniques can be extended to functionalize surface fabrication to change local morphology, chemistry, and crystal structure, which affect the biomaterial behavior following the chosen application. Surface functionalization laser techniques are strictly controlled within a confined area to deliver a large amount of energy concisely. The laser deposit performances are presented compared to reported data obtained by other techniques.
Collapse
|
8
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
9
|
Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. ADDITIVE MANUFACTURING 2021; 37:101639. [DOI: 10.1016/j.addma.2020.101639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Suarez-Martinez AD, Sole-Gras M, Dykes SS, Wakefield ZR, Bauer K, Majbour D, Bundy A, Pampo C, Burow ME, Siemann DW, Huang Y, Murfee WL. Bioprinting on Live Tissue for Investigating Cancer Cell Dynamics. Tissue Eng Part A 2020; 27:438-453. [PMID: 33059528 DOI: 10.1089/ten.tea.2020.0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A challenge in cancer research is the lack of physiologically responsive in vitro models that enable tracking of cancer cells in tissue-like environments. A model that enables real-time investigation of cancer cell migration, fate, and function during angiogenesis does not exist. Current models, such as 2D or 3D in vitro culturing, can contain multiple cell types, but they do not incorporate the complexity of intact microvascular networks. The objective of this study was to establish a tumor microvasculature model by demonstrating the feasibility of bioprinting cancer cells onto excised mouse tissue. Inkjet-printed DiI+ breast cancer cells on mesometrium tissues from C57Bl/6 mice demonstrated cancer cells' motility and proliferation through time-lapse imaging. Colocalization of DAPI+ nuclei confirmed that DiI+ cancer cells remained intact postprinting. Printed DiI+ 4T1 cells also remained viable after printing on Day 0 and after culture on Day 5. Time-lapse imaging over 5 days enabled tracking of cell migration and proliferation. The number of cells and cell area were significantly increased over time. After culture, cancer cell clusters were colocalized with angiogenic microvessels. The number of vascular islands, defined as disconnected endothelial cell segments, was increased for tissues with bioprinted cancer cells, which suggests that the early stages of angiogenesis were influenced by the presence of cancer cells. Bioprinting cathepsin L knockdown 4T1 cancer cells on wild-type tissues or nontarget 4T1 cells on NG2 knockout tissues served to validate the use of the model for probing tumor cell versus microenvironment changes. These results establish the potential for bioprinting cancer cells onto live mouse tissues to investigate cancer microvascular dynamics within a physiologically relevant microenvironment. Impact statement To keep advancing the cancer biology field, tissue engineering has been focusing on developing in vitro tumor biomimetic models that more closely resemble the native microenvironment. We introduce a novel methodology of bioprinting exogenous cancer cells onto mouse tissue that contains multiple cells and systems within native physiology to investigate cancer cell migration and interactions with nearby microvascular networks. This study corroborates the manipulation of different exogenous cells and host microenvironments that impact cancer cell dynamics in a physiologically relevant tissue. Overall, it is a new approach for delineating the effects of the microenvironment on cancer cells and vice versa.
Collapse
Affiliation(s)
- Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Marc Sole-Gras
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Samantha S Dykes
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Zachary R Wakefield
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Kevin Bauer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Dima Majbour
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Angela Bundy
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Christine Pampo
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev 2020; 120:10793-10833. [PMID: 32902959 DOI: 10.1021/acs.chemrev.0c00008] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ben Pei
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianwei Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019; 11:042001. [PMID: 31315105 DOI: 10.1088/1758-5090/ab331e] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dawn of 3D printing in medicine has given the field the hope of vitality in many patients fighting a multitude of diseases. Also entitled bioprinting, this appertains to its sequential printing of precursor ink, embodying cells and polymer/composite in a predetermined trajectory. The precursor ink, in addition to cells, is predominantly constituted of hydrogels due to its biodegradability and ability to mimic the body's anatomy and mechanical features, e.g. bones, etc. This review paper is devoted to explicating the bioprinting (3D/4D) of alginate hydrogels, which are extracts from brown algae, through extrusion additive manufacturing. Alginates are salt derivatives of alginic acid and constitute long chains of polysaccharides, which provides pliability and gelling adeptness to their structure. Alginate hydrogel (employed for extrusion) can be pristine or composite relying on the requisite properties (target application controlled or in vivo environment), e.g. alginate-natural (gelatin/agarose/collagen/hyaluronic acid/etc) and alginate-synthetic (polyethylene glycol (PEG)/pluronic F-127/etc). Extrusion additive manufacturing of alginate is preponderate among others with its uncomplicated processing, material efficiency (cut down on wastage), and outspread adaptability for viscosities (0.03-6 * 104 Pa.s), but the procedure is limited by resolution (200 μm) in addition to accuracy. However, 3D-fabricated biostructures display rigidness (unvarying with conditions) i.e. lacks a smart response, which is reassured by accounting time feature as a noteworthy accessory to printing, interpreted as 4D bioprinting. This review propounds the specific processing itinerary for alginate (meanwhile traversing across its composites/blends with natural and synthetic consideration) in extrusion along with its pre-/during/post-processing parameters intrinsic to the process. Furthermore, propensity is also presented in its (alginate extrusion processing) application for tissue engineering, i.e. bones, cartilage (joints), brain (neural), ear, heart (cardiac), eyes (corneal), etc, due to a worldwide quandary over accessibility to natural organs for diverse types of diseases. Additionally, the review contemplates recently invented advance printing, i.e. 4D printing for biotic species, with its challenges and future opportunities.
Collapse
Affiliation(s)
- Prasansha Rastogi
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune- 411025, India
| | | |
Collapse
|
13
|
Compaan AM, Song K, Huang Y. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5714-5726. [PMID: 30644714 DOI: 10.1021/acsami.8b13792] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biomedical applications of three-dimensional (3D) printing demand complex hydrogel-based constructs laden with living cells. Advanced support materials facilitate the fabrication of such constructs. This work demonstrates the versatility and utility of a gellan fluid gel as a support bath material for fabricating freeform 3D hydrogel constructs from a variety of materials. Notably, the gellan fluid gel support bath can supply sensitive biological cross-linking agents such as enzymes to printed fluid hydrogel precursors for mild covalent hydrogel cross-linking. This mild fabrication approach is suitable for fabricating cell-laden gelatin-based constructs in which mammalian cells can form intercellular contacts within hours of fabrication; cellular activity is observed over several days within printed constructs. In addition, gellan is compatible with a wide range of ionic and thermal conditions, which makes it a suitable support material for ionically cross-linked structures generated by printing alginate-based ink formulations as well as thermosensitive hydrogel constructs formed from gelatin. Ultraviolet irradiation of printed structures within the support bath is also demonstrated for photoinitiated cross-linking of acrylated ink materials. Furthermore, gellan support material performance in terms of printed filament stability and residual support material on constructs is found to be comparable and superior, respectively, to previously reported support materials.
Collapse
|