1
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Yang J, Sun L, Zhang Y, Shen Q. Metal and metal oxide nanoparticle-assisted molecular assays for the detection of Salmonella. DISCOVER NANO 2025; 20:65. [PMID: 40172753 PMCID: PMC11965082 DOI: 10.1186/s11671-025-04237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
This paper provides a comprehensive overview of the diverse applications and innovations of nanoparticles in the detection of Salmonella. It encompasses a comprehensive range of novel methods, including efficient enrichment, nucleic acid extraction, immunoassays, nucleic acid tests, biosensors, and emerging strategies with the potential for future applications. The surface modification of specific antibodies or ligands enables nanoparticles to achieve highly selective capture of Salmonella, while optimizing the nucleic acid extraction process and improving detection efficiency. The employment of nanoparticles in immunological and nucleic acid tests markedly enhances the specificity and sensitivity of the reaction, thereby optimizing the determination of detection results. Moreover, the distinctive physicochemical properties of nanoparticles enhance the sensitivity, selectivity, and stability of biosensors, thereby facilitating the rapid advancement of bio-detection technologies. It is particularly noteworthy that there has been significant advancement in the application and innovative research of nanozymes in molecular assays. This progress has not only resulted in enhanced detection efficiency but has also facilitated innovation and improvement in detection technologies. As nanotechnologies continue to advance, the use of metal and metal oxide nanoparticles in Salmonella detection is likely to become a more promising and reliable strategy for ensuring food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Foulady-Dehaghi R, Sohrabnezhad S, Hadavi M. A new biocompatible COF-MCM nanoporous hybrid DDS for pH-controlled delivery of curcumin. Sci Rep 2024; 14:32077. [PMID: 39738692 PMCID: PMC11686239 DOI: 10.1038/s41598-024-83614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
A novel polyimide-bridge covalent organic framework-based (PI-COF) hybrid was synthesized through simple green chemistry between PI-COF and MCM-NH2 monomers as a pH-sensitive anticancer curcumin (C) delivery system. The synthesized nanohybrid was crystalline in nature with an improved surface area and pore volume compared to the base COF, certified by powder X-ray diffraction spectroscopy and Brunauer-Emmett-Teller technique. Kinetically controlled and sustained curcumin release profiles were investigated using the as-prepared curcumin-loaded drug delivery systems (C@DDSs) in neutral and acidic pH media. C-loaded hybrid nanostructure prepared via the solvent-free drug loading process displayed a high entrapment efficiency (35.96%) and improved release in the acidic environment specific to cancer cells (pH = 4.5: 36.8%, pH = 7.4: 15.27%). In conclusion, we illustrated the utility of C@DDS as an in vitro drug delivery system in MDA-MB-231 cells. C@DDSs represented the time-dependent release of curcumin followed by cell death. Therefore, the reported PI-COF/MCM-NH2 system can be considered a new biocompatible carrier in COF research as a sensitive drug delivery system.
Collapse
Affiliation(s)
- R Foulady-Dehaghi
- Faculty of Chemistry, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Sh Sohrabnezhad
- Faculty of Chemistry, University of Guilan, P.O. Box 1914, Rasht, Iran.
| | - M Hadavi
- Department of Biology, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran
| |
Collapse
|
3
|
Beyazit F, Arica MY, Acikgoz-Erkaya I, Ozalp C, Bayramoglu G. Quartz crystal microbalance-based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Mikrochim Acta 2024; 191:235. [PMID: 38570380 PMCID: PMC10990998 DOI: 10.1007/s00604-024-06307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes. Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe3O4, Fe3O4@PDA, and Fe3O4@PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe3O4@PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 102 and 1.0 × 107 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L. ivanovii, L. innocua, and L. seeligeri) or other tested bacteria such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times.
Collapse
Affiliation(s)
- Fatma Beyazit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| | - Ilkay Acikgoz-Erkaya
- Department of Environmental Science, Faculty of Engineering and Architecture, Ahi Evran University, Kırsehir, Turkey
| | - Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
4
|
Wang L, Wen Y, Li L, Yang X, Li W, Cao M, Tao Q, Sun X, Liu G. Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis. BIOSENSORS 2024; 14:170. [PMID: 38667163 PMCID: PMC11048167 DOI: 10.3390/bios14040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The discrimination and recognition of biological targets, such as proteins, cells, and bacteria, are of utmost importance in various fields of biological research and production. These include areas like biological medicine, clinical diagnosis, and microbiology analysis. In order to efficiently and cost-effectively identify a specific target from a wide range of possibilities, researchers have developed a technique called differential sensing. Unlike traditional "lock-and-key" sensors that rely on specific interactions between receptors and analytes, differential sensing makes use of cross-reactive receptors. These sensors offer less specificity but can cross-react with a wide range of analytes to produce a large amount of data. Many pattern recognition strategies have been developed and have shown promising results in identifying complex analytes. To create advanced sensor arrays for higher analysis efficiency and larger recognizing range, various nanomaterials have been utilized as sensing probes. These nanomaterials possess distinct molecular affinities, optical/electrical properties, and biological compatibility, and are conveniently functionalized. In this review, our focus is on recently reported optical sensor arrays that utilize nanomaterials to discriminate bioanalytes, including proteins, cells, and bacteria.
Collapse
Affiliation(s)
| | - Yanli Wen
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| | | | | | | | | | | | | | - Gang Liu
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, 1500 Zhang Heng Road, Shanghai 201203, China; (L.W.); (L.L.); (X.Y.); (W.L.); (M.C.); (Q.T.); (X.S.)
| |
Collapse
|
5
|
Durdabak DB, Dogan S, Tekol SD, Celik C, Ozalp VC, Tuna BG. Direct Detection of Viral Infections from Swab Samples by Probe-Gated Silica Nanoparticle-Based Lateral Flow Assay. ChemistryOpen 2024; 13:e202300120. [PMID: 37824210 PMCID: PMC10853071 DOI: 10.1002/open.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Point-of-care diagnosis is crucial to control the spreading of viral infections. Here, universal-modifiable probe-gated silica nanoparticles (SNPs) based lateral flow assay (LFA) is developed in the interest of the rapid and early detection of viral infections. The most superior advantage of the rapid assay is its utility in detecting various sides of the virus directly from the human swab samples and its adaptability to detect various types of viruses. For this purpose, a high concentration of fluorescein and rhodamine B as a reporting material was loaded into SNPs with excellent loading capacity and measured using standard curve, 4.19 μmol ⋅ g-1 and 1.23 μmol ⋅ g-1 , respectively. As a model organism, severe acute respiratory syndrome coronavirus-2 (CoV-2) infections were selected by targeting its nonstructural (NSP9, NSP12) and envelope (E) genes as target sites of the virus. We showed that NSP12-gated SNPs-based LFA significantly outperformed detection of viral infection in 15 minutes from 0.73 pg ⋅ mL-1 synthetic viral solution and with a dilution of 1 : 103 of unprocessed human samples with an increasing test line intensity compared to steady state (n=12). Compared to the RT-qPCR method, the sensitivity, specificity, and accuracy of NSP12-gated SNPs were calculated as 100 %, 83 %, and 92 %, respectively. Finally, this modifiable nanoparticle system is a high-performance sensing technique that could take advantage of upcoming point-of-care testing markets for viral infection detections.
Collapse
Affiliation(s)
- Dilara Buse Durdabak
- Department of Biophysics Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| | - Soner Dogan
- Department of Medical Biology Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| | - Serap Demir Tekol
- Department of Clinical MicrobiologyUniversity of Health Sciences Kartal Dr. Lutfi Kirdar City HospitalIstanbul34865Turkey
| | - Caner Celik
- Department of Emergency Medical ServiceMemorial Sisli HospitalIstanbulTurkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology Faculty of MedicineAtilim UniversityAnkara06830Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| |
Collapse
|
6
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
7
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Ahangari A, Mahmoodi P, Mohammadzadeh A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol Bioeng 2023; 120:41-56. [PMID: 36253878 DOI: 10.1002/bit.28266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
An infectious disease that is transmitted from animals to humans and vice-versa is called zoonosis. Bacterial zoonotic diseases can re-emerge after they have been eradicated or controlled and are among the world's major health problems which inflict tremendous burden on healthcare systems. The first step to encounter such illnesses can be early and precise detection of bacterial pathogens to further prevent the following losses due to their infections. Although conventional methods for diagnosing pathogens, including culture-based, polymerase chain reaction-based, and immunological-based techniques, benefit from their advantages, they also have their own drawbacks, for example, taking long time to provide results, and requiring laborious work, expensive materials, and special equipment in certain conditions. Consequently, there is a greater tendency to introduce simple, innovative, quicker, accurate, and low-cost detection methods to effectively characterize the causative agents of infectious diseases. Biosensors, therefore, seem to practically be one of those novel promising diagnostic tools on this aim. These are effective and reliable elements with high sensitivity and specificity, that their usability can even be improved in medical diagnostic systems when empowered by nanoparticles. In the present review, recent advances in the development of several bio and nano biosensors, for rapid detection of zoonotic bacteria, have been discussed in details.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
9
|
Kang Y, Shi S, Sun H, Dan J, Liang Y, Zhang Q, Su Z, Wang J, Zhang W. Magnetic Nanoseparation Technology for Efficient Control of Microorganisms and Toxins in Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16050-16068. [PMID: 36533981 DOI: 10.1021/acs.jafc.2c07132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Outbreaks of foodborne diseases mediated by food microorganisms and toxins remain one of the leading causes of disease and death worldwide. It not only poses a serious threat to human health and safety but also imposes a huge burden on health care and socioeconomics. Traditional methods for the removal and detection of pathogenic bacteria and toxins in various samples such as food and drinking water have certain limitations, requiring a rapid and sensitive strategy for the enrichment and separation of target analytes. Magnetic nanoparticles (MNPs) exhibit excellent performance in this field due to their fascinating properties. The strategy of combining biorecognition elements with MNPs can be used for fast and efficient enrichment and isolation of pathogens. In this review, we describe new trends and practical applications of magnetic nanoseparation technology in the detection of foodborne microorganisms and toxins. We mainly summarize the biochemical modification and functionalization methods of commonly used magnetic nanomaterial carriers and discuss the application of magnetic separation combined with other instrumental analysis techniques. Combined with various detection techniques, it will increase the efficiency of detection and identification of microorganisms and toxins in rapid assays.
Collapse
Affiliation(s)
- Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qiuping Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
10
|
Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, Javanmard SH. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv 2022; 12:32834-32843. [PMID: 36425208 PMCID: PMC9667373 DOI: 10.1039/d2ra05930d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing, sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 μg mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Mohamadmahdi Samandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
- Department of Biomedical Engineering, University of Connecticut Farmington CT 06030 USA
| | | | - Bahare Zarrin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| |
Collapse
|
12
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bayramoglu G, Kilic M, Yakup Arica M. Selective isolation and sensitive detection of lysozyme using aptamer based magnetic adsorbent and a new quartz crystal microbalance system. Food Chem 2022; 382:132353. [PMID: 35152024 DOI: 10.1016/j.foodchem.2022.132353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Magnetic chitosan beads and quartz crystal microbalance chip were decorated with lysozyme specific aptamer for isolation and detection of lysozyme, respectively. The lysozyme specific aptamer was immobilized on poly (dopamine) coated magnetic chitosan beads and the chip via Schiff base reaction. The percentage of the removal efficiency and purity of the isolated lysozyme from egg white were 87.6% and 91.8%, respectively. Further, the sensor system was contacted with different concentrations of lysozyme and other test proteins. This sensor system provided a method for the label-free, concentration-dependent, and selective detection of lysozyme with an observed detection limit of 17.9 ± 0.6 ng/mL. The sensor system was very selective and not significantly responded to the other tested proteins such as ovalbumin, trypsin, cytochrome C, and glucose oxidase. The prepared new sensor system showed a good durability and a high sensitivity for determination of lysozyme from solutions and whole egg white.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Murat Kilic
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - M Yakup Arica
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
14
|
A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Anal Bioanal Chem 2022; 414:6441-6453. [PMID: 35788872 DOI: 10.1007/s00216-022-04201-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/01/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in China. Glypican-3 (GPC3) is a specific antigen related to HCC, which is widely used in clinical detection as a reliable marker of HCC. In this paper, a highly sensitive homogeneous apatasensor was designed for GPC3 detection based on fluorescence resonance energy transfer (FRET) where the GPC3 aptamer labelled gold carbon dots (AuCDs-GPC3Apt) are used as a donor and magnetic graphene oxide (Fe3O4/GO) nanosheets are used as an acceptor. A one-step hydrothermal method was used to synthesize AuCDs to provide sufficient fluorescence. The FRET phenomenon exists between AuCDs-GPC3Apt and Fe3O4/GO, which weakens the fluorescence intensity of the whole system. When the target GPC3 is added to the FRET system, the fluorescent AuCDs-GPC3Apt binds to the GPC3 and forms a folded structure, which leads to AuCDs-GPC3Apt separation from Fe3O4/GO nanosheets. The Fe3O4/GO is then magnetically separated so that the fluorescence of free labelled AuCDs-GPC3Apt is restored. Under the optimum conditions, the fluorescence recovery rate is linearly correlated with the concentration of GPC3 (5-100 ng·mL-1) and the detection limit is 3.01 ng·mL-1 (S/N = 3). This strategy shows recoveries from 98.76 to 101.29% in real human serum samples and provides an immediate and effective detection method for the quantification of GPC3 with great potential applications for early diagnosis of HCC. A sensitive homogeneous FRET-based apatasensor was designed for GPC3 detection where the AuCDs-GPC3Apt is a donor and Fe3O4/GO nanosheets are an acceptor. The GPC3 fluorescent aptasensor combines wider output range with low cost, high specificity, and good anti-interference.
Collapse
|
15
|
Wang L, Lin H, Zhang J, Wang J. Phage long tail fiber protein-immobilized magnetic nanoparticles for rapid and ultrasensitive detection of Salmonella. Talanta 2022; 248:123627. [PMID: 35661002 DOI: 10.1016/j.talanta.2022.123627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
There is an urgent need to develop fast and sensitive detection methods for foodborne pathogens. But the conventional culture method that typically requires 2-3 days is not ideal for the rapid analysis. Food samples demonstrate a great challenge for direct detection due to the complex matrix. Hence, we present a new method based on the phage long-tail-fiber proteins (LTF4-a) immobilized magnetic nanoparticles (MNPs) for specific separation and concentration of Salmonella. The LTF4-a-MNP was prepared via the coupling of recombinant LTF4-a with MNPs and used to isolate and enrich Salmonella cells from contaminated food samples. The captured material was further integrated with the direct PCR program for accurate detection of Salmonella. Our study successfully established a new method for detecting contaminated food samples of Salmonella, the overall approach took no more than 3 h, which allowed a detection limit of 7 CFU/mL, demonstrating a promising alternative to the immunomagnetic separation method by replacing antibodies or aptamers, that is compatible with downstream analysis.
Collapse
Affiliation(s)
- Luokai Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jing Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| |
Collapse
|
16
|
Mahari S, Gandhi S. Recent Advances in Electrochemical Biosensors for the Detection of Salmonellosis: Current Prospective and Challenges. BIOSENSORS 2022; 12:bios12060365. [PMID: 35735514 PMCID: PMC9221498 DOI: 10.3390/bios12060365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/03/2023]
Abstract
Salmonellosis is a major cause of foodborne infections, caused by Salmonella, posing a major health risk. It possesses the ability to infiltrate the food supply chain at any point throughout the manufacturing, distribution, processing or quality control process. Salmonella infection has increased severely and requires effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction and culture plate, consume a lot of time and are labor-intensive. Therefore, new quick detection methods for on-field applications are urgently needed. Biosensors provide consumer-friendly approaches for quick on-field diagnoses. In the last few years, there has been a surge in research into the creation of reliable and advanced electrochemical sensors for the detection of Salmonella strains in food samples. Electrochemical sensors provide extensive accuracy and reproducible results. Herein, we present a comprehensive overview of electrochemical sensors for the detection of Salmonella by focusing on various mechanisms of electrochemical transducer. Further, we explain new-generation biosensors (microfluidics, CRISPR- and IOT-based) for point-of care applications. This review also highlights the limitations of developing biosensors in Salmonella detection and future possibilities.
Collapse
Affiliation(s)
- Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India;
- DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India;
- DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, India
- Correspondence: or
| |
Collapse
|
17
|
Detection of viruses by probe-gated silica nanoparticles directly from swab samples. Talanta 2022; 246:123429. [DOI: 10.1016/j.talanta.2022.123429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
|
18
|
Dursun AD, Dogan S, Kavruk M, Busra Tasbasi B, Sudagidan M, Deniz Yilmaz M, Yilmaz B, Ozalp VC, Tuna BG. Surface plasmon resonance aptasensor for soluble ICAM-1 protein in blood samples. Analyst 2022; 147:1663-1668. [DOI: 10.1039/d1an02332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aptamer sequence for soluble ICAM-1 was selected by the SELEX procedure. The ICAM-1 aptamer was used to develop a magnetic separation from blood samples by silica shell nanoparticles and subsequent real-time detection by SPR biosensing.
Collapse
Affiliation(s)
- Ali Dogan Dursun
- Department of Physiology, School of Medicine, Atilim University, Ankara, Turkey
- Vocational School of Health Services, Atilim University, Ankara, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Murat Kavruk
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - B. Busra Tasbasi
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Konya, Turkey
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Konya, Turkey
| | - M. Deniz Yilmaz
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Konya, Turkey
- Department of Bioengineering, Konya Food and Agriculture University, Konya, Turkey
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Veli C. Ozalp
- Department of Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Bilge G. Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
19
|
Zhang L, Wang M, Zhu Z, Chen S, Wu H, Yang Y, Che F, Li Q, Li H. A GD2-aptamer-mediated, self-assembling nanomedicine for targeted multiple treatments in neuroblastoma theranostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:732-748. [PMID: 34703655 PMCID: PMC8515170 DOI: 10.1016/j.omtn.2021.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Because current mainstream anti-glycolipid GD2 therapeutics for neuroblastoma (NB) have limitations, such as severe adverse effects, improved therapeutics are needed. In this study, we developed a GD2 aptamer (DB99) and constructed a GD2-aptamer-mediated multifunctional nanomedicine (ANM) with effective, precise, and biocompatible properties, which functioned both as chemotherapy and as gene therapy for NB. DB99 can bind to GD2+ NB tumor cells but has minimal cross-reactivity to GD2− cells. Furthermore, ANM is formulated by self-assembly of synthetic aptamers DB99 and NB-specific MYCN small interfering RNA (siRNA), followed by self-loading of the chemotherapeutic agent doxorubicin (Dox). ANM is capable of specifically recognizing, binding, and internalizing GD2+, but not GD2−, NB tumor cells in vitro. Intracellular delivery of ANM activates Dox release for chemotherapy and MYCN-siRNA-induced MYCN silencing. ANM specifically targets, and selectively accumulates in, the GD2+ tumor site in vivo and further induces growth inhibition of GD2+ tumors in vivo; in addition, ANM generates fewer or no side effects in healthy tissues, resulting in markedly longer survival with fewer adverse effects. These results suggest that the GD2-aptamer-mediated, targeted drug delivery system may have potential applications for precise treatment of NB.
Collapse
Affiliation(s)
- Liyu Zhang
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Meng Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Zeen Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Shengquan Chen
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, Shaanixi, China
| | - Qiao Li
- Department of clinical laboratory, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| | - Hui Li
- Department of Neonatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.,Department of Neonatology, Affiliated Children's hospital of Xi'an Jiaotong University, Xi'an 710002, China
| |
Collapse
|
20
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
21
|
Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5908-5925. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is considered one of the leading causes of death, with a growing number of cases worldwide. However, the early diagnosis and efficient therapy of cancer have remained a critical challenge. The emergence of nanomedicine has opened up a promising window to address the drawbacks of cancer detection and treatment. A wide range of engineered nanomaterials and nanoplatforms with different shapes, sizes, and composition has been developed for various biomedical applications. Nanomaterials have been increasingly used in various applications in bioimaging, diagnosis, and therapy of cancers. Recently, numerous multifunctional and smart nanoparticles with the ability of simultaneous diagnosis and targeted cancer therapy have been reported. The multidisciplinary attempts led to the development of several exciting clinically approved nanotherapeutics. The nanobased materials and devices have also been used extensively to develop point-of-care and highly sensitive methods of cancer detection. In this review article, the most significant achievements and latest advances in the nanomaterials development for cancer nanomedicine are critically discussed. In addition, the future perspectives of this field are evaluated.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
22
|
Yi K, Wang Y, Shi K, Chi J, Lyu J, Zhao Y. Aptamer-decorated porous microneedles arrays for extraction and detection of skin interstitial fluid biomarkers. Biosens Bioelectron 2021; 190:113404. [PMID: 34182204 DOI: 10.1016/j.bios.2021.113404] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
The detection of biomarkers in body fluids plays a great role in the diagnosis, treatment, and prognosis of diseases. Here, we present novel aptamer-decorated porous microneedles (MNs) arrays to realize the extraction and detection of biomarkers in skin interstitial fluid (ISF) in situ. The porous MNs arrays are fabricated by replicating the negative molds comprising glass microspheres with a UV-curable ethoxylated trimethylolpropane triacrylate (ETPTA). As the MNs arrays combine the superiorities of porous structure and aptamers, their specific surface area increased significantly to 6.694 m2/g, thus vast of stable aptamer probes with a concentration of 0.9459 μM could be immobilized. In addition, the MNs arrays could extract skin ISF into their porous structure on the basis of the capillarity principle, and subsequently capture and detect skin ISF biomarkers without sample post-process. Taking advantage of these features, we further demonstrated a highly sensitive and rapid detection of ISF endotoxin in the concentration ranges of 0.0342 EU/mL to 8.2082 EU/mL from rats model injected with endotoxin via tail vein by using such aptamer-decorated porous MNs arrays, with the limit of detection (LOD) of 0.0064 EU/mL. These results indicated that the aptamer-decorated porous MNs arrays possess great potential for non-invasive extraction and detection of biomarkers in clinical applications.
Collapse
Affiliation(s)
- Kexin Yi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuetong Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jianxin Lyu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China; Laboratory Medical Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Yuanjin Zhao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China; Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
23
|
Samani SS, Khojastehnezhad A, Ramezani M, Alibolandi M, Yazdi FT, Mortazavi SA, Khoshbin Z, Abnous K, Taghdisi SM. Ultrasensitive detection of micrococcal nuclease activity and Staphylococcus aureus contamination using optical biosensor technology-A review. Talanta 2021; 226:122168. [DOI: 10.1016/j.talanta.2021.122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
|
24
|
|
25
|
Kajani AA, Mehrgardi MA. Fluorescence resonance energy transfer monitoring of pH-responsive doxorubicin release from carbon dots/aptamer functionalized magnetic mesoporous silica. Nanomedicine (Lond) 2021; 16:627-639. [PMID: 33759545 DOI: 10.2217/nnm-2020-0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To develop a novel theranostic nanoplatform for simultaneous fluorescent monitoring and stimuli-triggered drug delivery. Materials & methods: Different microscopic and spectroscopic techniques were used for the characterization of nanocarriers. MCF-7 and human umbilical vein endothelial cell lines were cultured and treated with different doses of doxorubicin-loaded nanocarriers. The cell viability and drug release were studied using MTT assay and fluorescence microscopy. Results: Biocompatible and mono-disperse nanocarriers represent hollow and mesoporous structures with the calculated surface area of 552.83 m2.g-1, high magnetic activity (12.6 emu.g-1), appropriate colloidal stability and high drug loading capacity (up to 61%). Conclusion: Taxane-based carbon dots act as the pH-responsive gatekeepers for the controlled release of doxorubicin into cancer cells and provide a fluorescence resonance energy transfer system for real-time monitoring of drug delivery.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
26
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
27
|
Pla L, Santiago-Felipe S, Tormo-Mas MÁ, Ruiz-Gaitán A, Pemán J, Valentín E, Sancenón F, Aznar E, Martínez-Máñez R. Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples. Emerg Microbes Infect 2020; 10:407-415. [PMID: 33372852 PMCID: PMC7954474 DOI: 10.1080/22221751.2020.1870411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modulation and cargo delivery is controlled by successful DNA recognition. C. auris is detected at a concentration as low as 6 CFU/mL allowing obtaining a diagnostic result in clinical samples in one hour with no prior DNA extraction or amplification steps.
Collapse
Affiliation(s)
- Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - María Ángeles Tormo-Mas
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Alba Ruiz-Gaitán
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Javier Pemán
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eulogio Valentín
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe (IISLAFE), Hospital Universitari i Politècnic La Fe, Valencia, Spain.,GMCA Research Unit, Departamento de Microbiología y Ecología, Universitat de Valencia, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
28
|
Yu J, Wu H, He L, Tan L, Jia Z, Gan N. The universal dual-mode aptasensor for simultaneous determination of different bacteria based on naked eyes and microfluidic-chip together with magnetic DNA encoded probes. Talanta 2020; 225:122062. [PMID: 33592781 DOI: 10.1016/j.talanta.2020.122062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It was critically important to develop some sensitive, convenient and on-site methods for simultaneous assay of different pathogenic bacteria in foods. In this work, a dual-mode aptasensor was established for fulfilling above aims combing colorimetry with microfluidic chip. This as-prepared dual-mode aptasensor not only realized rapid screening by naked eye on-site, but also the simultaneous quantification of multiple bacteria. Namely, the presence of pathogenic bacteria was firstly judged by naked eyes with Salmonella typhimurium (S.T) and Vibrio parahaemolyticus (V.P) as models. And then, S.T and V.P in positive samples were simultaneously quantified by microfluidic chip. In order to obtain the multiple signals, a series of magnetic DNA encoded-probes (MDEs) was fabricated containing rolling cycle amplified long DNA chain (RCA-DNA) rich in G-quadruplex sequences. They can combine with hemin as DNAzyme to catalyze 3,3'-5,5'-Tetramethyl benzidine (TMB)-H2O2 system for color development and be cleaved by EcoRV endonuclease to produce DNA fragments with different lengths. The microfluidic chip was employed to separate and quantify the fragments for quantifying S.T and V.P simultaneously. For this protocol, 100 CFU·mL-1 of V.P or S.T could be observed by the naked eye and as low as 32 S.T and 30 CFU·mL-1 V.P could be detected by the chip within 3 min. The dual-mode aptasensor could quickly screen positive samples, and simultaneously perform quantitative detection of the bacteria in positive samples. Our protocol demonstrated its potential in on-site qualification & simultaneous quantification of foodborne bacteria in foods.
Collapse
Affiliation(s)
- Jiale Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Huihui Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Liyong He
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510000, PR China
| | - Zhijian Jia
- School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, PR China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China.
| |
Collapse
|
29
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
30
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
31
|
Chen Y, Xiang J, Liu B, Chen Z, Zuo X. Gold nanoparticle-engineered electrochemical aptamer biosensor for ultrasensitive detection of thrombin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3729-3733. [PMID: 32729857 DOI: 10.1039/d0ay01163k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to obtain a lower detection limit in electrochemical detection, the choice of signal amplification strategy is of great importance. In this work, we describe an electrochemical sandwich aptasensor based on a signal amplification system involving two thrombin (TB) aptamers (TBA1 and TBA2), gold nanoparticles (AuNPs) as aptamer carriers, and [Ru(NH3)6]3+ for signal conversion. In the presence of the target thrombin, TBA1 and TBA2 specifically bind to TB, and the TBA1-TB-TBA2 complexes cause the formation of a sandwich structure, meaning more [Ru(NH3)6]3+ can be adsorbed on the negatively charged phosphate backbone of the aptamers, resulting in an increase in the differential pulse voltammetry (DPV) current. Under optimal conditions, the aptasensor exhibited a linear range of 1 fM to 6 pM and a limit of detection of 0.1429 fM (S/N = 3) for TB. The proposed aptasensor displayed an excellent selectivity and reproducibility. Importantly, the aptasensor was capable of detecting TB in serum samples successfully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | | | | | | | | |
Collapse
|
32
|
Lu Y, Yang Q, Wu J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
34
|
Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 2020; 212:120797. [DOI: 10.1016/j.talanta.2020.120797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
|
35
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Tasbasi BB, Guner BC, Sudagidan M, Ucak S, Kavruk M, Ozalp VC. Label-free lateral flow assay for Listeria monocytogenes by aptamer-gated release of signal molecules. Anal Biochem 2019; 587:113449. [PMID: 31557463 DOI: 10.1016/j.ab.2019.113449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022]
Abstract
Lateral flow assay (LFA) type of biosensors have been popular due to cost-effectiveness and easy-interpretation for instant results, most common examples of applications being pregnancy tests, food safety or medical diagnostics. There are several examples of reports with high sensitivity, including pre-concentration of the sample by magnetic pull-down. However, sensitivity and direct detection designs with aptamers has been a limiting factor for developing aptamers-based LFA assays. In this study, we report a lateral flow design based on aptamer-gated silica nanoparticles to develop high sensitivity and direct bacterial assay by shifting aptamers-target interaction to conjugation pad. Aptamer-gated silica nanoparticles-based biosensors were reported for their high sensitivity, specificity and label-free detection for small molecules and whole cells. This label-free strategy for LFA can determine L. monocytogenes in minced chicken matrix at less than 5 min with a limit of detection (LOD) of 53 cells in one mL samples.
Collapse
Affiliation(s)
- B Busra Tasbasi
- Kit-Argem, Konya Food and Agriculture University, 42080, Konya, Turkey
| | - Buket C Guner
- Kit-Argem, Konya Food and Agriculture University, 42080, Konya, Turkey
| | - Mert Sudagidan
- Kit-Argem, Konya Food and Agriculture University, 42080, Konya, Turkey
| | - Samet Ucak
- Altınbas University, School of Medicine, Department of Medical Biology, 34217, Istanbul, Turkey
| | - Murat Kavruk
- Gebze Quality Campus, Turkish Standards Institution (TSE), 41400, Gebze, Kocaeli, Turkey
| | - Veli C Ozalp
- Kit-Argem, Konya Food and Agriculture University, 42080, Konya, Turkey.
| |
Collapse
|
37
|
The effect of salts in aqueous media on the formation of the BSA corona on SiO2 nanoparticles. Colloids Surf B Biointerfaces 2019; 179:374-381. [DOI: 10.1016/j.colsurfb.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
38
|
Shams A, Rahimian Zarif B. Designing an immunosensor for detection of Brucella abortus based on coloured silica nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2562-2568. [PMID: 31213114 DOI: 10.1080/21691401.2019.1626403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brucellosis has always been a threat to the health and economics of societies. We report a new colorimetric immunoassay based on colored silica nanoparticles for detection of Brucella abortus. An immunosensor was designed based on blue-SiNPs and paramagnetic nanoparticles (PMNPs). The synthesized immunosensor was conjugated with a polyclonal antibody against B. abortus, which was activated by 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form detection and capture probes, respectively. After adding the conjugates to the bacterial suspension, sandwich structure of PMNPs B. abortus-blue-SiNPs was formed and then separated by a magnet. The blue dye was released from the silica structure and its absorbance was measured at 670 nm with a spectrophotometer. Under optimal conditions, results showed a wide dynamic range from 1.5 × 103 to 1.5 × 108 cfu mL-1 with a detection limit of 450 cfu mL-1. The specificity of the sensor was confirmed in comparison with 5 other bacteria. Also, during the 120-days period, the complex was stable. The results suggested that it can be used in real samples (R2 = .9865). This designed colorimetric immunoassay strategy can be used as an alternative, user-friendly and on-site tool for the rapid detection of Brucella spp. compared to other common methods with high sensitivity and specificity in a short time.
Collapse
Affiliation(s)
- Arash Shams
- a Department of Biology, Sanandaj Branch, Islamic Azad University , Sanandaj , Iran
| | | |
Collapse
|
39
|
Ribes À, Aznar E, Santiago-Felipe S, Xifre-Perez E, Tormo-Mas MÁ, Pemán J, Marsal LF, Martínez-Máñez R. Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sens 2019; 4:1291-1298. [PMID: 31020831 DOI: 10.1021/acssensors.9b00169] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A robust, sensitive, and time-competitive system to detect Candida albicans in less than 30 min in clinical samples based in capped nanoporous anodic alumina (NAA) is developed. In the proposed design, NAA pores are loaded with rhodamine B and then blocked with an oligonucleotide that is able to recognize C. albicans DNA. The capped material shows negligible cargo release, whereas dye delivery is selectively accomplished when genomic DNA from C. albicans is present. This procedure has been successfully applied to detect C. albicans in clinical samples from patients infected with this yeast. When compared with classical C. albicans detection methods, the proposed probe has a short assay time, high sensitivity and selectivity, demonstrating the high potential of this simple design for the diagnosis of infection produced by C. albicans.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Elisabet Xifre-Perez
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
| | - María Ángeles Tormo-Mas
- Grupo acreditado de investigación Infección Grave, IIS La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
| | - Javier Pemán
- Grupo acreditado de investigación Infección Grave, IIS La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
- Servicio de Microbiología, Hospital Politècnic i Universitari La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
| | - Lluis F. Marsal
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
40
|
Wang S, Zheng L, Cai G, Liu N, Liao M, Li Y, Zhang X, Lin J. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosens Bioelectron 2019; 140:111333. [PMID: 31153017 DOI: 10.1016/j.bios.2019.111333] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/18/2022]
Abstract
Early screening of foodborne pathogens is a key to ensure food safety. In this study, we developed a microfluidic biosensor for online and sensitive detection of Salmonella based on immunomagnetic separation, fluorescence labeling and smartphone video processing. First, the immune magnetic nanoparticles were used to specifically separate and efficiently concentrate the target bacteria and the magnetic bacteria were formed. Then, the magnetic bacteria were labeled with the immune fluorescent microspheres and the fluorescent bacteria were formed. Finally, the fluorescent bacteria were continuously injected into the microfluidic chip on the smartphone-based fluorescent microscopic system, and the fluorescent spots were online counted using the smartphone App based on inter-frame difference algorithm to obtain the amount of the target bacteria. Under the optimal conditions, this proposed biosensor was able to quantitatively detect Salmonella typhimurium ranging from 1.4 × 102 to 1.4 × 106 CFU/mL, and its lower detection limit was 58 CFU/mL. This biosensor could be extended for detection of multiple foodborne pathogens using different fluorescent materials.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lingyan Zheng
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Ning Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xibin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
41
|
Bayramoglu G, Ozalp C, Oztekin M, Guler U, Salih B, Arica MY. Design of an aptamer-based magnetic adsorbent and biosensor systems for selective and sensitive separation and detection of thrombin. Talanta 2018; 191:59-66. [PMID: 30262099 DOI: 10.1016/j.talanta.2018.08.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/18/2023]
Abstract
An aptasensor was designed for sensitive detection of thrombin using in biological fluids by integrating a magnetic aptamer-microbeads. To achieve this goal, the surface of gold plated QCM crystals was coated with L-cysteine and a thrombin binding DNA aptamer was immobilized on the L-cysteine coated QCM crystals surface via glutaraldehyde coupling. The binding interactions of thrombin to QCM crystals were characterized. Magnetic poly(2-hydroxyethyl methacrylate-ethylene glycol dimethacrylate-vinylene carbonate), Mp(HEMA-EGDMA-VC) microbeads were synthesized and thrombin binding aptamer (TBA) was immobilized. The Mp(HEMA-EGDMA-VC)-TBA microbeads were effectively adsorbed thrombin from serum in a relatively short contact time (ca. 5.0 min), and the eluted protein from Mp(HEMA-EGDMA-VC)-TBA was transferred to the QCM aptasensor that showed a specific detection of thrombin from serum. The detection limit of thrombin using aptasensor was 1.00 nmol L-1. The calculation dissociation constant of the aptasensor was 68.5 nmol L-1. The selectivity of the aptasensor system was tested with three different proteins (i.e., elastin, immunoglobulin G (IgG) and human serum albumin (HSA)) and showed high specificity to thrombin. The aptasensor was regenerated by washing with NaOH solution, and repeatedly used until 20 cycles without a change in the performance.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Cengiz Ozalp
- Department of Bioengineering, Konya Food & Agriculture University, 42080 Konya, Turkey; Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Merve Oztekin
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Ulku Guler
- Hacettepe University, Department of Chemistry, 06800 Beytepe, Ankara, Turkey
| | - Bekir Salih
- Hacettepe University, Department of Chemistry, 06800 Beytepe, Ankara, Turkey
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|