1
|
Sharma R, Modi U, Kumar R, Sharma C, Srivastav AK, Bhatia D, Solanki R. Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy. BIOMATERIALS ADVANCES 2025; 171:214235. [PMID: 39978287 DOI: 10.1016/j.bioadv.2025.214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Cancer remains a significant global health challenge, driving the development of advanced platforms for highly targeted and efficient drug delivery. Early-stage nanocarriers, such as synthetic polymeric and inorganic materials, face limitations in biocompatibility and biodegradability. In contrast, bioinspired nanocarriers derived from natural biomacromolecules mimic biological processes and present a promising alternative due to their biocompatibility, biodegradability and non-toxicity. The effectiveness of these drug delivery systems is influenced by factors such as size, shape, surface properties, morphology, functionalization, and preparation methods. Various biomacromolecule-inspired nanocarriers such as protein-based, lipid-based, carbohydrate-based and nucleic acid-based are now at the forefront of research. This review highlights the properties, advantages and limitations of different bioinspired materials. We also explore cutting-edge approaches for cancer therapy using these nanocarriers with recent in-vitro, in-vivo and patent evidence. Finally, we address the challenges and potential solutions associated with bioinspired nanocarriers, proposing future directions. Overall, this review explores nature-inspired drug delivery systems that have paved the way for advancements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rahul Kumar
- Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chirag Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Aglyamov SR, Larin KV. Optical coherence tomography for noninvasive monitoring of drug delivery. Adv Drug Deliv Rev 2025; 220:115571. [PMID: 40139506 DOI: 10.1016/j.addr.2025.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Optical Coherence Tomography (OCT) has revolutionized various medical imaging and diagnostics fields, offering unprecedented insights into the microstructural compositions of biological tissues. In recent years, OCT applications have been extended to noninvasive drug delivery monitoring, which is a critical aspect of many therapeutic procedures and pharmacokinetic studies. Such an extension is strongly enhanced by the inherent combination with 3D anatomical images provided by OCT. This review presents an overview of the principles of OCT technology, its functional extensions for drug delivery systems, and its advancements in monitoring therapeutic interventions. We discuss its advantages over traditional imaging modalities in terms of spatial resolution, depth penetration, and real-time capabilities. The paper highlights significant studies that have utilized OCT for the visualization and quantification of drug delivery processes, including the diffusion of injectable formulations in ocular tissues and the permeation of topical drugs through the skin. In the review, we focused on the latest OCT applications, including OCT-guided drug injection, topical drug delivery monitoring, application of OCT in inhaled drug delivery systems, and the integration of OCT with other imaging modalities.
Collapse
|
3
|
Guo X, Wu X, Sun Z, Li D, Jia H, Zhang K, Zhao Y, Zheng H. Preparation, characterization, and binding mechanism of pH-driven gliadin/soy protein isolate nanoparticles. Food Res Int 2025; 208:116289. [PMID: 40263867 DOI: 10.1016/j.foodres.2025.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Protein nanoparticles have attracted significant attention due to their low cost and high bioavailability; however, their poor stability limits their functional applications. To address this challenge, hydrophobic gliadin (G) and hydrophilic soy protein isolate (SPI) were co-assembled using the pH-driven method to evaluate the impact of different G/SPI ratios on their structural and functional properties. The results revealed that at G/SPI ratios between 1:1 and 1:8, the nanoparticles exhibited smaller particle sizes and higher zeta potentials. Spectroscopic analysis showed that protein interactions, primarily hydrogen bonding, hydrophobic interactions, and electrostatic interaction, led to a more compact spatial structure. Functional analysis identified a 1:3 ratio as optimal, offering excellent emulsifying properties (EAI: 28.95 m2/g; ESI: 90.53%) and superior foaming properties (FC: 837.46 %; FS: 87.62 %). Additionally, this ratio significantly enhanced solubility by 75.6 % and improved physical stability compared to gliadin nanoparticles (GNPs). Mechanistic analysis revealed that the assembly of G/SPI nanoparticles was primarily driven by hydrogen bonding, hydrophobic interactions, and electrostatic interactions, with hydrophobic interactions playing a dominant role. Notably, a key turning point in protein folding was identified as the pH shifted from 10 to 9. Molecular docking further pinpointed the binding site, elucidating the assembly process at the molecular level. These findings establish a solid foundation for the development of dual-protein nanoparticles with tailored properties, opening new possibilities for their application in bioactive compound delivery.
Collapse
Affiliation(s)
- Xiaohang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Jia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaili Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanjie Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
4
|
Feng N, Cao X, Xiao J, Huang Q, Li Q, Wang C, Zhou B, Shi L, Zhang Z, Liu Y. Guanidinium/Phenyl-Rich Amphiphilic Cationic Polymer for Efficient Cytosolic Protein Delivery and Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23763-23773. [PMID: 40207524 DOI: 10.1021/acsami.5c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Protein drugs have garnered increasing attention in biomedical applications due to their high specificity for target receptors and minimal side effects. However, the macromolecular and hydrophilic nature of proteins severely hinders their ability to penetrate cell membranes, restricting their intracellular applications. Herein, we present an innovative amphiphilic cationic polymer, p(PG420-co-HP15), capable of forming stable nanoparticles with diverse proteins and facilitating efficient cytosolic delivery. By incorporating guanidinium and phenyl ligands, p(PG420-co-HP15) effectively complexes with various proteins via hydrogen bonding, salt bridges, and hydrophobic and π-π interactions. Meanwhile, the phenyl ligands further enhance cellular uptake and promote endosomal escape by inducing membrane perturbations, likely through disruption of phospholipid packing and increased membrane fluidity. Consequently, p(PG420-co-HP15) enables efficient cytosolic delivery of 6 proteins, each with unique molecular weights, isoelectric points, and biological functions across different cell lines, surpassing the commercial reagent PULSin in delivery efficiency. Furthermore, p(PG420-co-HP15) effectively constructed nanovaccines with ovalbumin (OVA), significantly boosting T cell-mediated antitumor immunity in a B16-OVA melanoma mouse model. These findings emphasize the potential of p(PG420-co-HP15) as a versatile and efficient cytosolic protein delivery platform with broad applications in disease treatment, vaccine development, and biological research.
Collapse
Affiliation(s)
- Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jian Xiao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qiushi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chun Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Biyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zhanzhan Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Adhikari A, Chen IA. Antibody-Nanoparticle Conjugates in Therapy: Combining the Best of Two Worlds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409635. [PMID: 40051146 PMCID: PMC12001320 DOI: 10.1002/smll.202409635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Indexed: 04/17/2025]
Abstract
Monoclonal antibodies (mAbs) and antibody fragments have revolutionized medicine as highly specific binding agents and inhibitors. At the same time, several types of nanomaterials, including liposomes, lipid nanoparticles (NPs), polymersomes, metal and metal oxide NPs, and protein nanostructures, are increasingly utilized and explored for therapeutic potential due to their versatility, chemical and physical properties, and tunability. However, nanomaterials alone often lack specificity, leading to relatively low efficacy and/or high toxicity. To address this problem, a rapidly emerging area is antibody-nanomaterial conjugates (ANCs), which combine the precise targeting specificity of antibodies with the effector functionality of the nanomaterial. In this review, we give a brief introduction to mAbs and major conjugation techniques, describe major classes of nanomaterials being studied for therapeutic potential, and review the literature on ANCs of each class. Special focus is given to emerging applications including ANCs addressing the blood-brain barrier, ANCs delivering nucleic acids, and light-activated ANCs. While many disease targets are related to cancer, ANCs are also under development to address autoimmune, neurological, and infectious diseases. While important challenges remain, ANCs are poised to become a next-generation therapeutic technology.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular EngineeringDepartment of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90049USA
| |
Collapse
|
7
|
Wu S, Liu Y, Song H, Jiang L, Yan S, Qi B. Formation of cross-linked lysinoalanine in soy protein isolate: Synergy between hot-alkali and pH-shift treatments. Int J Biol Macromol 2025; 308:142614. [PMID: 40157663 DOI: 10.1016/j.ijbiomac.2025.142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Combining hot-alkali and pH-shift (HS) treatments is a convenient and economical way of modifying proteins. However, the cross-linked lysinoalanine (LAL) formed during this process affects edible-protein safety. This study investigated the conformational changes experienced by soybean protein isolate (SPI) during HS treatment and the mechanism associated with LAL cross-linking. Heating at 75 °C for 1 h at pH 12.0 was shown to result in the highest amount of LAL cross-linking. Reactive-group and spectral data revealed that HS treatment led to breakage of the internal disulfide bonds in SPI, as well as subunit depolymerization and collapse, with the highly disordered and flexible conformation of SPI eventually providing a favorable spatial effect for LAL cross-linking. Gel electrophoresis, particle size and ζ-potential analyses, SEM, and AFM revealed that thermal aggregation not only protects the SPI conformation against damage caused by extreme alkalinity, but also accelerates the rate of LAL cross-linking. In addition, the various SPI structures and the formation of cross-linked LAL were found to be strongly correlated (|r| > 0.7). This study clarified the synergistic mechanism associated with heat-alkali and pH-shift treatments that promote SPI conformational modifications and LAL cross-linking, and provides a theoretical basis for controlling the formation of LAL and improving the edible safety of SPI.
Collapse
Affiliation(s)
- Siyu Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuwen Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
9
|
Ming P, Li B, Li Q, Yuan L, Jiang X, Liu Y, Cai R, Zhou P, Lan X, Tao G, Xiao J. Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis. Biomaterials 2025; 314:122885. [PMID: 39423514 DOI: 10.1016/j.biomaterials.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Periodontitis is a chronic inflammation caused by dental plaque. It is characterized by the accumulation of excessive reactive oxygen species (ROS) and inflammatory mediators in the periodontal area. This affects the function of host cells, activates osteoclasts, and destroys periodontal tissue. Treatments such as local debridement or antibiotic therapy for ameliorating the overactive inflammatory microenvironment and repairing periodontal tissues are challenging. This paper reports multifunctional nanoplatforms (Se-CuSrHA@EGCG) based on sericin with ROS-scavenging, immunomodulatory, angiogenic, and osteogenic capabilities. The natural protein sericin, derived from silk cocoons, is used in water/oil emulsification and cross-linking processes to create sericin nanoparticles (Se NPs). Numerous binding sites are present on the surface of Se NPs. Ion-doped hydroxyapatite nanoparticles (Se-CuSrHA NPs) can be constructed using the force between positive and negative charges. After mineralization, an antioxidant coating is formed on the surface using polyethyleneimine (PEI)/epigallocatechin gallate (EGCG). Research conducted both in vitro and in vivo demonstrates that Se-CuSrHA@EGCG NPs can efficiently scavenge ROS, regulate macrophage polarization, increase the secretion of anti-inflammatory cytokines, and balance the immune microenvironment. In addition, Se-CuSrHA@EGCG stimulates angiogenesis, inhibits osteoclasts, and accelerates periodontal tissue repair. Therefore, this is a preferable strategy to accelerate bone regeneration in patients with periodontitis.
Collapse
Affiliation(s)
- Piaoye Ming
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Bojiang Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Qiumei Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yunfei Liu
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Peirong Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
10
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
11
|
Milyaeva OY, Miller R, Loglio G, Rafikova AR, Wan Z, Noskov BA. Impact of Surfactants on Silk Fibroin Self-Assembly at the Air-Water Interface. Polymers (Basel) 2025; 17:529. [PMID: 40006191 PMCID: PMC11859548 DOI: 10.3390/polym17040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Silk fibroin (SF)-based materials attract significant interest because of their biocompability and great diversity of possible morphologies. One of the approaches to obtain SF materials is the use of an air-water or oil-water interface as a template for protein self-assembly. Surfactants can change the surface properties of adsorbed SF layers by promoting or preventing the formation of SF fiber networks. This study focuses on the influence of two typical ionic surfactants, cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS), on the dynamic properties of SF layers adsorbed at the air-water interface. The dynamic surface elasticity, surface tension, ellipsometric angle Δ, and the film thickness were measured as a function of the surface age and surfactant concentration. The morphology of the layers was evaluated by atomic force microscopy (AFM). For the adsorption layers of globular proteins, the main effect of the surfactants consists in the protein unfolding at high concentrations and in a decrease in the electrostatic adsorption barrier. In the case of SF layers, CTAB and SDS strongly influence the protein aggregation at the air-water interface. Regardless of the sign of the surfactant charge, its addition to SF solutions results in a decrease in the surface elasticity and the destruction of the ordered structure of protein fibers at concentrations higher than 1 × 10-4 M. With the further increase in the surfactant concentration, the thread-like aggregates disappear, the packing of thin fibers becomes less tight, a uniform layer disintegrates into separate islands, and finally, the protein is displaced from the interface.
Collapse
Affiliation(s)
- O. Yu. Milyaeva
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia; (A.R.R.); (B.A.N.)
| | - R. Miller
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, D-64289 Darmstadt, Germany;
| | - G. Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy, 16149 Genoa, Italy;
| | - A. R. Rafikova
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia; (A.R.R.); (B.A.N.)
| | - Z. Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - B. A. Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia; (A.R.R.); (B.A.N.)
| |
Collapse
|
12
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Yamaguchi J, Nishida K, Kobatake E, Mie M. Functional decoration of elastin-like polypeptides-based nanoparticles with a modular assembly via isopeptide bond formation. Biotechnol Lett 2024; 47:6. [PMID: 39609315 DOI: 10.1007/s10529-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
Temperature-responsive elastin-like polypeptides (ELPs) exhibit a low critical solution temperature-type phase transition and offer potential as useful materials for the construction of nanoparticles. Herein, we developed a novel decoration method for ELP-based nanoparticles via isopeptide bond formation with the SnoopTag/SnoopCatcher system that is not affected by the heating process required for particle formation. A mixture of a fusion protein of ELP and poly(aspartic acid) (poly(D)), known as ELP-poly(D), and ELP-poly(D) fused with SnoopCatcher (ELP-poly(D)-SnC) formed protein nanoparticles as a result of the temperature responsiveness of ELP, with the resultant nanoparticles displaying the SnoopCatcher binding domain on their surfaces. In the present study, two model proteins fused to SnoopTag were displayed on the surfaces of protein nanoparticles constructed from ELP-poly(D)-SnC and ELP-poly(D). The model proteins are enhanced green fluorescent protein (EGFP) and Renilla luciferace (Rluc), which exhibits luminescent capability and weak thermostability, respectively. EGFP on the particle surface was found to retain 48.7% activity, while Rluc exhibited almost full activity, as calculated from the binding efficiency and nanoparticle activities recovered after purification. ELP-based nanoparticles containing the SnoopTag/SnoopCatcher system offer the opportunity for particle decoration with a wide range of functional proteins via isopeptide bond formation.
Collapse
Affiliation(s)
- Jun Yamaguchi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
14
|
Berardi AJ, Francisco SD, Chang A, Zelaya JC, Raymond JE, Lahann J. Synthetic Protein Nanoparticles via Photoreactive Electrohydrodynamic Jetting. Macromol Rapid Commun 2024; 45:e2400349. [PMID: 39171381 DOI: 10.1002/marc.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Indexed: 08/23/2024]
Abstract
Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced. The process relies on continuous ultraviolet irradiation during electrohydrodynamic (EHD) jetting of protein solutions that contain a homobifunctional photocrosslinker. Protein nanoparticles exhibit nanogel-like architectures comprised of proteins that are linked via synthetic moieties. Compared to conventional protein nanoparticles, this method reduces nanoparticle processing times to minutes, rather than hours to days. The inclusion of an emissive structural motif as the molecular scaffold of the photocrosslinker is used to study the supramolecular architecture of the stable nanoparticles via time-resolved fluorescence spectroscopy.
Collapse
Affiliation(s)
- Anthony J Berardi
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
| | - Sonja D Francisco
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Chemistry, Ann Arbor, 48109, USA
| | - Albert Chang
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Materials Science and Engineering, Ann Arbor, 48109, USA
| | - Julio C Zelaya
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Chemical Engineering, Ann Arbor, 48109, USA
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, Ann Arbor, 48109, USA
- Biointerfaces Institute, Ann Arbor, 48109, USA
- Department of Materials Science and Engineering, Ann Arbor, 48109, USA
- Department of Chemical Engineering, Ann Arbor, 48109, USA
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Yang L, Dong H, Wang J, Dadmohammadi Y, Zhou Y, Lin T, Khongkomolsakul W, Meletharayil G, Kapoor R, Abbaspourrad A. Fabrication and characterization of whey protein isolate-tryptophan nanoparticles by pH-shifting combined with heat treatment. Food Res Int 2024; 196:115031. [PMID: 39614541 DOI: 10.1016/j.foodres.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
L-Tryptophan (Trp) is an essential amino acid with numerous health benefits. However, incorporating Trp into food products is limited due to its pronounced bitter taste. Encapsulating Trp in nanoparticles by using other natural biopolymers is a potential strategy to mask the bitter taste of Trp in the final products. Whey protein isolate (WPI), composed of alpha-lactalbumin (α-LA), bovine serum albumin (BSA), and beta-lactoglobulin (β-LG), has played a crucial role in delivering bioactive compounds. In order to incorporate Trp within WPI, the present study used a combination of pH-shifting andthermal treatment to fabricatewhey protein isolate-tryptophan nanoparticles (WPI-Trp-NPs). During the pH-shifting technique, WPI unfolds at high pH, such as pH 11, and the dissociated WPI molecules are refolded when pH is shifted back to neutral, creating particles with uniform dispersion and encapsulating smaller particles surrounding them in solution. Further, the well-distributed nanoparticles formed by pH-shifting might encourage the formation of more uniform nanoparticles during subsequent thermal treatment. TheWPI-Trp particles have an average particle size of 110.1 nm and a low average PDI of 0.20. Fluorescence spectroscopy confirmed the encapsulation of Trp by WPI, which shows higher fluorescence when the Trp is encapsulated by the WPI. Surface hydrophobicity, circular dichroism, particle size, free sulfhydryl, and antioxidant activity were used to characterize the WPI-Trp-NPs. WPI-Trp-NPs formed by pH-shifting combined with heating showed a higher surface hydrophobicity and free sulfhydryl content than the untreated WPI-Trp mixture. The conversion of α-helix into random coil in the WPI secondary structure indicated a more disordered structure of the modified whey protein. Molecular docking results indicate the interactions between Trp and WPI, including alpha-lactalbumin (α-LA), bovine serum albumin, and beta-lactoglobulin (β-LG), were mainly driven by hydrophobic interactions and hydrogen bonding. The binding affinity between Trp and these proteins was ranked as α-LA>BSA>β-LG. The combination of pH-shifting and heating improved the functionalityof WPI and was an effective way to fabricate WPI-Trp nanoparticles.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Hongmin Dong
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Junyi Wang
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yufeng Zhou
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Tiantian Lin
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
17
|
Osmanagaoglu FH, Ekmekcioglu A, Ozcan B, Bayram Akcapinar G, Muftuoglu M. Preparation and Characterization of Hydrophobin 4-Coated Liposomes for Doxorubicin Delivery to Cancer Cells. Pharmaceuticals (Basel) 2024; 17:1422. [PMID: 39598333 PMCID: PMC11597365 DOI: 10.3390/ph17111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The properties of nanoparticle surfaces are crucial in influencing their interaction with biological environments, as well as their stability, biocompatibility, targeting abilities, and cellular uptake. Hydrophobin 4 (HFB4) is a class II HFB protein produced by filamentous fungi that has a natural ability to self-assemble at hydrophobic-hydrophilic interfaces. The biocompatible, non-toxic, biodegradable, and amphipathic properties of HFB4 render it valuable for improving the solubility and bioavailability of hydrophobic drugs. We have investigated the physicochemical properties, cellular uptake, and anticancer effects of empty and Doxorubicin (Dox)-loaded HFB4 liposomes (HFB4L) and compared them to those of PEGylated liposomes (PPL). Methods: The Pichia pastoris KM71H strain was used for HFB4 purification. Liposomes were prepared through the thin film hydration method and characterized. The cytotoxic effects of free Dox, Dox-HFB4, and Dox-PPL were assessed in MCF7 cells using the SRB Assay. Results: All formulations showed good size homogeneity and a spherical shape. The HFB4 coating enhanced the physicochemical stability of Dox-HFB4L over 60 days at 4 °C without significantly affecting Dox release from HFB4L. It increased Dox release at pH 5.4 compared to pH 7.4, indicating higher delivery of drugs into acidic tumor environments, similar to Dox-PPL. While both formulations showed increased cellular uptake compared to free Dox, they exhibited a lower anticancer effect due to the sustained release of Dox. Notably, Dox-HFB4L displayed greater cytotoxicity than Dox-PPL in MCF7 cells. Conclusions: HFB4L may offer superior benefits in terms of delivering drugs to an acidic tumor environment in a stable, non-toxic, and sustained manner.
Collapse
Affiliation(s)
- Fatma Hande Osmanagaoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Aysegul Ekmekcioglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Busel Ozcan
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Gunseli Bayram Akcapinar
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
| | - Meltem Muftuoglu
- Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey; (F.H.O.); (A.E.); (G.B.A.)
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
18
|
Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS OMEGA 2024; 9:42613-42629. [PMID: 39464472 PMCID: PMC11500139 DOI: 10.1021/acsomega.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features. The advent of protein nanoarchitectures, which explore the biomolecular corona, offers new insights into their efficient tissue penetration and therapeutic potential. This review examines various animal- and plant-based protein nanoparticles, highlighting their source, activity, products, and unique biomedical applications in regenerative medicine, targeted therapies, gene and drug delivery, antimicrobial activity, bioimaging, immunological adjuvants, etc. It provides an extensive discussion on recent applications of protein nanoparticles across diverse biomedical fields as well as the evolving landscape of other nanoproducts and nanodevices for sensitive medical procedures. Furthermore, this review introduces different preparation technologies of protein nanoparticles, emphasizing how their design and construction significantly influence loading capacity, stability, and targeting effects. Additionally, we delve into the construction of different user-friendly multifunctional modular bioarchitectures by the assembly of protein nanoparticles (PNPs), marking a significant breakthrough in therapies. This review also considers the challenges of synthetic nanomaterials and the emergence of natural alternatives, which provides insights into protein nanoparticle research.
Collapse
Affiliation(s)
- Anju Muraleedharan
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Sarbari Acharya
- Department
of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India, 751024
| | - Ravindra Kumar
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| |
Collapse
|
19
|
Wang AL, Mishkit O, Mao H, Arivazhagan L, Dong T, Lee F, Bhattacharya A, Renfrew PD, Schmidt AM, Wadghiri YZ, Fisher EA, Montclare JK. Collagen-targeted protein nanomicelles for the imaging of non-alcoholic steatohepatitis. Acta Biomater 2024; 187:291-303. [PMID: 39236796 DOI: 10.1016/j.actbio.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity. For ex vivo visualization, Col1-TRAP is labeled with a near-infrared fluorescent dye (NIR-Col1-TRAP). Both Col1-TRAP and NIR-Col1-TRAP display approximately a 3.8-fold greater binding to type I collagen compared to TRAP when measured by surface plasmon resonance (SPR). We present a proof-of-concept study using NIR-Col1-TRAP to detect fibrotic type I collagen deposition ex vivo in the livers of mice with non-alcoholic steatohepatitis (NASH). We show that NIR-Col1-TRAP demonstrates significantly decreased plasma recirculation time as well as increased liver accumulation in the NASH mice compared to mice without disease over 4 hours. As a result, NIR-Col1-TRAP shows potential as an imaging probe for NASH with in vivo targeting performance after injection in mice. STATEMENT OF SIGNIFICANCE: Direct molecular imaging of fibrosis in NASH patients enables the diagnosis and monitoring of disease progression with greater specificity and resolution than do elastography-based methods or blood tests. In addition, protein-based imaging probes are more advantageous than alternatives due to their biodegradability and scalable biosynthesis. With the aid of computational modeling, we have designed a self-assembled protein micelle that binds to fibrillar and monomeric collagen in vitro. After the protein was labeled with near-infrared fluorescent dye, we injected the compound into mice fed on a NASH diet. NIR-Col1-TRAP clears from the serum faster in these mice compared to control mice, and accumulates significantly more in fibrotic livers.This work advances the development of targeted protein probes for in vivo fibrosis imaging.
Collapse
Affiliation(s)
- Andrew L Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Tony Dong
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Frances Lee
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Ann Marie Schmidt
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology and Cardiovascular Research Center, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
20
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
21
|
Newaj SM, Kashem TB, Ferdous J, Jahan I, Rawshan H, Prionty NJ, Rakib R, Sadman MA, Faruk FB, Reza HM, Sharker SM. Skin Cancer Treatment with Subcutaneous Delivery of Doxorubicin-Loaded Gelatin Nanoparticles and NIR Activation. ACS APPLIED BIO MATERIALS 2024; 7:6313-6324. [PMID: 39172138 DOI: 10.1021/acsabm.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Subcutaneous (SC) administration of chemotherapeutics combined with near-infrared (NIR) light activation can effectively target skin tumors by triggering localized drug release and enhancing cytotoxic effects. In this study, we developed NIR-responsive indocyanine green (ICG) and the chemotherapeutic agent doxorubicin (Dox) loaded into gelatin nanoparticles (NPs) for SC delivery in a skin tumor-bearing mouse model. Histological examination (hematoxylin and eosin staining) confirmed the successful delivery and swelling behavior of the Dox/ICG-loaded gelatin NPs at the SC site. In vitro and in vivo experiments demonstrated that NIR activation of the Dox/ICG-loaded gelatin NPs generated significant photothermal heat (48 and 46 °C), leading to targeted drug release and a substantial reduction in skin tumor size (from 15 to 3 mm3). Our findings suggest that this dual-modality approach of SC chemotherapeutic administration and NIR-triggered photothermal therapy can concentrate cytotoxic drugs at the tumor site, offering a promising strategy for improving skin cancer treatment.
Collapse
Affiliation(s)
- Shekh Md Newaj
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tabassum Binte Kashem
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Israt Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Habiba Rawshan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nusrat Jahan Prionty
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rashedujjaman Rakib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Annur Sadman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Forhad Bin Faruk
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
22
|
Shchegravina ES, Tretiakova DS, Sitdikova AR, Usova SD, Boldyrev IA, Alekseeva AS, Svirshchevskaya EV, Vodovozova EL, Fedorov AY. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. J Liposome Res 2024; 34:399-410. [PMID: 37867342 DOI: 10.1080/08982104.2023.2274428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.
Collapse
Affiliation(s)
- Ekaterina S Shchegravina
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Alsu R Sitdikova
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| | - Sofia D Usova
- N.D. Zelinsky Insitute of Organic Chemistry RAS, Moscow, Russian Federation
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | | | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Alexey Yu Fedorov
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
23
|
Wang Y, Li Y, Lu Y, Li J. Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. CHEM REC 2024; 24:e202400087. [PMID: 39148157 DOI: 10.1002/tcr.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Indexed: 08/17/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Collapse
Affiliation(s)
- Yan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| |
Collapse
|
24
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Xue M, Deng A, Wang JN, Mi X, Lao Z, Yang Y. A Zanamivir-protein conjugate mimicking mucin for trapping influenza virion particles and inhibiting neuraminidase activity. Int J Biol Macromol 2024; 275:133564. [PMID: 38955298 DOI: 10.1016/j.ijbiomac.2024.133564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ang Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
26
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
27
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
28
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
29
|
Okpoghono J, Isoje EF, Igbuku UA, Ekayoda O, Omoike GO, Adonor TO, Igue UB, Okom SU, Ovowa FO, Stephen-Onojedje QO, Ejueyitsi EO, Seigha AA. Natural polyphenols: A protective approach to reduce colorectal cancer. Heliyon 2024; 10:e32390. [PMID: 38961927 PMCID: PMC11219337 DOI: 10.1016/j.heliyon.2024.e32390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background A form of cancer that affects the rectum or colon (large intestine) is called colorectal cancer (CRC). The main risk factors for CRC include dietary, lifestyle, and environmental variables. Currently natural polyphenols have demonstrated impressive anticarcinogenic capabilities. Objective The main objective was to provide an updated, thorough assessment of the defensive mechanism of natural polyphenols for the global suppression of colorectal cancer. More precisely, this study aimed to analyze a set of chosen polyphenols with demonstrated safety, effectiveness, and biochemical defense mechanism on colon cancer models in order to facilitate future research. Methods This review was carried out with purposefully attentive and often updated scientific databases, including PubMed, Scopus, Science Direct, and Web of Science. After selecting approximately 178 potentially relevant papers based just on abstracts, 145 studies were meticulously reviewed and discussed. Results The outcomes disclosed that anti-CRC mechanisms of natural polyphenols involved the control of several molecular and signaling pathways. Natural polyphenols have also been shown to have the ability to limit the growth and genesis of tumors via altering the gut microbiota and cancer stem cells. However, the biochemical uses of many natural polyphenols have remained restricted because of their truncated water solubility and low bioavailability. In order to attain synergistic properties it is recommended to combine the use of different natural polyphenols because of their low bioavailability and volatility. However, the use of lipid-based nano- and micro-carriers also may be helpful to solve these problems with efficient distribution system to target sites. Conclusion In conclusion, the use of polyphenols for CRC treatment appears promising. To ascertain their efficacy, more clinical research is anticipated.
Collapse
Affiliation(s)
- Joel Okpoghono
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance F. Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma A. Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ovigueroye Ekayoda
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Godson O. Omoike
- Department of Public Health, School of Health and Society, University of Wolverhampton, United Kingdom
| | - Treasure O. Adonor
- Department of Biotechnology, Faculty of Life Science, University of Essex, United Kingdom
| | - Udoka B. Igue
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| | - Solomon U. Okom
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Faith O. Ovowa
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Queen O. Stephen-Onojedje
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Ejiro O. Ejueyitsi
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Anita A. Seigha
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| |
Collapse
|
30
|
Sun J, Dai L, Lv K, Wen Z, Li Y, Yang D, Yan H, Liu X, Liu C, Li MC. Recent advances in nanomaterial-stabilized pickering foam: Mechanism, classification, properties, and applications. Adv Colloid Interface Sci 2024; 328:103177. [PMID: 38759448 DOI: 10.1016/j.cis.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Dongqing Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hao Yan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
31
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
32
|
Zhang H, He Y, Zhang Y, Pan J, Guo T, Huang H, Dai M, Shang J, Gong G, Guo J. Direct Assembly of Bioactive Nanoparticles Constructed from Polyphenol-Nanoengineered Albumin. Biomacromolecules 2024; 25:2852-2862. [PMID: 38574372 DOI: 10.1021/acs.biomac.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.
Collapse
Affiliation(s)
- Haojie Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yajing Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiezhou Pan
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tingxu Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huijun Huang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mengyuan Dai
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaojiao Shang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
33
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
34
|
Fang C, Kanemaru K, Carvalho WSP, Fruehauf KR, Zhang S, Das PP, Xu C, Lu Y, Rajagopalan N, Kulka M, Makeiff DA, Serpe MJ. Self-assembled poloxamer-legumin/vicilin nanoparticles for the nanoencapsulation and controlled release of folic acid. Int J Biol Macromol 2024; 268:131646. [PMID: 38636765 DOI: 10.1016/j.ijbiomac.2024.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Plant-based food proteins are a promising choice for the preparation of nanoparticles (NPs) due to their high digestibility, low cost, and ability to interact with various compounds and nutrients. Moreover, nanoencapsulation offers a potential solution for protecting nutrients during processing and enhancing their bioavailability. This study aimed to develop and evaluate nanoparticles (NPs) based on legumin/vicilin (LV) proteins extracted from fava beans, with the goal of encapsulating and delivering a model nutraceutical compound, folic acid (FA). Specifically, NPs were self-assembled from LV proteins extracted from commercially available frozen fava beans using a pH-coacervation method with poloxamer 188 (P188) and chemically cross-linked with glutaraldehyde. Microscopy and spectroscopy studies were carried out on the empty and FA-loaded NPs in order to evaluate the particle morphology, size, size distribution, composition, mechanism of formation, impact of FA loading and release behavior. In vitro studies with Caco-2 cells also confirmed that the empty and FA-loaded nanoparticles were non-toxic. Thus, the LV-NPs are good candidates as food additives for the delivery and stabilization of nutrients as well as in drug delivery for the controlled release of therapeutics.
Collapse
Affiliation(s)
- Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Krista R Fruehauf
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Sunshine Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Prem P Das
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Caishuang Xu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Yuping Lu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada
| | - Nandhakishore Rajagopalan
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Pl, Saskatoon, SK S7N 0W9, Canada; Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Marianna Kulka
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Darren A Makeiff
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada.
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
35
|
Liu Y, Yu S, Chen Y, Hu Z, Fan L, Liang G. The clinical regimens and cell membrane camouflaged nanodrug delivery systems in hematologic malignancies treatment. Front Pharmacol 2024; 15:1376955. [PMID: 38689664 PMCID: PMC11059051 DOI: 10.3389/fphar.2024.1376955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Hematologic malignancies (HMs), also referred to as hematological or blood cancers, pose significant threats to patients as they impact the blood, bone marrow, and lymphatic system. Despite significant clinical strategies using chemotherapy, radiotherapy, stem cell transplantation, targeted molecular therapy, or immunotherapy, the five-year overall survival of patients with HMs is still low. Fortunately, recent studies demonstrate that the nanodrug delivery system holds the potential to address these challenges and foster effective anti-HMs with precise treatment. In particular, cell membrane camouflaged nanodrug offers enhanced drug targeting, reduced toxicity and side effects, and/or improved immune response to HMs. This review firstly introduces the merits and demerits of clinical strategies in HMs treatment, and then summarizes the types, advantages, and disadvantages of current nanocarriers helping drug delivery in HMs treatment. Furthermore, the types, functions, and mechanisms of cell membrane fragments that help nanodrugs specifically targeted to and accumulate in HM lesions are introduced in detail. Finally, suggestions are given about their clinical translation and future designs on the surface of nanodrugs with multiple functions to improve therapeutic efficiency for cancers.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shanwu Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yixiang Chen
- Luoyang Vocational and Technical College, Luoyang, Henan, China
| | - Zhihong Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
36
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
37
|
Xu H, Mao B, Ni S, Xie X, Tang S, Wang Y, Zan X, Zheng Q, Huang W. Engineering Matrix-Free Drug Protein Nanoparticles with Promising Penetration through Biobarriers for Treating Corneal Neovascularization. ACS NANO 2024; 18:8209-8228. [PMID: 38452114 DOI: 10.1021/acsnano.3c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.
Collapse
Affiliation(s)
- Hongyan Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Bangxun Mao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, People's Republic of China
| | - Shulan Ni
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xiaoling Xie
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Yang Wang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Qinxiang Zheng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo 315000, People's Republic of China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| |
Collapse
|
38
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
39
|
Dzuvor CKO, Shen HH, Haritos VS, He L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS NANO 2024; 18:4478-4494. [PMID: 38266175 DOI: 10.1021/acsnano.3c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Wang C, Xiang Y, Ma W, Guo C, Wu X. Therapeutic Potential Evaluation of Silk Sericin Stabilized Fisetin to Ulcerative Colitis. Macromol Biosci 2024; 24:e2300277. [PMID: 37658682 DOI: 10.1002/mabi.202300277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease with a high recurrence rate. Natural phytochemical compounds are increasingly being considered as preventative and supportive treatments for this condition. However, the poor water solubility and stability of many of these compounds limit their effectiveness in vivo. To address this issue, fisetin (FT), a natural phytochemical with poor solubility, is stabilized using silk sericin (SS) to create a composite (SS/FT). The therapeutic potential of the SS/FT on ulcerative colitis is extensively investigated, and the results showed that it effectively alleviated the body weight loss and colon length shortening induced by dextran sulfate sodium. Notably, SS/FT downregulated the immune response, decreased colonic histopathological lesions, and reduced the cGAS/STING signal activation. This suggests that SS/FT may offer a promising therapy for treating ulcerative colitis.
Collapse
Affiliation(s)
- Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Xiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenjie Ma
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
41
|
Tegopoulos SN, Papagiannopoulos A, Kyritsis A. Hydration effects on thermal transitions and molecular mobility in Xanthan gum polysaccharides. Phys Chem Chem Phys 2024; 26:3462-3473. [PMID: 38205826 DOI: 10.1039/d3cp04643e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this work, the xanthan gum (XG) polysaccharide is studied over a wide range of temperatures and water fractions 0 ≤ hw ≤ 0.70 (on a wet basis) by employing differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The investigation reveals that the critical water fraction for ice formation is about 0.35. Glass transition temperature (Tg) was determined through calorimetry experiments for all the samples studied. Water acts as a strong plasticizer, i.e., decreasing Tg, for water fractions up to about 0.35. A secondary (local) relaxation process is recorded in both dry and hydrated samples, which is sensitive to the presence of water molecules. This fact indicates that this process originates due to the orientation of small polar groups of the side chain, or/and due to the local main chain dynamics. Two types of long-range charge transport processes were resolved. The first is related to the conductive paths being formed via bulk-like ice structures (at high hydration levels), whereas the second can be attributed to proton mobility via the hydrogen bond (HB) network of non-freezing water existing in XG. Interestingly, this process is exactly the same in all the hydrated samples with hw > 0.25. With respect to the sample with hw = 0.27, a Vogel-Tammann-Fulcher (VTF)-like polarization process has also been recorded which seems to be related to long-range charge mobility via interconnected water clusters. As far as we are aware, this is the first time that XG is studied in terms of glass transition and molecular mobility over a wide range of hydration levels combining DSC and BDS techniques.
Collapse
Affiliation(s)
- Sokratis N Tegopoulos
- Physics Department, National Technical University of Athens, Iroon Polytechneiou 9, Zografou Campus, Athens, 15780, Greece.
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Apostolos Kyritsis
- Physics Department, National Technical University of Athens, Iroon Polytechneiou 9, Zografou Campus, Athens, 15780, Greece.
| |
Collapse
|
42
|
Matthew SL, Seib FP. Silk Bioconjugates: From Chemistry and Concept to Application. ACS Biomater Sci Eng 2024; 10:12-28. [PMID: 36706352 PMCID: PMC10777352 DOI: 10.1021/acsbiomaterials.2c01116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023]
Abstract
Medical silks have captured global interest. While silk sutures have a long track record in humans, silk bioconjugates are still in preclinical development. This perspective examines key advances in silk bioconjugation, including the fabrication of silk-protein conjugates, bioconjugated silk particles, and bioconjugated substrates to enhance cell-material interactions in two and three dimensions. Many of these systems rely on chemical modification of the silk biopolymer, often using carbodiimide and reactive ester chemistries. However, recent progress in enzyme-mediated and click chemistries has expanded the molecular toolbox to enable biorthogonal, site-specific conjugation in a single step when combined with recombinant silk fibroin tagged with noncanonical amino acids. This perspective outlines key strategies available for chemical modification, compares the resulting silk conjugates to clinical benchmarks, and outlines open questions and areas that require more work. Overall, this assessment highlights a domain of new sunrise capabilities and development opportunities for silk bioconjugates that may ultimately offer new ways of delivering improved healthcare.
Collapse
Affiliation(s)
- Saphia
A. L. Matthew
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
- Branch
Bioresources, Fraunhofer Institute for Molecular
Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
43
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
44
|
Shin J, Cole BD, Seyedmohammad M, Lim SI, Jang Y. Protein Nanocarriers Capable of Encapsulating Both Hydrophobic and Hydrophilic Drugs. Methods Mol Biol 2024; 2720:143-150. [PMID: 37775663 DOI: 10.1007/978-1-0716-3469-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein nanoparticles are promising targeted drug delivery carriers due to their low toxicity, biodegradability, and abundance of proteins in natural sources. Also, protein nanoparticles enable surface modification with other functional proteins or carbohydrate ligands, which improves the efficacy of targeted drug delivery. Nonetheless, a persistent challenge remains to make versatile protein nanoparticles that deliver diverse types of drugs in a wide range of water solubility. Herein, we describe the methods to fabricate nanoparticles made from bovine serum albumin (BSA) that allow for the encapsulation of both hydrophilic and hydrophobic drug molecules, doxorubicin and bilirubin, respectively.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Blair D Cole
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | | | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
45
|
Papagiannopoulos A, Sklapani A, Spiliopoulos N. Thermally stabilized chondroitin sulfate-hemoglobin nanoparticles and their interaction with bioactive compounds. Biophys Chem 2024; 304:107127. [PMID: 37952498 DOI: 10.1016/j.bpc.2023.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
The preparation of nanoparticles (NPs) based on hemoglobin (Hb) with a fully biocompatible methodology is presented. The spontaneous formation of electrostatic complexes of Hb with chondroitin sulfate (CS) at pH 4 in the polysaccharide/protein mass ratio regime where charge neutrality is met leads to spherical nanostructures with monomodal hydrodynamic radii distribution in the range of 50-100 nm. The integrity of the electrostatic complexes is disturbed at pH 7 as the net electric charge of Hb is very low. Treating the NPs at mildly elevated temperature stabilizes them against the pH increase taking advantage of Hb's ability of unfolding and self-associating upon thermal treatment. The NPs surface charge is pH-tunable and changes from positive to strongly negative upon pH increase to 7 proving the presence of negative surface patches of Hb and CS segments in their exterior. The α-helix content of Hb does not change significantly by thermal treatment. The NPs are found to bind the bioactive compounds curcumin and β-carotene and are stable in solutions with high salt content. This investigation introduces a straightforward method to formulate Hb in NPs with possibilities in the nanodelivery of nutrients and drugs.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Aggeliki Sklapani
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | | |
Collapse
|
46
|
Wang H, Song B, Zhou J, Gao G, Ding Y, Meng X, Ke L, Ding W, Zhang S, Chen T, Rao P. Fabrication and characterization of curcumin-loaded nanoparticles using licorice protein isolate from Radix Glycyrrhizae. Int J Biol Macromol 2024; 255:128235. [PMID: 37981268 DOI: 10.1016/j.ijbiomac.2023.128235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Licorice was widely used in food and herbal medicine. In its extract industry, a substantial amount of licorice protein was produced and discarded as waste. Herein, we extracted Licorice Protein Isolate (LPI) and explored its potential as a curcumin nanocarrier. Using a pH-driven method, we fabricated LPI-curcumin nanoparticles with diameters ranging from 129.30 ± 3.21 nm to 75.03 ± 1.19 nm, depending on the LPI/curcumin molar ratio. The formation of LPI-curcumin nanoparticles was primarily driven by hydrophobic interactions, with curcumin entrapped in LPI being in an amorphous form. These nanoparticles significantly enhanced curcumin properties in terms of solubility, photochemical stability, and stability under varying pH, storage, and physiological conditions. Moreover, the loaded curcumin exhibited a 2.58-fold increase in cellular antioxidant activity on RAW 264.7 cells and a 1.86-fold increase in antitumor activity against HepG2 cells compared to its free form. These findings suggested that LPI could potentially serve as a promising novel delivery material.
Collapse
Affiliation(s)
- Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Binbin Song
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Guanzhen Gao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China.
| | - Yanan Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiangyu Meng
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Wei Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Suyun Zhang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Tianbao Chen
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China; College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| |
Collapse
|
47
|
Chen YL, Bao CJ, Duan JL, Xie Y, Lu WL. Overcoming biological barriers by virus-like drug particles for drug delivery. Adv Drug Deliv Rev 2023; 203:115134. [PMID: 37926218 DOI: 10.1016/j.addr.2023.115134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.
Collapse
Affiliation(s)
- Yu-Ling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun-Jie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Lun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
48
|
Putri AD, Hsu MJ, Han CL, Chao FC, Hsu CH, Lorenz CD, Hsieh CM. Differential cellular responses to FDA-approved nanomedicines: an exploration of albumin-based nanocarriers and liposomes in protein corona formation. NANOSCALE 2023; 15:17825-17838. [PMID: 37850423 DOI: 10.1039/d3nr04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Albumin nanoparticles (NPs) and PEGylated liposomes have garnered tremendous interest as therapeutic drug carriers due to their unique physicochemical properties. These unique properties also have significant effects on the composition and structure of the protein corona formed around these NPs in a biological environment. Herein, protein corona formation on albumin NPs and liposomes was simultaneously evaluated through in vitro and simulation studies. The sizes of both types of NPs increased with more negatively charged interfaces upon being introduced into fetal bovine serum. Gel electrophoresis and label-free quantitative proteomics were performed to identify proteins recruited to the hard corona, and fewer proteins were found in albumin NPs than in liposomes, which is in accordance with isothermal titration calorimetry. The cellular uptake efficiency of the two NPs significantly differed in different serum concentrations, which was further scrutinized by loading an anticancer compound into albumin NPs. The presence of the hard protein corona increased the cellular uptake of albumin NPs in comparison with liposomes. In our simulation study, a specific receptor present in the membrane was greatly attracted to the albumin-apolipoprotein E complex. Overall, this study not only evaluated protein corona formation on albumin NPs, but also made promising advancements toward albumin- and liposome-based therapeutic systems.
Collapse
Affiliation(s)
- Athika Darumas Putri
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Semarang College of Pharmaceutical Sciences (STIFAR), Semarang City, 50192, Indonesia
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- Université Paris-Saclay, CNRS UMR 8612, Institut Galien Paris-Saclay, Châtenay-Malabry, France
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
49
|
Bakshi S, Pandey P, Mohammed Y, Wang J, Sailor MJ, Popat A, Parekh HS, Kumeria T. Porous silicon embedded in a thermoresponsive hydrogel for intranasal delivery of lipophilic drugs to treat rhinosinusitis. J Control Release 2023; 363:452-463. [PMID: 37769816 PMCID: PMC11484479 DOI: 10.1016/j.jconrel.2023.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 μg of MF/g of tissue vs. <10 μg of MF/g of tissue, respectively).
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Joanna Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, United States of America
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
50
|
Rathee S, Ojha A, Upadhyay A, Xiao J, Bajpai VK, Ali S, Shukla S. Biogenic engineered nanomaterials for enhancing bioavailability via developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food Funct 2023; 14:9083-9099. [PMID: 37750182 DOI: 10.1039/d3fo02473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, South Korea.
| | - Shruti Shukla
- Department of Nanotechnology, North Eastern Hill University (NEHU), East Khasi Hills, Shillong, 793022, Meghalaya, India.
| |
Collapse
|