1
|
Lev R, Bar-Am O, Saar G, Guardiola O, Minchiotti G, Peled E, Seliktar D. Development of a local controlled release system for therapeutic proteins in the treatment of skeletal muscle injuries and diseases. Cell Death Dis 2024; 15:470. [PMID: 38956034 PMCID: PMC11219926 DOI: 10.1038/s41419-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 07/04/2024]
Abstract
The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Eli Peled
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
3
|
Vallmajo-Martin Q, Millan C, Müller R, Weber FE, Ehrbar M, Ghayor C. Enhanced bone regeneration in rat calvarial defects through BMP2 release from engineered poly(ethylene glycol) hydrogels. Sci Rep 2024; 14:4916. [PMID: 38418564 PMCID: PMC10901800 DOI: 10.1038/s41598-024-55411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
The clinical standard therapy for large bone defects, typically addressed through autograft or allograft donor tissue, faces significant limitations. Tissue engineering offers a promising alternative strategy for the regeneration of substantial bone lesions. In this study, we harnessed poly(ethylene glycol) (PEG)-based hydrogels, optimizing critical parameters including stiffness, incorporation of arginine-glycine-aspartic acid (RGD) cell adhesion motifs, degradability, and the release of BMP2 to promote bone formation. In vitro we demonstrated that human bone marrow derived stromal cell (hBMSC) proliferation and spreading strongly correlates with hydrogel stiffness and adhesion to RGD peptide motifs. Moreover, the incorporation of the osteogenic growth factor BMP2 into the hydrogels enabled sustained release, effectively inducing bone regeneration in encapsulated progenitor cells. When used in vivo to treat calvarial defects in rats, we showed that hydrogels of low and intermediate stiffness optimally facilitated cell migration, proliferation, and differentiation promoting the efficient repair of bone defects. Our comprehensive in vitro and in vivo findings collectively suggest that the developed hydrogels hold significant promise for clinical translation for bone repair and regeneration by delivering sustained and controlled stimuli from active signaling molecules.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- School of Life Sciences and School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Station 15, 1015, Lausanne, Switzerland
| | - Christopher Millan
- Department of Urology, University Hospital Zürich, University of Zürich, Wagistrasse 21, 8952, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Leopold-Ruzicka-Weg 8093, 8049, Zurich, Switzerland
| | - Franz E Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
| | - Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zürich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
4
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Kong F, Mehwish N, Lee BH. Emerging albumin hydrogels as personalized biomaterials. Acta Biomater 2023; 157:67-90. [PMID: 36509399 DOI: 10.1016/j.actbio.2022.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Developing biomaterials-based tissue engineering scaffolds with personalized features and intrinsic biocompatibility is appealing and urgent. Through utilizing various strategies, albumin, as the most abundant protein in plasma, could be fabricated into sustainable, cost-effective, and potentially personalized hydrogels that would display enormous biological applications. To date, much of the albumin-based research is primarily engrossed in using albumin as a therapeutic molecule or a drug carrier, not much as a scaffold for tissue engineering. For this reason, we have come up with a detailed and insightful review of recent progress in albumin-based hydrogels having an emphasis on production techniques, material characteristics, and biological uses. It is envisioned that albumin-based scaffolds would be appealing and useful platforms to meet current tissue engineering needs and achieve the goal of clinical translation to benefit patients. STATEMENT OF SIGNIFICANCE: The creation of autologous material-based scaffolds is a potential method for preventing immunological reactions and obtaining the best therapeutic results. Patient-derived albumin hydrogels may consequently provide improved opportunities for personalized treatment due to their abundant supply and minimal immunogenicity. To provide a detailed and insightful summary on albumin-based hydrogels, this review includes latest comprehensive information on their preparation procedures, features, and applications in 3D printing and other biomedical applications. The challenges, along with the future potential for implementing albumin-based hydrogels in clinics, have also been addressed.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Nabila Mehwish
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Bae Hoon Lee
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
6
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Zeng Y, Huang C, Duan D, Lou A, Guo Y, Xiao T, Wei J, Liu S, Wang Z, Yang Q, Zhou L, Wu Z, Wang L. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater 2022; 153:108-123. [PMID: 36115651 DOI: 10.1016/j.actbio.2022.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Insufficient vascularization is a major challenge in the repair of critical-sized bone defects. Deferoxamine (DFO) has been reported to play a potential role in promoting the formation of H-type blood vessels, a specialized vascular subtype with coupled angiogenesis and osteogenesis. However, whether DFO promotes the expression of H-type vessels in critical femoral defects with complete periosteal damage remains unknown. Moreover, stable drug loading systems need to be designed owing to the short half-life and high-dose toxic effects of DFO. In this study, we developed an injectable DFO-gelatin microspheres (GMs) hydrogel complex as a stable drug loading system for the treatment of critical femoral defects in rats. Our results showed that sustained release of DFO in critical femoral defects stimulated the generation of functional H-type vessels. The DFO-GMs hydrogel complex effectively promoted proliferation, formation, and migration of human umbilical vein endothelial cells in vitro. In vivo, the application of the DFO-GMs hydrogel complex expanded the distribution range and prolonged the expression time of H-type vessels in the defect area and was positively correlated with the number of osterix+ cells and new bone tissue. Topical application of the HIF-1α inhibitor PX-478 partially blocked the stimulation of H-type vessels by DFO, whereas the osteogenic potential of the latter was also weakened. Our results extended the local application of DFO and provided a theoretical basis for targeting H-type vessels to treat large femoral defects. STATEMENT OF SIGNIFICANCE: Abundant functional blood vessels are essential for bone repair. The H-type blood vessel is a functional subtype with angiogenesis and osteogenesis coupling potential. A drug loading system with long-term controlled release was first used to investigate the formation of H-type blood vessels in critical femoral defects and promotion of bone repair. Our results showed that the application of DFO-GMs hydrogel complex expanded the distribution range and expression time of H-type vessels, and was positively correlated with the number of osteoblasts and volume of new bone tissue. These results expanded the local application approach of DFO and provide a theoretical basis for targeting H-type vessels to treat large femoral defects.
Collapse
Affiliation(s)
- Yuwei Zeng
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Chuang Huang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Dongming Duan
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Aiju Lou
- Department of Rheumatology, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou 510030, China
| | - Yuan Guo
- Department of Stomatology, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Tianhua Xiao
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Jianguo Wei
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Song Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Zhao Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Qihao Yang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Zenghui Wu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| | - Le Wang
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China; Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Guangzhou 510150, China.
| |
Collapse
|
8
|
Bao J, Sun X, Chen Z, Yang J, Wang C. Study on the angiogenesis ability of Polymethyl methacrylate-mineralized collagen/Mg-Ca composite material in vitro and the bone formation effect in vivo. J Biomater Appl 2022; 37:814-828. [PMID: 35969489 DOI: 10.1177/08853282221121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium (Mg) and its alloys show high degrees of biocompatibility and biodegradability, used as biodegrad able materials in biomedical applications. In this study, Polymethyl methacrylate (PMMA) - mineralized collagen (nano-Hydroxyapatite/collagen; nHAC)/Mg-Ca composite materials were prepared, to study the angiogenesis ability of its composite materials on Human umbilical vein endothelial cells (HUVECs) and its osteogenesis effect in vivo. The results showed that the PMMA-nHAC reinforcement materials can promote the proliferation and adhesion in HUVECs of Mg matrix significantly, it can enhance the migration motility and VEGF expression of HUVECs. In vivo, Micro-CT examination showed that with coated samples presenting the highest bone formation. Histologically, the materials and their corrosion products caused no systematic or local cytotoxicological effects. Therefore, the Mg matrix composites prepared in the present study has good biocompatibility and PMMA-nHAC/Mg-Ca composite may be an ideal orthopedic material to improve the bone formation, and biodegradable magnesium based implants with bioactivity have potential applications in bone tissue.
Collapse
Affiliation(s)
- Jiaxin Bao
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xirao Sun
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhan Chen
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jingxin Yang
- Beijing Key Laboratory of Information Service Engineering, 70541Beijing Union University, Beijing, China.,College of Robotics, 70541Beijing Union University, Beijing, China
| | - Chengyue Wang
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
10
|
Deng R, Xie Y, Chan U, Xu T, Huang Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J Dent Res Dent Clin Dent Prospects 2022; 16:1-10. [PMID: 35936933 PMCID: PMC9339747 DOI: 10.34172/joddd.2022.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontal tissues are organized in a complex three-dimensional (3D) architecture, including the alveolar bone, cementum, and a highly aligned periodontal ligament (PDL). Regeneration is difficult due to the complex structure of these tissues. Currently, materials are developing rapidly, among which synthetic polymers and hydrogels have extensive applications. Moreover, techniques have made a spurt of progress. By applying guided tissue regeneration (GTR) to hydrogels and cell sheets and using 3D printing, a scaffold with an elaborate biomimetic structure can be constructed to guide the orientation of fibers. The incorporation of cells and biotic factors improves regeneration. Nevertheless, the current studies lack long-term effect tracking, clinical research, and in-depth mechanistic research. In summary, periodontal tissue engineering still has considerable room for development. The development of materials and techniques and an in-depth study of the mechanism will provide an impetus for periodontal regeneration.
Collapse
Affiliation(s)
- Rong Deng
- School of Stomatology, Jinan University, Guangdong, China
| | - Yuzheng Xie
- School of Stomatology, Jinan University, Guangdong, China
| | - Unman Chan
- School of Stomatology, Jinan University, Guangdong, China
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangdong, China
| |
Collapse
|
11
|
Kodavaty J. Poly (vinyl alcohol) and hyaluronic acid hydrogels as potential biomaterial systems - A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23052786. [PMID: 35269928 PMCID: PMC8911303 DOI: 10.3390/ijms23052786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The unprecedented aging of the world's population will boost the need for orthopedic implants and expose their current limitations to a greater extent due to the medical complexity of elderly patients and longer indwelling times of the implanted materials. Biocompatible metals with multifunctional bioactive coatings promise to provide the means for the controlled and tailorable release of different medications for patient-specific treatment while prolonging the material's lifespan and thus improving the surgical outcome. The objective of this work is to provide a review of several groups of biocompatible materials that might be utilized as constituents for the development of multifunctional bioactive coatings on metal materials with a focus on antimicrobial, pain-relieving, and anticoagulant properties. Moreover, the review presents a summary of medications used in clinical settings, the disadvantages of the commercially available products, and insight into the latest development strategies. For a more successful translation of such research into clinical practice, extensive knowledge of the chemical interactions between the components and a detailed understanding of the properties and mechanisms of biological matter are required. Moreover, the cost-efficiency of the surface treatment should be considered in the development process.
Collapse
|
13
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
14
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Yoon H, Lee H, Shin SY, Jodat YA, Jhun H, Lim W, Seo JW, Kim G, Mun JY, Zhang K, Wan KT, Noh S, Park YJ, Baek SH, Hwang YS, Shin SR, Bae H. Photo-Cross-Linkable Human Albumin Colloidal Gels Facilitate In Vivo Vascular Integration for Regenerative Medicine. ACS OMEGA 2021; 6:33511-33522. [PMID: 34926900 PMCID: PMC8675023 DOI: 10.1021/acsomega.1c04292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.
Collapse
Affiliation(s)
- Heejeong Yoon
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Hanna Lee
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Seon Young Shin
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Yasamin A. Jodat
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hyunjhung Jhun
- Technical
Assistance Center, Korea Food Research Institute, Jeonbuk 55365, Republic of Korea
| | - Wonseop Lim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Wook Seo
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyumin Kim
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Young Mun
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Kaizhen Zhang
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kai-Tak Wan
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Seulgi Noh
- Neural
Circuit Research Group, Korea Brain Research
Institute (KBRI), Daegu 41068, Republic of Korea
| | - Yeon Joo Park
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Republic
of Korea
| | - Sang Hong Baek
- Laboratory
of Cardiovascular Regeneration, Division of Cardiology, Seoul St.
Mary’s Hospital, The Catholic University
of Korea School of Medicine, Seoul 02841, Republic
of Korea
| | - Yu-Shik Hwang
- Department
of Maxillofacial Biomedical Engineering and Institute of Oral Biology,
School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Ryon Shin
- Division
of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts 02139, United States
| | - Hojae Bae
- Department
of Stem Cell and Regenerative Biotechnology, KU Convergence Science
and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
17
|
Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021; 9:18. [PMID: 33727543 PMCID: PMC7966774 DOI: 10.1038/s41413-021-00139-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Bone tumors, especially those in osteosarcoma, usually occur in adolescents. The standard clinical treatment includes chemotherapy, surgical therapy, and radiation therapy. Unfortunately, surgical resection often fails to completely remove the tumor, which is the main cause of postoperative recurrence and metastasis, resulting in a high mortality rate. Moreover, bone tumors often invade large areas of bone, which cannot repair itself, and causes a serious effect on the quality of life of patients. Thus, bone tumor therapy and bone regeneration are challenging in the clinic. Herein, this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy. The selected bifunctional materials include 3D-printed scaffolds, nano/microparticle-containing scaffolds, hydrogels, and bone-targeting nanomaterials. Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed. Finally, a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed. This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering.
Collapse
Grants
- The National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), NSFC 31771096, NSFC 31930067, #x00A0;NSFC 31525009, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002)
- the National Natural Science Foundation (31972925), Sichuan Science and Technology Program (2020YJ0065), Sichuan University Spark Project (2018SCUH0029), State Key Laboratory of Oral Diseases Foundation (SKLOD202016)
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruxia Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
18
|
Mozafari M, Al-Maadeed MASA. Biomaterials Science and Engineering in the Middle East. ACS Biomater Sci Eng 2020; 6:1-3. [PMID: 33463214 DOI: 10.1021/acsbiomaterials.9b01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|