1
|
Liu Y, Zhang Z, Xia Y, Ran M, Wang Q, Wu Q, Yu W, Li C, Li S, Guo N. Dual-targeting of tumor cells and tumor-associated macrophages by hyaluronic acid-modified MnO 2 for enhanced sonodynamic therapy. Int J Biol Macromol 2024; 283:137543. [PMID: 39542302 DOI: 10.1016/j.ijbiomac.2024.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
In addition to tumor cells, M2-like tumor-associated macrophages (TAMs) also promote tumor progression. Accordingly, the strategy of targeted depletion or repolarization of M2-like TAMs becomes attractive. Here, we report a dual-targeting nanoagent SAMMH to tumor cells and M2-like TAMs for combinatorial tumor treatment. After co-loading the sonosensitizer spafloxacin (SPX) and oxidative phosphorylation inhibitor atavaquone (ATO) into hollow MnO2, the addition of Fe3+ and tannic acid-immobilized hyaluronic acid (HA) caused the formation of SAMMH through generating metal-polyphenol networks (MPNs) coatings outside. In vitro endocytosis assays demonstrated the efficient internalization of SAMMH by both tumor cells and M2-like TAMs through the specific CD44-HA interactions. The GSH-sensitive degradation of SAMMH results in the continuous release of SPX and ATO. Meanwhile, SAMMH could catalyze the endogenous H2O2 to extra O2, thus improving the therapeutic effect via the combination of Mn2+-induced CDT and O2-generation/O2-economy dual-enhanced sonodynamic therapy (SDT). Interestingly, SAMMH had a good targeted M2-like TAMs depleting capacity and could promote M2-to-M1 TAMs transformation by CDT-enhanced SDT, leading to a combinational anti-tumor effect. This dual-targeting nanoagent is a promising candidate to achieve CDT-enhanced SDT against both tumor cells and M2-like TAMs, thus providing new insights for the development of highly effective antitumor therapeutics.
Collapse
Affiliation(s)
- Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Ziying Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yu Xia
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Mengnan Ran
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qing Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Quanxin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wenhua Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Cao Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ning Guo
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Onyango I, Collinge G, Wang Y, McEwen JS. Distribution Tendencies of Noble Metals on Fe(100) Using Lattice Gas Cluster Expansions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:9504-9512. [PMID: 38894752 PMCID: PMC11182028 DOI: 10.1021/acs.jpcc.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Fe-based catalysts are highly selective for the hydrodeoxygenation of biomass-derived oxygenates but are prone to oxidative deactivation. Promotion with a noble metal has been shown to improve oxidative resistance. The chemical properties of such bimetallic systems depend critically on the surface geometry and spatial configuration of surface atoms in addition to their coverage (i.e., noble metal loading), so these aspects must be taken into account in order to develop reliable models for such complex systems. This requires sampling a vast configurational space, which is rather impractical using density functional theory (DFT) calculations alone. Moreover, "DFT-based" models are limited to length scales that are often too small for experimental relevance. Here, we circumvent this challenge by constructing DFT-parametrized lattice gas cluster expansions (LG CEs), which can describe these types of systems at significantly larger length scales. Here, we apply this strategy to Fe(100) promoted with four technologically relevant precious metals: Pd, Pt, Rh, and Ru. The resultant LG CEs have remarkable predictive accuracy, with predictive errors below 10 meV/site over a coverage range of 0 to 2 monolayers. The ground state configurations for each noble metal were identified, and the analysis of the cluster energies reveals a significant disparity in their dispersion tendency.
Collapse
Affiliation(s)
- Isaac Onyango
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Greg Collinge
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Yong Wang
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Jean-Sabin McEwen
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
- Department
of Physics and Astronomy, Washington State
University, Pullman, Washington 99164, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department
of Biological Systems Engineering, Washington
State University, Pullman, Washington 99164, United States
| |
Collapse
|
3
|
Zhang J, Hu W, Qian B, Li H, Sudduth B, Engelhard M, Zhang L, Hu J, Sun J, Zhang C, He H, Wang Y. Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands. Nat Commun 2023; 14:3944. [PMID: 37402751 DOI: 10.1038/s41467-023-39478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.
Collapse
Affiliation(s)
- Jianghao Zhang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenda Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Binbin Qian
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224002, China
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Houqian Li
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Berlin Sudduth
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Mark Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lian Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jianzhi Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
4
|
Zhang J, Shan R, Xiao H, Hu S, Sheng Z, Qin X, Zhang Y, Wang L, Li J, Zhang C. Electronic Modification by Transitional Metal Dopants to Tune the Oxidation Activity of Pt-CeO 2-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17331-17340. [PMID: 36354790 DOI: 10.1021/acs.est.2c07099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While utilization of transitional metals as a promoter has been extensively studied to enhance the activity of Pt-based catalysts for the oxidation of formaldehyde (HCHO), there is still a lack of well elucidated property-function relationship for the rational selection of a promoter in catalyst design. Herein, we modified a Pt/CeO2 catalyst with two transitional metal dopants (i.e., Mn and Cu) that showed negligible influence on the physical structure of the Pt-CeO2 matrix but distinct effects on the activity of the catalyst. Complementary characterizations combined with density functional theory modeling revealed that the transitional metal dopants significantly modified the electronic structure of the catalyst and shifted the d-band of Pt to higher energy with different extents, which may tune the bonding strength of HCHO/intermediates with the Pt-CeO2 interface domain. The catalyst with moderate bonding strength (i.e., Pt-Mn/CeO2) displayed the highest reactivity under the ambient condition, while Pt-Cu/CeO2 with the highest bonding strength showed a dramatically decreased activity. No correlation was observed between the abundancy of the active oxygen and catalytic activity, likely due to the oxygen supply having a much higher rate than the rate-determining step. This work contributes to the elucidation about the property-function relationship of a transitional metal dopant in Pt-based catalysts for the oxidation of HCHO.
Collapse
Affiliation(s)
- Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoting Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hongfei Xiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuo Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenteng Sheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tan M, Yang Y, Yang Y, Chen J, Zhang Z, Fu G, Lin J, Wan S, Wang S, Wang Y. Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides. Nat Commun 2022; 13:1457. [PMID: 35304451 PMCID: PMC8933562 DOI: 10.1038/s41467-022-29045-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous migration of atomic hydrogen species from metal particles to the surface of their support, known as hydrogen spillover, has been claimed to play a major role in catalytic processes involving hydrogen. While this phenomenon is well established on reducible oxide supports, its realization on much more commonly used non-reducible oxides is still challenged. Here we present a general strategy to enable effective hydrogen spillover over non-reducible SiO2 with aid of gaseous organic molecules containing a carbonyl group. By using hierarchically-porous-SiO2-supported bimetallic Pt-Fe catalysts with Pt nanoparticles exclusively deposited into the micropores, we demonstrate that activated hydrogen species generated on the Pt sites within the micropores can be readily transported by these oxygenate molecules to Fe sites located in macropores, leading to significantly accelerated hydrodeoxygenation rates on the latter sites. This finding provides a molecule-assisted approach to the rational design and optimization of multifunctional heterogeneous catalysts, reminiscent of the role of molecular coenzymes in bio-catalysis. Spontaneous migration of H-atoms from metal particles to a nonreducible oxide support is generally limited by thermodynamics. Here, small oxygenate molecules are found to act as effective H-carriers to promote this process and lead to much improved hydrodeoxygenation rates on Pt-Fe/SiO2 catalysts.
Collapse
Affiliation(s)
- Mingwu Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanling Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ying Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiali Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhaoxia Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingdong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaolong Wan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Zhang J, Sudduth B, Sun J, Kovarik L, Engelhard MH, Wang Y. Elucidating the Active Site and the Role of Alkali Metals in Selective Hydrodeoxygenation of Phenols over Iron-Carbide-based Catalyst. CHEMSUSCHEM 2021; 14:4546-4555. [PMID: 34378351 DOI: 10.1002/cssc.202101382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Iron-carbide-based catalysts have been explored in the selective hydrodeoxygenation (HDO) of phenol, aiming at elucidating the role of active site and alkali metal. Complementary characterization such as X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and scanning transmission electron microscopy coupled with electron energy loss spectroscopy, together with catalytic evaluations revealed a rapid structural reconstruction of iron carbide (Fe3 C) catalysts, leading to a stable defective graphene-covered metallic Fe active phase (G@Fe) under reaction conditions. Further studies using different alkali metals (i. e., Na, K, and Cs) revealed that alkali metals showed negligible effect on the phase transformation of Fe3 C. However, the reconstructed G@Fe doped with alkali metals inhibited the tautomerization, a facile reaction pathway to saturation of the aromatic ring, leading to enhanced selectivity to arene. The extent of inhibition of tautomerization or selectivity to arene was closely related to the degree of electron donation of alkali metal to Fe.
Collapse
Affiliation(s)
- Jianghao Zhang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
| | - Berlin Sudduth
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Libor Kovarik
- Institute for Integrated Catalysis and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Institute for Integrated Catalysis and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
7
|
Li C, Nakagawa Y, Yabushita M, Nakayama A, Tomishige K. Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Congcong Li
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
8
|
Guo M, Feng K, Wang Y, Yan B. Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO
2
over NiFe/CeO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Man Guo
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Kai Feng
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Yaning Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Binhang Yan
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
9
|
Lopez Luna M, Timoshenko J, Kordus D, Rettenmaier C, Chee SW, Hoffman AS, Bare SR, Shaikhutdinov S, Roldan Cuenya B. Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mauricio Lopez Luna
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - David Kordus
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Adam S. Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shamil Shaikhutdinov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
10
|
Hensley AJR, Collinge G, Wang Y, McEwen JS. Guiding the design of oxidation-resistant Fe-based single atom alloy catalysts with insights from configurational space. J Chem Phys 2021; 154:174709. [PMID: 34241058 DOI: 10.1063/5.0048698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high activity and selectivity of Fe-based heterogeneous catalysts toward a variety of reactions that require the breaking of strong bonds are offset in large part by their considerable instability with respect to oxidative deactivation. While it has been shown that the stability of Fe catalysts is considerably enhanced by alloying them with precious metals (even at the single-atom limit), rational design criteria for choosing such secondary metals are still missing. Since oxidative deactivation occurs due to the strong binding of oxygen to Fe and reduction by adsorbed hydrogen mitigates the deactivation, we propose here to use the binding affinity of oxygen and hydrogen adatoms as the basis for rational design. As it would also be beneficial to use cheaper secondary metals, we have scanned over a large subset of 3d-5d mid-to-late transition metal single atoms and computationally determined their effect on the oxygen and hydrogen adlayer binding as a function of chemical potential and adsorbate coverage. We further determine the underlying chemical origins that are responsible for these effects and connect them to experimentally tunable quantities. Our results reveal a reliable periodic trend wherein oxygen binding is weakened greatest as one moves right and down the periodic table. Hydrogen binding shows the same trend only at high (but relevant) coverages and otherwise tends to have its binding slightly increased in all systems. Trends with secondary metal coverage are also uncovered and connected to experimentally tunable parameters.
Collapse
Affiliation(s)
- Alyssa J R Hensley
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Greg Collinge
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Jean-Sabin McEwen
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
11
|
Zeng S, Shan S, Lu A, Wang S, Caracciolo DT, Robinson RJ, Shang G, Xue L, Zhao Y, Zhang A, Liu Y, Liu S, Liu Z, Bai F, Wu J, Wang H, Zhong CJ. Copper-alloy catalysts: structural characterization and catalytic synergies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00179e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent progress in the development of copper-alloy catalysts is highlighted, focusing on the structural and mechanistic characterizations of the catalysts in different catalytic reactions, and challenges and opportunities in future research.
Collapse
Affiliation(s)
- Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Dominic T. Caracciolo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Richard J. Robinson
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Guojun Shang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lei Xue
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yuansong Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Aiai Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Shangpeng Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P.R. China
| | - Hong Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, 010051, P.R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
12
|
Li T, Ji N, Jia Z, Diao X, Wang Z, Liu Q, Song C, Lu X. Effects of metal promoters in bimetallic catalysts in hydrogenolysis of lignin derivatives into value‐added chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202001124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tingting Li
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhichao Jia
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xinyong Diao
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhenjiao Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Qingling Liu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Chunfeng Song
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- Department of Chemistry & Environmental Science Tibet University Lhasa 850000 P. R. China
| |
Collapse
|
13
|
Schnadt J, Knudsen J, Johansson N. Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:413003. [PMID: 32438360 DOI: 10.1088/1361-648x/ab9565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this topical review we catagorise all ambient pressure x-ray photoelectron spectroscopy publications that have appeared between the 1970s and the end of 2018 according to their scientific field. We find that catalysis, surface science and materials science are predominant, while, for example, electrocatalysis and thin film growth are emerging. All catalysis publications that we could identify are cited, and selected case stories with increasing complexity in terms of surface structure or chemical reaction are discussed. For thin film growth we discuss recent examples from chemical vapour deposition and atomic layer deposition. Finally, we also discuss current frontiers of ambient pressure x-ray photoelectron spectroscopy research, indicating some directions of future development of the field.
Collapse
Affiliation(s)
- Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Jan Knudsen
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
14
|
Zhang J, Sun J, Kovarik L, Engelhard MH, Du L, Sudduth B, Li H, Wang Y. Surface engineering of earth-abundant Fe catalysts for selective hydrodeoxygenation of phenolics in liquid phase. Chem Sci 2020; 11:5874-5880. [PMID: 32874508 PMCID: PMC7448371 DOI: 10.1039/d0sc00983k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/05/2022] Open
Abstract
Tailoring the graphene-covered Fe with Cs modifies the surface electronic properties of the catalysts such that selective C–O bond cleavage of phenol is achieved in liquid phase by inhibiting the facile tautomerization followed by ring saturation.
Development of inexpensive sulfur-free catalysts for selective hydrogenolysis of the C–O bond in phenolics (i.e., selective removal of oxygen without aromatic ring saturation) under liquid-phase conditions is highly challenging. Here, we report an efficient approach to engineer earth-abundant Fe catalysts with a graphene overlayer and alkali metal (i.e., Cs), which produces arenes with 100% selectivity from liquid-phase hydrodeoxygenation (HDO) of phenolics with high durability. In particular, we report that a thin (a few layers) surface graphene overlayer can be engineered on metallic Fe particles (G@Fe) by a controlled surface reaction of a carbonaceous compound, which prevents the iron surface from oxidation by hydroxyls or water produced during HDO reaction. More importantly, further tailoring the surface electronic properties of G@Fe with the addition of cesium, creating a Cs-G@Fe composite catalyst in contrast to a deactivated Cs@Fe one, promotes the selective C–O bond cleavage by inhibiting the tautomerization, a pathway that is very facile under liquid-phase conditions. The current study could open a general approach to rational design of highly efficient catalysts for HDO of phenolics.
Collapse
Affiliation(s)
- Jianghao Zhang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA 99164 , USA .
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA 99164 , USA .
| | - Libor Kovarik
- Institute for Integrated Catalysis , Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA .
| | - Mark H Engelhard
- Institute for Integrated Catalysis , Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA .
| | - Lei Du
- School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Berlin Sudduth
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA 99164 , USA .
| | - Houqian Li
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA 99164 , USA .
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , WA 99164 , USA . .,Institute for Integrated Catalysis , Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA .
| |
Collapse
|
15
|
Yang Y, Tan M, Garcia A, Zhang Z, Lin J, Wan S, McEwen JS, Wang S, Wang Y. Controlling the Oxidation State of Fe-Based Catalysts through Nitrogen Doping toward the Hydrodeoxygenation of m-Cresol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanling Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingwu Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Aidan Garcia
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jean-Sabin McEwen
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shuai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
16
|
Yan B, Wang L, Wang B, Chen Q, Liu C, Li J, Jiang T. Carbon material-supported Fe 7C 3@FeO nanoparticles: a highly efficient catalyst for carbon dioxide reduction with 1-butene. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00249f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly dispersed Fe7C3@FeO supported on AC was synthesized and demonstrated as an excellent catalyst for carbon dioxide reduction with 1-butene.
Collapse
Affiliation(s)
- Bing Yan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Luyi Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Bolong Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Quanxin Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Chunjing Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Jian Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Tao Jiang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| |
Collapse
|
17
|
Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. ADVANCES IN CATALYSIS 2020. [DOI: 10.1016/bs.acat.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Wang S, Xu D, Chen Y, Zhou S, Zhu D, Wen X, Yang Y, Li Y. Hydrodeoxygenation of anisole to benzene over an Fe 2P catalyst by a direct deoxygenation pathway. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00046a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe2P catalyst was highly selective for the cleavage of C–O bond of anisole via direct deoxygenation pathway.
Collapse
Affiliation(s)
- Shuyuan Wang
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
- State Key Laboratory of Coal Conversion
| | - Dan Xu
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Yunlei Chen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Song Zhou
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Di Zhu
- Energy Research Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- People's Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yong Yang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- People's Republic of China
| |
Collapse
|
19
|
Liu L, Zhao X, Li R, Su H, Zhang H, Liu Q. Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41432-41439. [PMID: 31610647 DOI: 10.1021/acsami.9b15397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of cost-effective and efficient oxygen-relative electrocatalysts with high mass activity is extremely critical for modern sustainable fuel cells. Here, we present a new type of subnano amorphous transition-metal clusters supported on a hierarchical carbon framework as a promising oxygen reduction reaction (ORR) electrocatalyst, synthesized by a novel "amino-induced spatial confinement" strategy. This developed Fe subnano-cluster/3D-C could deliver outstanding ORR performance with a large mass activity of ∼8600 A gFe-1 at a half-wave potential of 0.92 V, ∼10 times that of the benchmarking Pt/C electrocatalyst. The atomic characterizations and theoretical calculations jointly reveal the robust surface-covalent Fe-N bonds, and the synergistic effect of hetero Fe2+/0 species is essentially beneficial for the adsorption of *O2 and the formation of key *O intermediate during the ORR process, contributing to high oxygen-relative electrocatalytic activity for subnano amorphous Fe clusters.
Collapse
Affiliation(s)
- Lingyun Liu
- School of Physics and Materials Engineering , Hefei Normal University , Hefei 230061 , Anhui , P. R. China
| | - Xu Zhao
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Renwen Li
- School of Physics and Materials Engineering , Hefei Normal University , Hefei 230061 , Anhui , P. R. China
| | - Hui Su
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Hui Zhang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , Anhui , P. R. China
| |
Collapse
|
20
|
Zhong L, Chen D, Zafeiratos S. A mini review of in situ near-ambient pressure XPS studies on non-noble, late transition metal catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00632j] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rich surface chemistry of Fe, Co, Ni and Cu during heterogeneous catalytic reactions from the perspective of NAP-XPS studies.
Collapse
Affiliation(s)
- Liping Zhong
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 CNRS – Université de Strasbourg
- 67087 Strasbourg Cedex 02
- France
| | - Dingkai Chen
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 CNRS – Université de Strasbourg
- 67087 Strasbourg Cedex 02
- France
| | - Spyridon Zafeiratos
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 CNRS – Université de Strasbourg
- 67087 Strasbourg Cedex 02
- France
| |
Collapse
|
21
|
Bray J, Hensley AJ, Collinge G, Che F, Wang Y, McEwen JS. Modeling the adsorbate coverage distribution over a multi-faceted catalytic grain in the presence of an electric field: O/Fe from first principles. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Hu ZP, Weng CC, Chen C, Yuan ZY. Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
|
24
|
Hensley AJR, Wang Y, Mei D, McEwen JS. Mechanistic Effects of Water on the Fe-Catalyzed Hydrodeoxygenation of Phenol. The Role of Brønsted Acid Sites. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02576] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alyssa J. R. Hensley
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics and Astronomy, and ⊥Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis and §Fundamental and
Computational Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics and Astronomy, and ⊥Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis and §Fundamental and
Computational Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Donghai Mei
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics and Astronomy, and ⊥Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis and §Fundamental and
Computational Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jean-Sabin McEwen
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics and Astronomy, and ⊥Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis and §Fundamental and
Computational Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
25
|
Hong Y, Wang Y. Elucidation of reaction mechanism for m-cresol hydrodeoxygenation over Fe based catalysts: A kinetic study. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|