1
|
Salamone L, Vanderbiest X, Riant O. Nickel-Catalyzed Stereospecific Alkylation of Vinylsiloxanes Using Pyridinium Salts. Org Lett 2025; 27:2569-2575. [PMID: 40078123 DOI: 10.1021/acs.orglett.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A methodology for radical cross-coupling with vinylsiloxanes and pyridinium salts under nickel catalysis is described. Easily implemented from inexpensive and abundant primary amines and terminal alkynes, this Hiyama coupling provides efficient access to (E), (Z), and (1,1')-alkenes with selectivity control. Operating under mild conditions, this robust strategy applies to a broad range of functional groups with diverse double bond stereochemistries. This versatile reaction is scalable and straightforward, accommodating both secondary and primary alkyl groups.
Collapse
Affiliation(s)
- Logan Salamone
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Xavier Vanderbiest
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1 bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Zhou J, Zhang Z, Cao Y, Xie W. Multiligand-enabled, copper-catalyzed Hiyama coupling of arylsilanes with unactivated secondary alkyl halides: reaction development and mechanistic insights. Chem Sci 2025; 16:5109-5117. [PMID: 39975764 PMCID: PMC11833680 DOI: 10.1039/d4sc07441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Construction of carbon-carbon bonds is the cornerstone in organic synthesis, and Hiyama coupling is the representative synthetic approach for realizing linkages between silyl compounds and organohalides. In previous literature, such couplings are mainly utilized for the bond formations of arylsilanes with sp2-aryl halides, yet Hiyama couplings with sp3-hybridized alkyl halides still remain scarce. Copper catalysis has recently been scrutinized in several important transformations of unactivated secondary alkyl halides, whereas their conversions with organosilanes are far less developed. Herein, we leverage a multiligand catalysis to offer a solution for efficient copper-catalyzed Hiyama couplings with such unactivated alkyl halides. Detailed mechanistic studies disclosed that the incorporation of an NHC ligand with a phenanthroline-copper system would dramatically enhance the reaction efficiency, where the copper species with NHC and phenanthroline-type ligands were most likely to account for the C(sp2)-Si bond activation and C(sp2)-C(sp3) bond formation process, respectively.
Collapse
Affiliation(s)
- Jiajing Zhou
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Zhiqiang Zhang
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Yan Cao
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
| | - Weilong Xie
- College of Chemistry and Chemical Engineering, Donghua University Shanghai 201620 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
3
|
Teng S, Liang P, Zhou JS. New reactivity of late 3d transition metal complexes in catalytic reactions of alkynes. Chem Soc Rev 2025; 54:2664-2692. [PMID: 39969407 DOI: 10.1039/d4cs01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Late 3d metals such as iron, cobalt, nickel, and copper are abundantly present in the Earth's crust and they are produced in huge quantities in the mining industry. Often, these inexpensive metals exhibit unique or special reactivities in catalytic reactions as compared with expensive noble metals such as palladium, iridium, and rhodium. The novel reactivities of 3d metal complexes originate from their unique physical and atomic properties as compared with heavier 4d/5d congeners: smaller ionic and covalent radii, contracted 3d orbitals of smaller sizes and lower energies, lower values of Pauli electronegativity, etc. This review summarizes the recent progress in late 3d transition metal-catalyzed transformations of alkynes. We organize catalytic examples according to each type of novel elementary reactivity exhibited by 3d metal complexes. Each section includes a description of the unique reactivity of the 3d metals, the atomic and theoretical basis of the reactivity and illustrations of catalytic examples: (1) single electron transfer from low-valent metal complexes to alkyl halides, (2) facile reductive elimination from nickel(III), (3) facile reductive elimination from copper(III), (4) cis-to-trans isomerization of alkenyl metal complexes after syn-insertion, (5) ligand-to-ligand hydrogen transfer, (6) hydrogen atom transfer from hydride complexes and (7) protonation of nickel metallacyclopropenes.
Collapse
Affiliation(s)
- Shenghan Teng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
4
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
5
|
Li D, Zhang L, Li D, Yu P, Shen T. Paired electrocatalysis enabled oxidative coupling of styrenes with alkyl radicals. Org Biomol Chem 2024; 23:78-82. [PMID: 39506522 DOI: 10.1039/d4ob01605j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A paired electrocatalysis strategy for intermolecular oxidative cross-dehydrocoupling between styrenes and ethers or p-methylphenol derivatives using ketone as a mild oxidant is described. This approach enables the generation of Csp3 carbon-centered radicals through anodic oxidation, followed by reductive coupling of ketones at the cathode, ultimately yielding valuable oxidative alkylation products.
Collapse
Affiliation(s)
- Dong Li
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Ling Zhang
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Daixi Li
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peng Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
6
|
Monirialamdari M, Podlaska A, Pomikło D, Albrecht A. Electrochemically Induced, Metal Free Synthesis of 2-substituted chroman-4-ones. ChemistryOpen 2024:e202400395. [PMID: 39548903 DOI: 10.1002/open.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Electrochemically induced, decarboxylative functionalization of chromone-3-carboxylic acids by N-hydroxyphthalimide esters as alkyl radical precursors was studied. Electrochemical protocol offers a sustainable and green approach, obviating the need for catalysts, relying on the direct reduction of NHPI esters using electric current. Developed protocol provides a straightforward route to the synthesis of diverse molecules with potential biological activity.
Collapse
Affiliation(s)
- Mohsen Monirialamdari
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Aleksandra Podlaska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Dominika Pomikło
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
7
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
8
|
Weng Y, Jin Y, Wu J, Leng X, Lou X, Geng F, Hu B, Wu B, Shen Q. Oxidative Substitution of Organocopper(II) by a Carbon-Centered Radical. J Am Chem Soc 2024; 146:23555-23565. [PMID: 39116098 DOI: 10.1021/jacs.4c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Copper-catalyzed coupling reactions of alkyl halides are believed to prominently involve copper(II) species and alkyl radicals as pivotal intermediates, with their exact interaction mechanism being the subject of considerable debate. In this study, a visible light-responsive fluoroalkylcopper(III) complex, [(terpy)Cu(CF3)2(CH2CO2tBu)] Trans-1, was designed to explore the mechanism. Upon exposure to blue LED irradiation, Trans-1 undergoes copper-carbon bond homolysis, generating Cu(II) species and carbon-centered radicals, where the carbon-centered radical then recombines with the Cu(II) intermediate, resulting in the formation of Cis-1, the Cis isomer of Trans-1. Beyond this, a well-defined fluoroalkylcopper(II) intermediate ligated with a sterically hindered ligand was isolated and underwent full characterization and electronic structure studies. The collective experimental, computational, and spectroscopic findings in this work strongly suggest that organocopper(II) engages with carbon-centered radicals via an "oxidative substitution" mechanism, which is likely the operational pathway for copper-catalyzed C-H bond trifluoromethylation reactions.
Collapse
Affiliation(s)
- Yuecheng Weng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuxuan Jin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jian Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiaobing Lou
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Botao Wu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Zhang Z, Poletti L, Leonori D. A Radical Strategy for the Alkylation of Amides with Alkyl Halides by Merging Boryl Radical-Mediated Halogen-Atom Transfer and Copper Catalysis. J Am Chem Soc 2024; 146:22424-22430. [PMID: 39087940 DOI: 10.1021/jacs.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Lorenzo Poletti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52056, Germany
| |
Collapse
|
10
|
Wu K, Wang TZ, Zhang CP, Guan YQ, Liang YF. N-Alkoxyphthalimides as Nitrogen Electrophiles to Construct C-N Bonds via Reductive Cross-Coupling. J Org Chem 2024; 89:10004-10011. [PMID: 38935867 DOI: 10.1021/acs.joc.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
N-Alkoxyphthalimides, one kind of phthalimide derivative, have great importance in synthesis, mainly used as free radical precursors. While the phthalimide unit, for a long time, was treated as part of the waste stream. Construction of C-N bonds has always been a hot spot, especially in reductive cross-coupling. Herein, a nickel-catalyzed reductive cross-coupling reaction of N-methoxyphthalimides with alkyl halides is described, where N-methoxyphthalimides serve as nitrogen electrophiles. This tactic provides a new approach to construct C-N bonds under mild neutral conditions. Alkyl chlorides, bromides, iodides, and sulfonates are all fit to this transformation. Moreover, the reaction could tolerate a broad substrate scope, especially base-sensitive functional groups (boron or silicon groups), as well as competitive nucleophilic groups (phenols and amides), which are incompatible with traditional Gabriel synthesis under basic conditions, demonstrating a complementary role of this work to Gabriel synthesis.
Collapse
Affiliation(s)
- Kang Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Cong F, Sun GQ, Ye SH, Hu R, Rao W, Koh MJ. A Bimolecular Homolytic Substitution-Enabled Platform for Multicomponent Cross-Coupling of Unactivated Alkenes. J Am Chem Soc 2024; 146:10274-10280. [PMID: 38568080 DOI: 10.1021/jacs.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The construction of C(sp3)-C(sp3) bonds remains one of the most difficult challenges in cross-coupling chemistry. Here, we report a photoredox/nickel dual catalytic approach that enables the simultaneous formation of two C(sp3)-C(sp3) linkages via trimolecular cross-coupling of alkenes with alkyl halides and hypervalent iodine-based reagents. The reaction harnesses a bimolecular homolytic substitution (SH2) mechanism and chemoselective halogen-atom transfer (XAT) to orchestrate the regioselective addition of electrophilic and nucleophilic alkyl radicals across unactivated alkenes without the need for a directing auxiliary. Utility is highlighted through late-stage (fluoro)alkylation and (trideutero)methylation of C═C bonds bearing different substitution patterns, offering straightforward access to drug-like molecules comprising sp3-hybridized carbon scaffolds.
Collapse
Affiliation(s)
- Fei Cong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Si-Han Ye
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Rui Hu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| |
Collapse
|
12
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
13
|
Li LJ, Zhang JC, Li WP, Zhang D, Duanmu K, Yu H, Ping Q, Yang ZP. Enantioselective Construction of Quaternary Stereocenters via Cooperative Photoredox/Fe/Chiral Primary Amine Triple Catalysis. J Am Chem Soc 2024; 146:9404-9412. [PMID: 38504578 DOI: 10.1021/jacs.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Lian-Jie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun-Chun Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei-Peng Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Dan Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaining Duanmu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hui Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ze-Peng Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
14
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
15
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
16
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
17
|
Xu CH, Lv GF, Qin JH, Xu XH, Li JH. Visible-Light-Induced Photoredox 1,2-Dialkylation of Styrenes with α-Carbonyl Alkyl Bromides and Pyridin-1-ium Salts. J Org Chem 2024; 89:281-290. [PMID: 38109762 DOI: 10.1021/acs.joc.3c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A visible-light-driven photoredox dialkylation of styrenes with α-carbonyl alkyl bromides and pyridin-1-ium salts for the synthesis of polysubstituted 1,4-dihydropyridines is reported. This reaction enables the formation of two new C(sp3)-C(sp3) bonds in a single reaction step and provides a strategy that employs pyridin-1-ium salts as the functionalized alkylating reagents via dearomatization to directly trap the resulting alkyl radicals from radical addition of alkenes and then terminate the alkene dialkylation.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
18
|
Choi S, Choi Y, Kim Y, Lee J, Lee SY. Copper-Catalyzed C-C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands. J Am Chem Soc 2023. [PMID: 37933129 DOI: 10.1021/jacs.3c09369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Catalytic cross-couplings of tertiary alkyl electrophiles with carbon nucleophiles offer a powerful platform for constructing quaternary carbon centers, which are prevalent in bioactive molecules. However, these reactions remain underdeveloped primarily because of steric challenges that impede efficient bond formation. Herein, we describe the copper-catalyzed synthesis of such centers through the C(sp3)-C(sp2) bond-forming reaction between tertiary alkyl halides and arene rings of aniline derivatives, enabled by the strategic implementation of bidentate bis(cyclopropenimine) ligands. The copper catalyst bound by two imino-nitrogen atoms of these ligands, which have never been employed in metal catalysis previously, is highly effective in rapidly activating tertiary halides to generate alkyl radicals, allowing them to react with aryl nucleophiles under mild conditions with remarkably short reaction times (1-2 h). Various tertiary halides bearing carbonyl functional groups can be coupled with secondary or primary anilines, furnishing a range of quaternary carbon centers in good yields. Several mechanistic observations support the generation of copper(II) species and alkyl radicals which as a result elucidate the steps in the proposed catalytic cycle.
Collapse
Affiliation(s)
- Serim Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongseok Choi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yongjae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehoo Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
19
|
Wang Y, Chen W, Lai Y, Duan A. Activation Model and Origins of Selectivity for Chiral Phosphoric Acid Catalyzed Diradical Reactions. J Am Chem Soc 2023; 145:23527-23532. [PMID: 37788159 DOI: 10.1021/jacs.3c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To develop new radical synthesis strategies, a profound understanding of the electronic transfer mechanism is critical. An activation model called relayed proton-coupled electron transfer (relayed-PCET) was developed and investigated for chiral phosphoric acid-catalyzed diradical reactions by density functional theory (DFT). The driving force of electron transfer from the nucleophile to the electrophile is the proton transfer that occurs via the chiral phosphoric acid (CPA) catalyst to the electrophile. Moreover, the origins of the selectivity can be explained by distortion of the catalyst, favorable hydrogen bonding, and strong interactions of the substrates with substituents of the CPAs.
Collapse
Affiliation(s)
- Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weichi Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yilei Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
21
|
Wang PZ, Chen JR, Xiao WJ. Emerging Trends in Copper-Promoted Radical-Involved C-O Bond Formations. J Am Chem Soc 2023; 145:17527-17550. [PMID: 37531466 DOI: 10.1021/jacs.3c04879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.
Collapse
Affiliation(s)
- Peng-Zi Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Abstract
Bimolecular nucleophilic substitution SN2 is the earliest and most important means of amination of alkyl electrophiles; its practical utilization is largely limited to primary or activated substrates. Furthermore, a persistent challenge lies in establishing C(sp3)-N bonds from alkyl substrates in cross-coupling chemistry using palladium and nickel catalysts. Therefore, the methods of constructing C(sp3)-N bonds remain rare from alkyl electrophiles. The existing routes are limited to copper catalysis and photoredox catalysis. Here, we demonstrate an alternative amination strategy for rapid construction of C(sp3)-N bonds from accessible alkyl electrophiles, which were used as radical precursors under nickel catalysis by Ni (III) species reductive eliminations in high efficiency.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Kiran INC, Kranthikumar R. Nickel-Catalyzed Deaminative Ketone Synthesis: Coupling of Alkylpyridinium Salts with Thiopyridine Esters via C-N Bond Activation. Org Lett 2023; 25:3623-3627. [PMID: 37184214 DOI: 10.1021/acs.orglett.3c00943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A direct synthesis of ketones by the nickel-catalyzed deaminative cross-coupling of alkylpyridinium salts with thiopyridine esters has been reported. The reaction works well for both primary and secondary amines. This approach affords a highly valuable vista for the facile synthesis of ketones from easily accessible feedstock chemicals. The utility of this method is demonstrated through the functionalization of complex bioactives and pharmaceuticals.
Collapse
Affiliation(s)
- I N Chaithanya Kiran
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ramagonolla Kranthikumar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Brösamlen D, Oestreich M. Enantio- and Regioconvergent Synthesis of γ-Stereogenic Vinyl Germanes and Their Use as Masked Vinyl Halides. Org Lett 2023; 25:1901-1906. [PMID: 36960614 DOI: 10.1021/acs.orglett.3c00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
A nickel-catalyzed enantio- and regioconvergent alkylation of regioisomeric mixtures of racemic germylated allylic electrophiles with alkyl nucleophiles is reported. Key to success is a newly developed hept-4-yl-substituted Pybox ligand that enables accessing various chiral γ-germyl α-alkyl allylic building blocks in excellent yields and enantioselectivities. The reason for the regioconvergence is the steering effect of the bulky germyl group. The resulting vinyl germanes can be easily halodegermylated without racemization of the allylic stereocenter to afford synthetically valuable γ-stereogenic vinyl halides.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
25
|
Xu Y, Wang J, Deng GJ, Shao W. Recent advances in the synthesis of chiral α-tertiary amines via transition-metal catalysis. Chem Commun (Camb) 2023; 59:4099-4114. [PMID: 36919669 DOI: 10.1039/d3cc00439b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The significance of chiral α-tertiary amines in medicinal chemistry and drug development has been unquestionably established in the last few decades. α-Tertiary amines are attractive structural motifs for natural products, bioactive molecules and pharmaceuticals and are preclinical candidates. Their syntheses have been the focus of intensive research, and the development of new methods has continued to attract more and more attention. In this review, we present the progress in the last decade in the development of synthetic methods for the assembly of chiral ATAs via transition-metal catalysis. To date, the effective approaches in this area could be categorized into three strategies: enantioselective direct and indirect Mannich addition to ketimines; umpolung asymmetric alkylation of imine derivatives; and asymmetric C-N cross-coupling of tertiary alkyl electrophiles. Several related developing strategies for the synthesis of ATAs, such as hydroamination of alkenes, HAT amination approaches and the C-C coupling of α-aminoalkyl fragments, are also described in this article. These strategies have emerged as attractive C-C and C-N bond-forming protocols for enantioselective construction of chiral α-tertiary amines, and to some extent are complementary to each other, showing the prospect of application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jiajia Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
26
|
Sushmita, Patel M, Thakur D, Verma AK. Copper iodide nanoparticles (CuI NPs): an efficient catalyst for the synthesis of alkynyl esters. Org Biomol Chem 2023; 21:2301-2306. [PMID: 36853264 DOI: 10.1039/d3ob00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
An environmentally benign protocol for the synthesis of alkynyl esters, by the cross-coupling of diazoacetate with various substituted alkynes under neat reaction conditions, has been described. Copper iodide nanoparticles (CuI NPs) were found to promote the Sonogashira-type coupling to afford the corresponding alkynyl esters in good yields. The CuI nanoparticles were characterized by PXRD, FESEM, EDAX, and Raman techniques. The developed methodology has several advantages such as a broad substrate scope, less reaction time, atom economy, avoidance of an additive/base/solvent, and enhanced values of green chemistry. The catalyst was recycled up to threefold without the loss of its catalytic activity.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India. .,Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi-110078, India
| | - Monika Patel
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Deepika Thakur
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
27
|
Cong F, Mega RS, Chen J, Day CS, Martin R. Trifluoromethylation of Carbonyl and Unactivated Olefin Derivatives by C(sp 3 )-C Bond Cleavage. Angew Chem Int Ed Engl 2022; 62:e202214633. [PMID: 36416716 DOI: 10.1002/anie.202214633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, we report a Cu-mediated trifluoromethylation of carbonyl-type compounds and unactivated olefins enabled by visible-light irradiation via σ C(sp3 )-C bond-functionalization. The reaction is distinguished by its modularity, mild conditions and wide scope-even in the context of late-stage functionalization-thus offering a complementary approach en route to valuable C(sp3 )-CF3 architectures from easily accessible precursors.
Collapse
Affiliation(s)
- Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Riccardo S Mega
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
28
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
29
|
Rentería-Gómez A, Lee W, Yin S, Davis M, Gogoi AR, Gutierrez O. General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction. ACS Catal 2022; 12:11547-11556. [PMID: 39524306 PMCID: PMC11546105 DOI: 10.1021/acscatal.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are of great interest to the agrochemical, materials, and pharmaceutical industries. In particular, synthetic methods to access 1,3-dicarbosubsituted BCP-aryls have recently been developed, but most protocols rely on the stepwise C-C bond formation via the initial manipulation of BCP core to make the BCP electrophile or nucleophile followed by a second step (e.g., transition-metal-mediated cross-coupling step) to form the second key BCP-aryl bond. Moreover, despite the prevalence of C-F bonds in bioactive compounds, one-pot, multicomponent cross-coupling methods to directly functionalize [1.1.1]propellane to the corresponding fluoroalkyl BCP-aryl scaffolds are lacking. In this work, we describe a conceptually different approach to access diverse (fluoro)alkyl BCP-aryls at low temperatures and fast reaction times enabled by an iron-catalyzed multicomponent radical cross-coupling reaction from readily available (fluoro)alkyl halides, [1.1.1]propellane, and Grignard reagents. Further, experimental and computational mechanistic studies provide insights into the mechanism and ligand effects on the nature of C-C bond formation. Finally, these studies are used to develop a method to rapidly access synthetic versatile (difluoro)alkyl BCP halides via bisphosphine-iron catalysis.
Collapse
Affiliation(s)
- Angel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuai Yin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Zhang S, Findlater M. Progress in Convergent Paired Electrolysis. Chemistry 2022; 28:e202201152. [DOI: 10.1002/chem.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Michael Findlater
- Department of Chemistry and Biochemistry University of California Merced CA 95343 USA
| |
Collapse
|
31
|
Xu Y, Zhang M, Oestreich M. Photochemical, Nickel-Catalyzed C(sp 3)–C(sp 3) Reductive Cross-Coupling of α-Silylated Alkyl Electrophiles and Allylic Sulfones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Xu
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Muliang Zhang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
32
|
Kranidiotis-Hisatomi N, Oestreich M. Enantio- and Regioconvergent Nickel-Catalyzed Allylic Substitution of Racemic α- or γ-Silylated Allylic Bromides with Benzylzinc Reagents. Org Lett 2022; 24:4987-4991. [PMID: 35776983 DOI: 10.1021/acs.orglett.2c02076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An enantio- and regioconvergent nickel-catalyzed benzylation of racemic silylated allylic electrophiles with benzylzinc nucleophiles is reported. The key feature of this method is that the homocoupling pathways of both the nucleophile and the electrophile are minimized. A diverse set of electronically modified benzylzinc reagents was tolerated. The vinylsilane products with allylic stereocenters were formed in moderate to high yields with high enantioselectivities. The regioconvergence is the result of the steering effect of the silyl group.
Collapse
Affiliation(s)
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17, Juni 115, 10623 Berlin, Germany
| |
Collapse
|
33
|
Dihydroquinazolinones as adaptative C(sp 3) handles in arylations and alkylations via dual catalytic C-C bond-functionalization. Nat Commun 2022; 13:2394. [PMID: 35504911 PMCID: PMC9064991 DOI: 10.1038/s41467-022-29984-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
C–C bond forming cross-couplings are convenient technologies for the construction of functional molecules. Consequently, there is continual interest in approaches that can render traditionally inert functionality as cross-coupling partners, included in this are ketones which are widely-available commodity chemicals and easy to install synthetic handles. Herein, we describe a dual catalytic strategy that utilizes dihydroquinazolinones derived from ketone congeners as adaptative one-electron handles for forging C(sp3) architectures via α C–C cleavage with aryl and alkyl bromides. Our approach is achieved by combining the flexibility and modularity of nickel catalysis with the propensity of photoredox events for generating open-shell reaction intermediates. This method is distinguished by its wide scope and broad application profile––including chemical diversification of advanced intermediates––, providing a catalytic technique complementary to existing C(sp3) cross-coupling reactions that operates within the C–C bond-functionalization arena. Although derived from feedstock chemicals and therefore in principle abundant, ketones are not widely used as cross-coupling partners in organic synthesis. Herein, the authors use ketone derivatives as one-electron handles for forging C(sp3) architectures via dual photo- and nickel catalysis.
Collapse
|
34
|
Zhang CS, Zhang BB, Zhong L, Chen XY, Wang ZX. DFT insight into asymmetric alkyl-alkyl bond formation via nickel-catalysed enantioconvergent reductive coupling of racemic electrophiles with olefins. Chem Sci 2022; 13:3728-3739. [PMID: 35432909 PMCID: PMC8966719 DOI: 10.1039/d1sc05605k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
A DFT study has been conducted to understand the asymmetric alkyl–alkyl bond formation through nickel-catalysed reductive coupling of racemic alkyl bromide with olefin in the presence of hydrosilane and K3PO4. The key findings of the study include: (i) under the reductive experimental conditions, the Ni(ii) precursor is easily activated/reduced to Ni(0) species which can serve as an active species to start a Ni(0)/Ni(ii) catalytic cycle. (ii) Alternatively, the reaction may proceed via a Ni(i)/Ni(ii)/Ni(iii) catalytic cycle starting with a Ni(i) species such as Ni(i)–Br. The generation of a Ni(i) active species via comproportionation of Ni(ii) and Ni(0) species is highly unlikely, because the necessary Ni(0) species is strongly stabilized by olefin. Alternatively, a cage effect enabled generation of a Ni(i) active catalyst from the Ni(ii) species involved in the Ni(0)/Ni(ii) cycle was proposed to be a viable mechanism. (iii) In both catalytic cycles, K3PO4 greatly facilitates the hydrosilane hydride transfer for reducing olefin to an alkyl coupling partner. The reduction proceeds by converting a Ni–Br bond to a Ni–H bond via hydrosilane hydride transfer to a Ni–alkyl bond via olefin insertion. On the basis of two catalytic cycles, the origins for enantioconvergence and enantioselectivity control were discussed. The enantioconvergent alkyl–alkyl coupling involves two competitive catalytic cycles with nickel(0) and nickel(i) active catalysts, respectively. K3PO4 plays a crucial role to enable the hydride transfer from hydrosilane to nickel–bromine species.![]()
Collapse
Affiliation(s)
- Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Zhong
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
36
|
Dai W, Miao RG, Zhao R, Qi X, Wu XF. Palladium-catalyzed desulfonylative aminocarbonylation of benzylsulfonyl chlorides with o-aminobenzaldehydes/ o-aminoacetophenones for the synthesis of quinoin-2(1 H)-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and efficient synthesis of quinoin-2(1H)-ones has been explored via a palladium-catalyzed desulfonylative aminocarbonylation of benzylsulfonyl chlorides with o-aminobenzaldehydes/o-aminoacetophenones.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ren-Guan Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ruyi Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
37
|
Wu XF, Bao ZP, Liu Y, Qi X. Palladium-Catalyzed Reductive Desulfonative Aminocarbonylation of Benzylsulfonyl Chlorides with Nitroarenes to Phenylacetamides. Org Chem Front 2022. [DOI: 10.1039/d2qo00110a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate a new procedure for the direct using benzylsulfonyl chlorides as versatile C(sp3) electrophiles in a palladium-catalyzed reductive desulfonative aminocarbonylation reaction. Using nitroarenes as readily accessible and stable...
Collapse
|
38
|
Xiao J, Li Z, Montgomery J. Nickel-Catalyzed Decarboxylative Coupling of Redox-Active Esters with Aliphatic Aldehydes. J Am Chem Soc 2021; 143:21234-21240. [PMID: 34894690 DOI: 10.1021/jacs.1c11170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addition of alkyl fragments to aliphatic aldehydes is a highly desirable transformation for fragment couplings, yet existing methods come with operational challenges related to the basicity and instability of the nucleophilic reagents commonly employed. We report herein that nickel catalysis using a readily available bioxazoline (BiOx) ligand can catalyze the reductive coupling of redox-active esters with aliphatic aldehydes using zinc metal as the reducing agent to deliver silyl-protected secondary alcohols. This protocol is operationally simple, proceeds under mild conditions, and tolerates a variety of functional groups. Initial mechanistic studies suggest a radical chain pathway. Additionally, alkyl tosylates and epoxides are suitable alkyl precursors to this transformation providing a versatile suite of catalytic reactions for the functionalization of aliphatic aldehydes.
Collapse
Affiliation(s)
- Jichao Xiao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - Zhenning Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| |
Collapse
|
39
|
Ton SJ, Neumann KT, Nørby P, Skrydstrup T. Nickel-Mediated Alkoxycarbonylation for Complete Carbon Isotope Replacement. J Am Chem Soc 2021; 143:17816-17824. [PMID: 34643376 DOI: 10.1021/jacs.1c09170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many commercial drugs, as well as upcoming pharmaceutically active compounds in the pipeline, display aliphatic carboxylic acids or derivatives thereof as key structural entities. Synthetic methods for rapidly accessing isotopologues of such compounds are highly relevant for undertaking critical pharmacological studies. In this paper, we disclose a direct synthetic route allowing for full carbon isotope replacement via a nickel-mediated alkoxycarbonylation. Employing a nickelII pincer complex ([(N2N)Ni-Cl]) in combination with carbon-13 labeled CO, alkyl iodide, sodium methoxide, photocatalyst, and blue LED light, it was possible to generate the corresponding isotopically labeled aliphatic carboxylates in good yields. Furthermore, the developed methodology was applied to the carbon isotope substitution of several pharmaceutically active compounds, whereby complete carbon-13 labeling was successfully accomplished. It was initially proposed that the carboxylation step would proceed via the in situ formation of a nickellacarboxylate, generated by CO insertion into the Ni-alkoxide bond. However, preliminary mechanistic investigations suggest an alternative pathway involving attack of an open shell species generated from the alkyl halide to a metal ligated CO to generate an acyl NiIII species. Subsequent reductive elimination involving the alkoxide eventually leads to carboxylate formation. An excess of the alkoxide was essential for obtaining a high yield of the product. In general, the presented methodology provides a simple and convenient setup for the synthesis and carbon isotope labeling of aliphatic carboxylates, while providing new insights about the reactivity of the N2N nickel pincer complex applied.
Collapse
Affiliation(s)
- Stephanie J Ton
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Peter Nørby
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
40
|
Zhu S, Zhao X, Li H, Chu L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem Soc Rev 2021; 50:10836-10856. [PMID: 34605828 DOI: 10.1039/d1cs00399b] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic dicarbofunctionalization of unsaturated π bonds represents a powerful platform for the rapid construction of complex motifs. Despite remarkable progress, novel and efficient methods for achieving such transformations under milder conditions with chemo-, regio-, and stereoselectivity still remain a significant challenge; thus, their development is highly desirable. Recently, the merging of nickel catalysis with radical chemistry offers a new and benign platform for the catalytic dicarbofunctionalization of unsaturated π bonds with unprecedented reactivity and selectivity. In this review, we summarize the recent advances in this area by underpinning the catalytic domino transformations involving radical capture by nickel to provide a clear overview of reaction designs and mechanistic scenarios.
Collapse
Affiliation(s)
- Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Huan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
41
|
Matsubara K. Well-Defined NHC-Ni Complexes as Catalysts: Preparation, Structures and Mechanistic Studies in Cross-Coupling Reactions. CHEM REC 2021; 21:3925-3942. [PMID: 34596959 DOI: 10.1002/tcr.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Indexed: 02/06/2023]
Abstract
Developmental studies are ongoing to discover a way to utilise new N-heterocyclic carbene (NHC)-Ni complexes as catalysts. Using a bulky NHC ligand, it is possible to synthesise an NHC/phosphine-mixed heteroleptic Ni(II) complex, which can serve as an excellent catalyst for various cross-coupling reactions. During the study of the reaction mechanisms using these Ni complexes, NHC-Ni(I) complexes were accidentally discovered, and it was observed that they exhibit excellent catalytic activity for cross-coupling reactions. The possibility of the presence of NHC-Ni(I) intermediates in these catalytic reaction pathways has been experimentally demonstrated. Depending on the type of reaction, dinuclear Ni(I) and mononuclear Ni(I) complexes can function as intermediates. The results of the investigation of each reaction mechanism are summarised, and the prospects are described.
Collapse
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka, 814-0180, Japan
| |
Collapse
|
42
|
Cruz CL, Montgomery J. Nickel-catalyzed reductive coupling of unactivated alkyl bromides and aliphatic aldehydes. Chem Sci 2021; 12:11995-12000. [PMID: 34667565 PMCID: PMC8457385 DOI: 10.1039/d1sc03712a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
A mild, convenient coupling of aliphatic aldehydes and unactivated alkyl bromides has been developed. The catalytic system features the use of a common Ni(ii) precatalyst and a readily available bioxazoline ligand and affords silyl-protected secondary alcohols. The reaction is operationally simple, utilizing Mn as a stoichiometric reductant, and tolerates a wide range of functional groups. The use of 1,5-hexadiene as an additive is an important reaction parameter that provides significant benefits in yield optimizations. Initial mechanistic experiments support a mechanism featuring an alpha-silyloxy Ni species that undergoes formal oxidative addition to the alkyl bromide via a reductive cross-coupling pathway. Aliphatic aldehydes and alkyl bromides are reductively coupled using nickel catalysis. A BiOX ligand and 1,5-hexadiene paired with a silyl chloride and Mn as the terminal reductant are important features of the process.![]()
Collapse
Affiliation(s)
- Cole L Cruz
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48108-1055 USA
| | - John Montgomery
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48108-1055 USA
| |
Collapse
|
43
|
Lu D, Lu P, Lu Z. Cobalt‐Catalyzed Asymmetric 1,4‐Reduction of
β,β‐
Dialkyl
α
,
β
‐Unsaturated Esters with PMHS. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Peng Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 310058 China
| |
Collapse
|
44
|
Chen J, Zhu S. Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes. J Am Chem Soc 2021; 143:14089-14096. [PMID: 34436887 DOI: 10.1021/jacs.1c07851] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalyzed, multicomponent regio- and enantioselective coupling via sequential hydroformylation and carbonylation from readily available starting materials has been developed. This modular multicomponent hydrofunctionalization strategy enables the straightforward reductive hydrocarbonylation of a broad range of unactivated alkenes to produce a wide variety of unsymmetrical dialkyl ketones bearing a functionalized α-stereocenter, including enantioenriched chiral α-aryl ketones and α-amino ketones. It uses chiral bisoxazoline as a ligand, silane as a reductant, chloroformate as a safe CO source, and a racemic secondary benzyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid as the alkylation reagent. The benign nature of this process renders this method suitable for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
45
|
Liu S, Bai M, Xu PF, Sun QX, Duan XH, Guo LN. Copper-catalyzed radical ring-opening halogenation with HX. Chem Commun (Camb) 2021; 57:8652-8655. [PMID: 34373865 DOI: 10.1039/d1cc03013b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient copper-catalyzed radical ring-opening halogenation with HX (aq) is described. This protocol features redox-neutral conditions, green halogen sources, and a broad substrate scope, providing practical access to distally chlorinated, brominated and iodinated alkyl ketones and alkyl nitriles with moderate to good yields.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | |
Collapse
|
46
|
Chen C, Peters JC, Fu GC. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 2021; 596:250-256. [PMID: 34182570 PMCID: PMC8363576 DOI: 10.1038/s41586-021-03730-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
The substitution of an alkyl electrophile by a nucleophile is a foundational reaction in organic chemistry that enables the efficient and convergent synthesis of organic molecules. Although there has been substantial recent progress in exploiting transition-metal catalysis to expand the scope of nucleophilic substitution reactions to include carbon nucleophiles1-4, there has been limited progress in corresponding reactions with nitrogen nucleophiles5-8. For many substitution reactions, the bond construction itself is not the only challenge, as there is a need to control stereochemistry at the same time. Here we describe a method for the enantioconvergent substitution of unactivated racemic alkyl electrophiles by a ubiquitous nitrogen-containing functional group, an amide. Our method uses a photoinduced catalyst system based on copper, an Earth-abundant metal. This process for asymmetric N-alkylation relies on three distinct ligands-a bisphosphine, a phenoxide and a chiral diamine. The ligands assemble in situ to form two distinct catalysts that act cooperatively: a copper/bisphosphine/phenoxide complex that serves as a photocatalyst, and a chiral copper/diamine complex that catalyses enantioselective C-N bond formation. Our study thus expands enantioselective N-substitution by alkyl electrophiles beyond activated electrophiles (those bearing at least one sp- or sp2-hybridized substituent on the carbon undergoing substitution)8-13 to include unactivated electrophiles.
Collapse
Affiliation(s)
- Caiyou Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
47
|
|
48
|
Górski B, Barthelemy AL, Douglas JJ, Juliá F, Leonori D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat Catal 2021. [DOI: 10.1038/s41929-021-00652-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
50
|
Kranidiotis‐Hisatomi N, Yi H, Oestreich M. Enantio- and Regioconvergent Nickel-Catalyzed C(sp 3 )-C(sp 3 ) Cross-Coupling of Allylic Electrophiles Steered by a Silyl Group. Angew Chem Int Ed Engl 2021; 60:13652-13655. [PMID: 33822445 PMCID: PMC8251714 DOI: 10.1002/anie.202102233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Indexed: 12/15/2022]
Abstract
A two‐step sequence for the enantio‐ and diastereoselective synthesis of exclusively alkyl‐substituted acyclic allylic systems with a stereocenter in the allylic position is reported. The asymmetric induction and the site selectivity are controlled in an enantio‐ and regioconvergent nickel‐catalyzed C(sp3)−C(sp3) cross‐coupling of regioisomeric mixtures of racemic α‐/γ‐silylated allylic halides and primary alkylzinc reagents. The silyl group steers the allylic displacement towards the formation of the vinylsilane regioisomer, and the resulting C(sp2)−Si bond serves as a linchpin for the installation of various C(sp3) substituents in a subsequent step.
Collapse
Affiliation(s)
| | - Hong Yi
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| |
Collapse
|