1
|
Yadav N, Poveda A, Vázquez Mena Y, Rosenthal M, Ogawa Y, Jiménez-Barbero J, Delbianco M. Controlling Glycan Folding with Ionic Functional Groups. J Am Chem Soc 2025; 147:15126-15135. [PMID: 40273339 PMCID: PMC12063165 DOI: 10.1021/jacs.4c17992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Glycans are intrinsically flexible molecules that can adopt many conformations. These molecules often carry ionic functional groups that influence glycan's conformational preferences, dynamics, and aggregation tendencies. Inspired by these mechanisms, we have engineered a glycan sequence whose secondary structure can be precisely manipulated by using ionic groups. We strategically incorporated ionic substituents into a glycan sequence adopting a hairpin conformation. Complementary ionic groups stabilized the closed conformers, while ionic repulsions shifted the populations toward the open forms. External stimuli, such as pH variations or enzyme addition, enabled us to dynamically control the hairpin's opening and closing. Additionally, changes in protonation states led to glycan aggregation, suggesting opportunities for the creation of responsive glycan-based materials.
Collapse
Affiliation(s)
- Nishu Yadav
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Ana Poveda
- CICbioGUNE,
Basque Research and Technology Alliance, 48160 Derio, Spain
| | - Yadiel Vázquez Mena
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- CERMAV, CNRS, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Martin Rosenthal
- Faculty
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Leuven, Belgium
| | - Yu Ogawa
- CERMAV, CNRS, Univ. Grenoble Alpes, 38000 Grenoble, France
- Department
of Sustainable and Bioinspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE,
Basque Research and Technology Alliance, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Department
of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro de
Investigación Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Zhang L, Zheng Z, Zhang Y, Wu X, Tu Y, Liu C, Wang Z, Wang L, Yang Y, Zhang Q. Chemical Synthesis and Antigenic Evaluation of Oligosaccharides of Bordetella hinzii O-Antigen Containing Unique Amidated 2,3-Diacetamido-2,3-dideoxy-alduronic Acids. JACS AU 2025; 5:1903-1913. [PMID: 40313848 PMCID: PMC12041961 DOI: 10.1021/jacsau.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Bordetella hinzii is a zoonotic pathogen, which can cause brain abscess, pneumonia, bacteremia, and urinary tract infection. Vaccines are economical and effective means for combating infectious diseases. Herein, we present the first total synthesis of the highly functionalized mono- and oligosaccharides of B. hinzii O-antigen for vaccine development. The rare 2,3-diacetamidopyranoses were generated from 3-O-acetyl-2-nitroglycals via an organocatalyzed one-pot relay glycosylation method. The postglycosylation oxidation strategy was used to overcome the poor reactivity of 2,3-diacetamido-aldouronic acid building blocks in glycosylation reactions. Direct amidation of alduronic acid with NH3 in the late stage reduced the protecting group operation and increased the synthetic efficiency. Di-tert-butylsilylidene-directed α-galactosylation method was used to construct challenging 1,2-cis-glycosidic bond. Six oligosaccharides of B. hinzii O-antigen were obtained and further conjugated to human serum albumin for antigenicity evaluation (the sera antibodies were obtained from vaccinated mouse via inactivated B. hinzii). The terminal tetrasaccharide of B. hinzii O-antigen has been identified as a potential glycol-epitope and might be useful for vaccine development against B. hinzii.
Collapse
Affiliation(s)
- Lin Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhichao Zheng
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yumeng Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaopei Wu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuanhong Tu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Can Liu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qingju Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
- Jiangxi
Provincial Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
3
|
Østerlid KE, Cergano R, Overkleeft HS, van der Marel GA, Codée JDC. Synthesis of a Set of Staphylococcus Aureus Capsular Polysaccharide Type 1 Oligosaccharides Carrying Taurine Esters. Chemistry 2025; 31:e202500132. [PMID: 40095323 PMCID: PMC12043029 DOI: 10.1002/chem.202500132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that is responsible for severe nosocomial infections. The protective capsular polysaccharides (CPs), which are key elements of the cell wall, have been proposed as promising candidate antigens. Several CP types have been identified including CP1, CP5, and CP8, and serotype 1 has been associated with increased resistance to phagocytosis and virulence. Here, the synthesis of a set of S. aureus CP 1 (strain M and D) trisaccharides, composed of an α-N-acetyl d-fucosamine and two α-N-acetyl d-galactosaminuronic acid residues, carrying taurine esters together with a nontaurinated hexasaccharide, is reported. To be able to tune the taurine substitution pattern, an orthogonal C-6-OH protecting group strategy for the galactosamine building blocks was developed, in conjunction with a postglycosylation oxidation protocol to site selectively introduce the taurine amide substitutions. The stereoselectivity in the glycosylations was secured using a silylene-protected 2-azido galactose synthon.
Collapse
Affiliation(s)
- Kitt Emilie Østerlid
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55Leiden2333 CCThe Netherlands
| | - Renata Cergano
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55Leiden2333 CCThe Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55Leiden2333 CCThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55Leiden2333 CCThe Netherlands
| |
Collapse
|
4
|
Østerlid KE, Sorieul C, Unione L, Li S, García-Sepúlveda C, Carboni F, Del Bino L, Berni F, Arda A, Overkleeft HS, van der Marel GA, Romano MR, Jiménez-Barbero J, Adamo R, Codée JDC. Long, Synthetic Staphylococcus aureus Type 8 Capsular Oligosaccharides Reveal Structural Epitopes for Effective Immune Recognition. J Am Chem Soc 2025; 147:2829-2840. [PMID: 39792791 PMCID: PMC11760181 DOI: 10.1021/jacs.4c16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the S. aureus cell wall and have been proposed as promising candidate antigens. Thirteen different CP serotypes have been identified to date, of which types 5 and 8 are the most prominent. CP8 is composed of trisaccharide repeating units that are built up from an N-acetyl-4-O-acetyl-β-d-mannosaminuronic acid, that carries a C-4-O-acetyl, an N-acetyl-α-d-fucosamine, and an N-acetyl-α-l-fucosamine. Synthetic oligosaccharides are valuable tools to unravel the immunogenicity of bacterial oligosaccharides at the molecular level. However, the rare monosaccharides, cis-glycosidic linkages, and O-acetylation represent significant challenges for the synthesis of CP8 fragments. Here the stereoselective assembly of well-defined CP8 fragments, comprising a trimer, hexamer, nonamer, and dodecamer, is presented. This is the first time that fragments larger than a single repeating trisaccharide, which has been proven to be insufficient for antigenic activity, have been assembled. Structural studies have revealed a linear conformation for the oligosaccharides, with each trisaccharide repeat tilted ∼90° with respect to the flanking repeats, which is stabilized by the acetyl groups that prevent rotation around the glycosidic linkages. The N-acetyl groups in each repeating unit point in the same direction, generating a hydrophobic flank in the trisaccharide repeats. We applied the oligomers to generate model glycoconjugate vaccine modalities, which we then used to raise anti-CP8 antibodies. The antibody interaction and immunization studies have revealed a clear length dependent structure-activity relationship for the oligosaccharides, with an oligosaccharide of at least three repeating units required for an adequate immune response.
Collapse
Affiliation(s)
- Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Charlotte Sorieul
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luca Unione
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Sizhe Li
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Cristian García-Sepúlveda
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | | | | | - Francesca Berni
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ana Arda
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | - Jesús Jiménez-Barbero
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
- Department
of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de
Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | | | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
5
|
Pradhan K, Reuber EE, Sletten ET, Tomaso H, Seeberger PH. A Synthetic Oligosaccharide Resembling Francisella tularensis Strain 15 O-Antigen Capsular Polysaccharide as a Lead for Tularemia Diagnostics and Therapeutics. Angew Chem Int Ed Engl 2025; 64:e202416432. [PMID: 39417793 DOI: 10.1002/anie.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Francisella tularensis, a category A bioterrorism agent, causes tularemia in many animal species. F. tularensis subspecies tularensis (type A) and holarctica (type B) are mainly responsible for human tularemia. The high mortality rate of 30-60 % caused by F. tularensis subspecies tularensis if left untreated and the aerosol dispersal renders this pathogen a dangerous bioagent. While a live attenuated vaccine strain (LVS) of F. tularensis type B does not provide sufficient protection against all forms of tularemia infections, a significant level of protection against F. tularensis has been observed for both passive and active immunization of mice with isolated O-antigen capsular polysaccharide. Well-defined, synthetic oligosaccharides offer an alternative approach towards the development of glycoconjugate vaccines. To identify diagnostics and therapeutics leads against tularemia, a collection of F. tularensis strain 15 O-antigen capsular polysaccharide epitopes were chemically synthesized. Glycan microarrays containing synthetic glycans were used to analyze the sera of tularemia-infected and non-infected animals and revealed the presence of IgG antibodies against the glycans. Two disaccharide (13 and 18), both bearing a unique formamido moiety, were identified as minimal glycan epitopes for antibody binding. These epitopes are the starting point for the development of diagnostics and therapeutics against tularemia.
Collapse
Affiliation(s)
- Kabita Pradhan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Emelie E Reuber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
6
|
Mishra AK, Ghotekar BK, Puley CK, Kulkarni SS. Expanding the Scope of a One-Pot Double Displacement Protocol to Access the All-Rare-Sugar-Containing Trisaccharide Unit of Pseudomonas stutzeri OX1. Org Lett 2024. [PMID: 39530287 DOI: 10.1021/acs.orglett.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we have explored a one-pot bis-triflation and regioselective displacement protocol with d-fucose 2,4-diol to access various rare 6-deoxy amino d-sugars. This strategy enabled the first total synthesis of the trisaccharide unit of Pseudomonas stutzeri OX1 strain containing d-perosamine and d-tomosamine. Installation of a 1,2-cis linkage and late-stage N-formylation are the key challenges in the total synthesis, which was accomplished via the longest linear sequence of 21 steps with 1.2% overall yield.
Collapse
Affiliation(s)
- Amar K Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chanchal K Puley
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
8
|
Adams CE, Spicer SK, Gaddy JA, Townsend SD. Synthesis of a Phosphoethanolamine Cellulose Mimetic and Evaluation of Its Unanticipated Biofilm Modulating Properties. ACS Infect Dis 2024; 10:3245-3255. [PMID: 39105738 PMCID: PMC11406534 DOI: 10.1021/acsinfecdis.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
When coordinating and adhering to a surface, microorganisms produce a biofilm matrix consisting of extracellular DNA, lipids, proteins, and polysaccharides that are intrinsic to the survival of bacterial communities. Indeed, bacteria produce a variety of structurally diverse polysaccharides that play integral roles in the emergence and maintenance of biofilms by providing structural rigidity, adhesion, and protection from environmental stressors. While the roles that polysaccharides play in biofilm dynamics have been described for several bacterial species, the difficulty in isolating homogeneous material has resulted in few structures being elucidated. Recently, Cegelski and co-workers discovered that uropathogenic Escherichia coli (UPEC) secrete a chemically modified cellulose called phosphoethanolamine cellulose (pEtN cellulose) that plays a vital role in biofilm assembly. However, limited chemical tools exist to further examine the functional role of this polysaccharide across bacterial species. To address this critical need, we hypothesized that we could design and synthesize an unnatural glycopolymer to mimic the structure of pEtN cellulose. Herein, we describe the synthesis and evaluation of a pEtN cellulose glycomimetic which was generated using ring-opening metathesis polymerization. Surprisingly, the synthetic polymers behave counter to native pEtN cellulose in that the synthetic polymers repress biofilm formation in E. coli laboratory strain 11775T and UPEC strain 700415 with longer glycopolymers displaying greater repression. To evaluate the mechanism of action, changes in biofilm and cell morphology were visualized using high resolution field-emission gun scanning electron microscopy which further revealed changes in cell surface appendages. Our results suggest synthetic pEtN cellulose glycopolymers act as an antiadhesive and inhibit biofilm formation across E. coli strains, highlighting a potential new inroad to the development of bioinspired, biofilm-modulating materials.
Collapse
Affiliation(s)
- C Elizabeth Adams
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sabrina K Spicer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Ghotekar BK, Kulkarni SS. Total Synthesis of the Conjugation-Ready Tetrasaccharide Repeating Unit of Shewanella japonica Type Strain KMM 3299 T. Org Lett 2024; 26:4346-4350. [PMID: 38722236 DOI: 10.1021/acs.orglett.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Here we report the first total synthesis of the conjugation-ready tetrasaccharide repeating unit of Shewanella japonica type strain KMM 3299T. The presence of rare deoxyamino sugars and installation of three consecutive 1,2-cis glycosidic linkages makes the synthesis formidable. The challenging late-stage oxidation was overcome by using a galacturonate donor. The total synthesis was completed via a longest linear sequence of 22 steps in an overall yield of 3.5% starting from d-mannose.
Collapse
Affiliation(s)
- Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Pradhan K, Paul A, Rai D, Mishra AK, Balhara P, Kulkarni SS. Total Synthesis of Vibrio Cholerae O43 Tetrasaccharide Repeating Unit. J Org Chem 2024; 89:4019-4030. [PMID: 38403962 DOI: 10.1021/acs.joc.3c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Vibrio cholerae is a pathogen responsible for the deadly pandemic - cholera. The glycans present on the surface of various strains of V. cholerae are considered as potential vaccine candidates. The tetrasaccharide repeating unit (RU) of V. cholerae O43 is decorated with less-explored rare deoxy amino sugars like d-quinosamine and d-viosamine, along with a rare amino acid, N-acetyl-l-allothreonine. Herein, we report a detailed account of the total synthesis of V. cholerae O43 tetrasaccharide RU. In our earlier attempt, while a one-pot assembly of trisaccharide was successful, the final coupling with a fully functionalized d-viosamine donor was low yielding. The successful route involved employing the Fmoc-protected d-viosamine building block as a donor and a late-stage amide bond formation of the tetrasaccharide.
Collapse
Affiliation(s)
- Kabita Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amar Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti Balhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Chang CW, Lin MH, Chiang TY, Wu CH, Lin TC, Wang CC. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. SCIENCE ADVANCES 2023; 9:eadk0531. [PMID: 37851803 PMCID: PMC10584349 DOI: 10.1126/sciadv.adk0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The stereoselectivity of glycosidic bond formation continues to pose a noteworthy hurdle in synthesizing carbohydrates, primarily due to the simultaneous occurrence of SN1 and SN2 processes during the glycosylation reaction. Here, we applied an in-depth analysis of the glycosylation mechanism by using low-temperature nuclear magnetic resonance and statistical approaches. A pathway driven by counterion exchanges and reaction byproducts was first discovered to outline the stereocontributions of intermediates. Moreover, the relative reactivity values, acceptor nucleophilic constants, and Hammett substituent constants (σ values) provided a general index to indicate the mechanistic pathways. These results could allow building block tailoring and reaction condition optimization in carbohydrate synthesis to be greatly facilitated and simplified.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Ghosh A, Kulkarni SS. Total Synthesis of a Linear Tetrasaccharide Repeating Unit of Vibrio vulnificus MO6-24. Org Lett 2023; 25:7242-7246. [PMID: 37756139 DOI: 10.1021/acs.orglett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Herein, we report the total synthesis of a linear, conjugation-ready, tetrasaccharide repeating unit of Vibrio vulnificus MO6-24, which is composed of rare amino sugars such as l-quinovosamine and d-galactosamine uronic acid. The key challenges addressed here are the synthesis of rare deoxy amino sugars, installation of consecutive 1,2-cis glycosidic linkages, and late-stage oxidation. Total synthesis of the target molecule was completed via a longest linear sequence of 29 steps in an overall yield of 0.7% starting from l-rhamnose.
Collapse
Affiliation(s)
- Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Fittolani G, Tyrikos-Ergas T, Poveda A, Yu Y, Yadav N, Seeberger PH, Jiménez-Barbero J, Delbianco M. Synthesis of a glycan hairpin. Nat Chem 2023; 15:1461-1469. [PMID: 37400598 PMCID: PMC10533408 DOI: 10.1038/s41557-023-01255-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
The primary sequence of a biopolymer encodes the essential information for folding, permitting to carry out sophisticated functions. Inspired by natural biopolymers, peptide and nucleic acid sequences have been designed to adopt particular three-dimensional (3D) shapes and programmed to exert specific functions. In contrast, synthetic glycans capable of autonomously folding into defined 3D conformations have so far not been explored owing to their structural complexity and lack of design rules. Here we generate a glycan that adopts a stable secondary structure not present in nature, a glycan hairpin, by combining natural glycan motifs, stabilized by a non-conventional hydrogen bond and hydrophobic interactions. Automated glycan assembly enabled rapid access to synthetic analogues, including site-specific 13C-labelled ones, for nuclear magnetic resonance conformational analysis. Long-range inter-residue nuclear Overhauser effects unequivocally confirmed the folded conformation of the synthetic glycan hairpin. The capacity to control the 3D shape across the pool of available monosaccharides has the potential to afford more foldamer scaffolds with programmable properties and functions.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nishu Yadav
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
14
|
Paul A, Rai D, Pradhan K, Balhara P, Mishra AK, Kulkarni SS. Total Synthesis of a Structurally Complex Tetrasaccharide Repeating Unit of Vibrio cholerae O43. Org Lett 2023; 25:6413-6418. [PMID: 37603587 DOI: 10.1021/acs.orglett.3c02430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein we report the first total synthesis of a densely functionalized tetrasaccharide repeating unit of Vibrio cholerae O43, which contains rare deoxy amino sugars d-quinovosamine and d-viosamine attached with the rare amino acid N-acetyl-l-allothreonine. Synthesis of orthogonally protected rare sugars and unnatural amino acid building blocks, stereoselective construction of three consecutive 1,2-cis glycosidic linkages, amide coupling, and the presence of five nitrogen atoms dispersed over four sugar units as well as the carboxylic acid functionality make the total synthesis a formidable task.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kabita Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti Balhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amar Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
16
|
Wang Z, Poveda A, Zhang Q, Unione L, Overkleeft HS, van der Marel GA, Jesús JB, Codée JDC. Total Synthesis and Structural Studies of Zwitterionic Bacteroides fragilis Polysaccharide A1 Fragments. J Am Chem Soc 2023; 145:14052-14063. [PMID: 37310804 PMCID: PMC10311536 DOI: 10.1021/jacs.3c03976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 06/15/2023]
Abstract
Zwitterionic polysaccharides (ZPSs) are exceptional carbohydrates, carrying both positively charged amine groups and negatively charged carboxylates, that can be loaded onto MHC-II molecules to activate T cells. It remains enigmatic, however, how these polysaccharides bind to these receptors, and to understand the structural features responsible for this "peptide-like" behavior, well-defined ZPS fragments are required in sufficient quantity and quality. We here present the first total synthesis of Bacteroides fragilis PS A1 fragments encompassing up to 12 monosaccharides, representing three repeating units. Key to our successful syntheses has been the incorporation of a C-3,C-6-silylidene-bridged "ring-inverted" galactosamine building block that was designed to act as an apt nucleophile as well as a stereoselective glycosyl donor. Our stereoselective synthesis route is further characterized by a unique protecting group strategy, built on base-labile protecting groups, which has allowed the incorporation of an orthogonal alkyne functionalization handle. Detailed structural studies have revealed that the assembled oligosaccharides take up a bent structure, which translates into a left-handed helix for larger PS A1 polysaccharides, presenting the key positively charged amino groups to the outside of the helix. The availability of the fragments and the insight into their secondary structure will enable detailed interaction studies with binding proteins to unravel the mode of action of these unique oligosaccharides at the atomic level.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- National
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Ana Poveda
- CIC
bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48162 Derio, Bizkaia, Spain
| | - Qingju Zhang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- National
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Luca Unione
- CIC
bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48162 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Jiménez-Barbero Jesús
- CIC
bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48162 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
- Department
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro de
Investigación Biomédica En Red de Enfermedades Respiratorias
(CIBERES), 28029 Madrid, Spain
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
17
|
Paul A, Kulkarni SS. Total Synthesis of the Repeating Units of Proteus penneri 26 and Proteus vulgaris TG155 via a Common Disaccharide. Org Lett 2023; 25:4400-4405. [PMID: 37284758 DOI: 10.1021/acs.orglett.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report the first total synthesis of the trisaccharide and tetrasaccharide repeating units of P. penneri 26 and P. vulgaris TG155, respectively, having a common disaccharide unit, 3-α-l-QuipNAc-(1 → 3)-α-d-GlcpNAc-(1 →. Striking features of the targets are the presence of rare sugar units, l-quinovosamine and l-rhamnosamine, all joined through α-glycosidic linkages. Major challenges in the formation of 1,2-cis glycosidic linkages in the case of d-glucosamine, l-quinovosamine, and d-galactosamine have been addressed.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
18
|
Dhara D, Bouchet M, Mulard LA. Scalable Synthesis of Versatile Rare Deoxyamino Sugar Building Blocks from d-Glucosamine. J Org Chem 2023. [PMID: 37141399 DOI: 10.1021/acs.joc.2c03016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report the syntheses of 1,3,4-tri-O-acetyl-2-amino-2,6-dideoxy-β-d-glucopyranose and allyl 2-amino-2,6-dideoxy-β-d-glucopyranoside from d-glucosamine hydrochloride. The potential of these two versatile scaffolds as key intermediates to a diversity of orthogonally protected rare deoxyamino hexopyranosides is exemplified in the context of fucosamine, quinovosamine, and bacillosamine. The critical C-6 deoxygenation step to 2,6-dideoxy aminosugars is performed at an early stage on a precursor featuring an imine moiety or a trifluoroacetamide moiety in place of the 2-amino group, respectively. Robustness and scalability are demonstrated for a combination of protecting groups and incremental chemical modifications that sheds light on the promise of the yet unreported allyl 2,6-dideoxy-2-N-trifluoroacetyl-β-d-glucopyranoside when addressing the feasibility of synthetic zwitterionic oligosaccharides. In particular, allyl 3-O-acetyl-4-azido-2,4,6-trideoxy-2-trifluoroacetamido-β-d-galactopyranoside, an advanced 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose building block, was achieved on the 30 g scale from 1,3,4,6-tetra-O-acetyl-β-d-glucosamine hydrochloride in 50% yield and nine steps, albeit only two chromatography purifications.
Collapse
Affiliation(s)
- Debashis Dhara
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| | - Marion Bouchet
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| | - Laurence A Mulard
- , Institut Pasteur, Université Paris Cité, UMR CNRS3523, Chemistry of Biomolecules Laboratory, 8 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
19
|
Shirsat AA, Rai D, Ghotekar BK, Kulkarni SS. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus aureus Strain M. Org Lett 2023; 25:2913-2917. [PMID: 37052906 DOI: 10.1021/acs.orglett.3c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An efficient total synthesis of a conjugation-ready trisaccharide repeating unit of Staphylococcus aureus strain M is reported here. The main challenges involved in this synthesis are the procurement of rare sugars (d-FucNAc and d-GalNAcA) and installation of consecutive 1,2-cis-glycosidic linkages between them. Stereoselective 1,2-cis glycosylation with the linker acceptor was achieved with easily accessible benzylidene protected d-galactosamine thioglycoside by employing a DMF modulated preactivation glycosylation method. The consecutive 1,2-cis linkages were installed with the help of solvent participation. The carboxylic acid functionality was introduced via postglycosylation oxidation on the disaccharide moiety. The total synthesis of trisaccharide repeating unit was accomplished with the longest linear sequence of 24 steps in 4.5% overall yield.
Collapse
Affiliation(s)
- Archana A Shirsat
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
20
|
Wang Z, Gimeno A, Lete MG, Overkleeft HS, van der Marel GA, Chiodo F, Jiménez‐Barbero J, Codée JDC. Synthetic Zwitterionic Streptococcus pneumoniae Type 1 Oligosaccharides Carrying Labile O-Acetyl Esters. Angew Chem Int Ed Engl 2023; 62:e202211940. [PMID: 36350770 PMCID: PMC10107948 DOI: 10.1002/anie.202211940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/11/2022]
Abstract
We herein report the first total synthesis of the Streptococcus pneumoniae serotype 1 (Sp1) oligosaccharide, a unique zwitterionic capsular polysaccharide carrying labile O-acetyl esters. The target oligosaccharides, featuring rare α-2,4-diamino-2,4,6-trideoxy galactose (AAT) and α-galacturonic acids, were assembled up to the 9-mer level, in a highly stereoselective manner using trisaccharide building blocks. The lability of the O-acetyl esters imposed a careful deprotection scheme to prevent migration and hydrolysis. The migration was investigated in detail at various pD values using NMR spectroscopy, to show that migration and hydrolysis of the C-3-O-acetyl esters readily takes place under neutral conditions. Structural investigation showed the oligomers to adopt a right-handed helical structure with the acetyl esters exposed on the periphery of the helix in close proximity of the neighboring AAT residues, thereby imposing conformational restrictions on the AATα1-4GalA(3OAc) glycosidic linkages, supporting the helical shape of the polysaccharide, that has been proposed to be critical for its unique biological activity.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Ana Gimeno
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Marta G. Lete
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
| | - Herman S. Overkleeft
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | | | - Fabrizio Chiodo
- Institute of Biomolecular ChemistryNational Research Council (CNR)Pozzuoli, NapoliItaly
- Amsterdam Infection and Immunity InstituteDepartment of Molecular Cell Biology and Immunology Amsterdam UMC, Location VUmc1007 MBAmsterdam (TheNetherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 801A48170DerioSpain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi 548009Bilbao, BizkaiaSpain
- Department of Organic ChemistryII Faculty of Science and Technology, EHU-UPV48940LeioaSpain
- Centro de Investigación Biomédica En Red de Enfermedades RespiratoriasMadridSpain
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| |
Collapse
|
21
|
Hykollari A, Paschinger K, Wilson IBH. Negative-mode mass spectrometry in the analysis of invertebrate, fungal, and protist N-glycans. MASS SPECTROMETRY REVIEWS 2022; 41:945-963. [PMID: 33955035 PMCID: PMC7616688 DOI: 10.1002/mas.21693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
- VetCore Facility for Research, Veterinärmedizinische Universität Wien, Wien, Austria
| | | | - Iain B. H. Wilson
- Department für Chemie, Universität für Bodenkultur Wien, Wien, Austria
| |
Collapse
|
22
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
23
|
Wang Z, Enotarpi J, Buffi G, Pezzicoli A, Gstöttner CJ, Nicolardi S, Balducci E, Fabbrini M, Romano MR, van der Marel GA, del Bino L, Adamo R, Codée JDC. Chemical Synthesis and Immunological Evaluation of Fragments of the Multiantennary Group-Specific Polysaccharide of Group B Streptococcus. JACS AU 2022; 2:1724-1735. [PMID: 35911445 PMCID: PMC9327088 DOI: 10.1021/jacsau.2c00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine. The GBC is a highly complex multiantennary structure, composed of rhamnose rich oligosaccharides interspaced with glucitol phosphates. We here report the development of a convergent approach to assemble a pentamer, octamer, and tridecamer fragment of the termini of the antennae. Phosphoramidite chemistry was used to fuse the pentamer and octamer fragments to deliver the 13-mer GBC oligosaccharide. Nuclear magnetic resonance spectroscopy of the generated fragments confirmed the structures of the naturally occurring polysaccharide. The fragments were used to generate model glycoconjugate vaccine by coupling with CRM197. Immunization of mice delivered sera that was shown to be capable of recognizing different GBS strains. The antibodies raised using the 13-mer conjugate were shown to recognize the bacteria best and the serum raised against this GBC fragment-mediated opsonophagocytic killing best, but in a capsule dependent manner. Overall, the GBC 13-mer was identified to be a highly promising antigen for incorporation into future (multicomponent) anti-GBS vaccines.
Collapse
Affiliation(s)
- Zhen Wang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacopo Enotarpi
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Giada Buffi
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | | | - Christoph J. Gstöttner
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Simone Nicolardi
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | - Roberto Adamo
- GSK
Siena Italy, Via Fiorentina
1 Siena 53100, Italy
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
24
|
Ghosh B, Bhattacharjee N, Podilapu AR, Puri K, Kulkarni SS. Total Synthesis of the Repeating Units of O-Specific Polysaccharide of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via One-Pot Glycosylation. Org Lett 2022; 24:3696-3701. [PMID: 35549295 DOI: 10.1021/acs.orglett.2c01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report the first total syntheses of the trisaccharide-repeating units of Pseudomonas chlororaphis subsp. aureofaciens UCM B-306 via a one-pot assembly of the core trisaccharide structure. The rare-sugar-containing trisaccharide-repeating units are comprised of d-bacillosamine, 2-amino-2-deoxy-d-galacturonic acid or amide, and d-rhamnose units linked through three consecutive α-linkages. The total syntheses of two repeating units were completed starting from d-mannose via a longest-linear sequence of 27 steps in 5.8% and 4.4% overall yields, respectively.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Nabarupa Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
25
|
QIN CJ, HOU HL, DING MR, QI YK, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical synthesis of a synthetically useful L-galactosaminuronic acid building block. Chin J Nat Med 2022; 20:387-392. [DOI: 10.1016/s1875-5364(22)60149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/03/2022]
|
26
|
Zhang Y, Wang L, Overkleeft HS, van der Marel GA, Codée JDC. Assembly of a Library of Pel-Oligosaccharides Featuring α-Glucosamine and α-Galactosamine Linkages. Front Chem 2022; 10:842238. [PMID: 35155372 PMCID: PMC8826555 DOI: 10.3389/fchem.2022.842238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium for which currently antibiotic resistance is posing a significant problem and for which no vaccines are available, protects itself by the formation of a biofilm. The Pel polysaccharide, a cationic polymer composed of cis-linked galactosamine (GalN), N-acetyl galactosamine (GalNAc), glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) monosaccharides, is an important constituent of the biofilm. Well-defined Pel oligosaccharides will be valuable tools to probe the biosynthesis machinery of this polysaccharide and may serve as diagnostic tools or be used as components of glycoconjugate vaccines. We here, report on the development of synthetic chemistry to access well-defined Pel-oligosaccharides. The chemistry hinges on the use of di-tert-butylsilylidene protected GalN and GlcN building blocks, which allow for completely cis-selective glycosylation reactions. We show the applicability of the chemistry by the assembly of a matrix of 3 × 6 Pel heptasaccharides, which has been generated from a single set of suitably protected Pel heptasaccharides, in which a single glucosamine residue is incorporated and positioned at different places along the Pel oligo-galactosamine chain.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Liming Wang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | | | | | - Jeroen D. C. Codée
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen D. C. Codée,
| |
Collapse
|
27
|
Ghosh A, Kulkarni SS. Total Synthesis of the Repeating Unit of Streptococcus pneumoniae Zwitterionic Polysaccharide Sp1. J Org Chem 2021; 86:18292-18299. [PMID: 34860529 DOI: 10.1021/acs.joc.1c02409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is the total synthesis of the trisaccharide repeating unit of Streptococcus pneumoniae zwitterionic polysaccharide Sp1 containing a rare sugar, 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT), and three consecutive 1,2-cis-glycosidic linkages. The total synthesis was completed via highly stereoselective glycosylations and late-stage oxidation as key steps involving a longest linear sequence of 21 steps with 4.4% overall yield.
Collapse
Affiliation(s)
- Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
28
|
Poveda A, Fittolani G, Seeberger PH, Delbianco M, Jiménez-Barbero J. The Flexibility of Oligosaccharides Unveiled Through Residual Dipolar Coupling Analysis. Front Mol Biosci 2021; 8:784318. [PMID: 34859057 PMCID: PMC8631391 DOI: 10.3389/fmolb.2021.784318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a β(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.
Collapse
Affiliation(s)
- Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Spain.,Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
29
|
Puri K, Kulkarni SS. Total Synthesis of the Phosphorylated Zwitterionic Trisaccharide Repeating Unit of Photorhabdus temperata cinerea 3240. Org Lett 2021; 23:7083-7087. [PMID: 34459612 DOI: 10.1021/acs.orglett.1c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the total synthesis of the phosphorylated zwitterionic trisaccharide repeating unit of Photorhabdus temperata subsp. cinerea 3240. The efficient route involves regio- and stereoselective assembly of trisaccharide with rare deoxyamino sugar AAT at the nonreducing end, late stage oxidation, and installation of a phosphate linker on the trisaccharide. The total synthesis was completed via a longest linear sequence of 24 steps in 6.5% overall yield.
Collapse
Affiliation(s)
- Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
30
|
Adegbite A, McCarthy PC. Recent and Future Advances in the Chemoenzymatic Synthesis of Homogeneous Glycans for Bacterial Glycoconjugate Vaccine Development. Vaccines (Basel) 2021; 9:1021. [PMID: 34579258 PMCID: PMC8473158 DOI: 10.3390/vaccines9091021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Vaccines are important in preventing disease outbreaks and controlling the spread of disease in a population. A variety of vaccines exist, including subunit, recombinant, and conjugate vaccines. Glycoconjugate vaccines have been an important tool to fight against diseases caused by a number of bacteria. Glycoconjugate vaccines are often heterogeneous. Vaccines of the future are becoming more rationally designed to have a defined oligosaccharide chain length and position of conjugation. Homogenous vaccines could play an important role in assessing the relationship between vaccine structure and immune response. This review focuses on recent advances in the chemoenzymatic production of defined bacterial oligosaccharides for vaccine development with a focus on Neisseria meningitidis and selected WHO-prioritized antibacterial resistant-pathogens. We also provide some perspective on future advances in the chemoenzymatic synthesis of well-defined oligosaccharides.
Collapse
Affiliation(s)
- Ayobami Adegbite
- Bioenvironmental Sciences Program, Morgan State University, Baltimore, MD 21251, USA;
- Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA
| | | |
Collapse
|
31
|
Selective
13
C‐Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Moure MJ, Gimeno A, Delgado S, Diercks T, Boons G, Jiménez‐Barbero J, Ardá A. Selective 13 C-Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angew Chem Int Ed Engl 2021; 60:18777-18782. [PMID: 34128568 PMCID: PMC8456918 DOI: 10.1002/anie.202106056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Indexed: 12/12/2022]
Abstract
A combined chemo-enzymatic synthesis/NMR-based methodology is presented to identify, in unambiguous manner, the distinctive binding epitope within repeating sugar oligomers when binding to protein receptors. The concept is based on the incorporation of 13 C-labels at specific monosaccharide units, selected within a repeating glycan oligomeric structure. No new chemical tags are added, and thus the chemical entity remains the same, while the presence of the 13 C-labeled monosaccharide breaks the NMR chemical shift degeneracy that occurs in the non-labeled compound and allows the unique identification of the different components of the oligomer. The approach is demonstrated by a proof-of-concept study dealing with the interaction of a polylactosamine hexasaccharide with five different galectins that display distinct preferences for these entities.
Collapse
Affiliation(s)
- María J. Moure
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Ana Gimeno
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Sandra Delgado
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Tammo Diercks
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Geert‐Jan Boons
- Chemical Biology and Drug DiscoveryUtrecht UniversityUtrechtThe Netherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGeorgiaUSA
- Department of ChemistryUniversity of GeorgiaAthensGeorgiaUSA
| | - Jesús Jiménez‐Barbero
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
- Department of Organic & Inorganic ChemistryUniversity of the Basque CountryUPV/EHUSpain
| | - Ana Ardá
- Chemical Glycobiology labCIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| |
Collapse
|
33
|
Biswas S, Ghotekar BK, Kulkarni SS. Total Synthesis of the All-Rare Sugar-Containing Pentasaccharide Repeating Unit of the O-Polysaccharide of Plesiomonas shigelloides Strain 302-73 (Serotype O1). Org Lett 2021; 23:6137-6142. [PMID: 34291950 DOI: 10.1021/acs.orglett.1c02239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
First total synthesis of the conjugation-ready pentasaccharide repeating unit of Plesiomonas shigelloides strain 302-73 (serotype O1) is reported. The complex target pentasaccharide is composed of all-rare amino sugars such as orthogonally functionalized d-bacillosamine, l-fucosamine, and l-pneumosamine linked through four consecutive α-linkages. The poor nucleophilicity of axial 4-OH of l-fucosamine and stereoselective glycosylations are the key challenges in the total synthesis, which was completed via a longest linear sequence of 27 steps in 3% overall yield.
Collapse
Affiliation(s)
- Sayantan Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Balasaheb K Ghotekar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
34
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Wang H, Sun C, Sun X, Zhang L, Zhao J, Liang M, Xiao M, Gu G. Biochemical Characterization and Synthetic Application of α‐1,3‐Glucosyltransferase from Pneumococcus Serotype 18C. ChemCatChem 2021. [DOI: 10.1002/cctc.202100507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Chongzhen Sun
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Xuan Sun
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Le Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Jielin Zhao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Min Liang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Min Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University 72 Binhai Road 266237 Qingdao P. R. China
| |
Collapse
|
36
|
Pathan EK, Ghosh B, Podilapu AR, Kulkarni SS. Total Synthesis of the Repeating Unit of Bacteroides fragilis Zwitterionic Polysaccharide A1. J Org Chem 2021; 86:6090-6099. [PMID: 33843231 DOI: 10.1021/acs.joc.0c02935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zwitterionic polysaccharides isolated from commensal bacteria are endowed with unique immunological properties and are emerging as immunotherapeutic agents as well as vaccine carriers. Reported herein is a total synthesis of the repeating unit of Bacteroides fragilis zwitterionic polysaccharide A1 (PS A1). The structurally complex tetrasaccharide unit contains a rare sugar 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT) and two consecutive 1,2-cis glycosidic linkages. The repeating unit was efficiently assembled by rapid synthesis of d-galactosamine and AAT building blocks from cheap and abundant d-mannose via a one-pot SN2 displacement of 2,4-bistriflates and installation of all of the glycosidic bonds in a highly stereoselective manner. The total synthesis involves a longest linear sequence of 17 steps with 3.47% overall yield.
Collapse
Affiliation(s)
- Ennus K Pathan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Bhaswati Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
37
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
38
|
Javed, Mandal PK. Bacterial surface capsular polysaccharides from Streptococcus pneumoniae: A systematic review on structures, syntheses, and glycoconjugate vaccines. Carbohydr Res 2021; 502:108277. [PMID: 33743443 DOI: 10.1016/j.carres.2021.108277] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The polysaccharide capsule of Streptococcus pneumoniae constitutes the outermost surface structure of the organism and plays a critical role in virulence. The capsule is the target of current pneumococcal vaccines and glycoconjugates and has important medical and industrial applications. Widespread use of these vaccines is driving changes in serotype prevalence in disease. A massive array of sugars and glycosidic linkages experienced with complete diversity of potential polysaccharide structures. However, it is impossible to collect a sufficient quantity of glycan antigens for the preparation of CPS-based glycoconjugate vaccines from natural sources with high purity and for thorough biological evaluation. So nowadays, the development of a chemical synthetic strategy and their conjugation with a carrier protein to form synthetic glycoconjugate vaccines has been used to gain access on a large scale. This review provides a comprehensive summary of structures, synthesis as well as recent development of synthetic glycoconjugate vaccines, which will support research and may benefit the glycochemical and medical sciences.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Cripps AW, Folaranmi T, Johnson KD, Musey L, Niederman MS, Buchwald UK. Immunogenicity following revaccination or sequential vaccination with 23-valent pneumococcal polysaccharide vaccine (PPSV23) in older adults and those at increased risk of pneumococcal disease: a review of the literature. Expert Rev Vaccines 2021; 20:257-267. [PMID: 33567914 DOI: 10.1080/14760584.2021.1889374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Immunogenicity studies evaluating sequential administration of pneumococcal conjugate vaccine (PCV) followed by 23-valent pneumococcal polysaccharide vaccine (PPSV23) or revaccination with PPSV23 have raised concerns that PPSV23 may not elicit higher antibody levels than those measured following PCV or first PPSV23 dose.Areas covered: Recent literature was evaluated for evidence of blunted immune response (hyporesponsiveness), focusing on studies using adequate intervals between doses in accordance with vaccination recommendations. In eight of nine studies that evaluated revaccination with PPSV23 at an interval of ≥5 years after the previous dose, immunoglobulin G geometric mean concentrations and/or opsonophagocytic assay geometric mean titers for most serotypes increased from pre- to post-repeat vaccination and were comparable between repeat and primary vaccination groups post-vaccination. In seven studies in which PPSV23 was administered after PCVs (8 weeks to 1 year apart), responses to PPSV23 were comparable to those seen after initial PCV dose for shared vaccine serotypes. Studies in which PCVs were administered after PPSV23 were not evaluated.Expert opinion: Published data suggest immune responses following repeat vaccination with PPSV23, or sequential PCV/PPSV23 vaccination, are robust, without evidence of hyporesponsiveness. PPSV23 vaccination of at-risk adults is essential to ensure broad protection against all 23 vaccine serotypes.
Collapse
Affiliation(s)
- Allan W Cripps
- Mucosal Immunology Research Group, Menzies Health Institute and School of Medicine, Griffith University, Gold Coast Campus, Southport QLD, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, van Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, van der Marel GA, Codée JDC. Reactivity-Stereoselectivity Mapping for the Assembly of Mycobacterium marinum Lipooligosaccharides. Angew Chem Int Ed Engl 2021; 60:937-945. [PMID: 32856761 PMCID: PMC7821131 DOI: 10.1002/anie.202010280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/08/2023]
Abstract
The assembly of complex bacterial glycans presenting rare structural motifs and cis-glycosidic linkages is significantly obstructed by the lack of knowledge of the reactivity of the constituting building blocks and the stereoselectivity of the reactions in which they partake. We here report a strategy to map the reactivity of carbohydrate building blocks and apply it to understand the reactivity of the bacterial sugar, caryophyllose, a rare C12-monosaccharide, containing a characteristic tetrasubstituted stereocenter. We mapped reactivity-stereoselectivity relationships for caryophyllose donor and acceptor glycosides by a systematic series of glycosylations in combination with the detection and characterization of different reactive intermediates using experimental and computational techniques. The insights garnered from these studies enabled the rational design of building blocks with the required properties to assemble mycobacterial lipooligosaccharide fragments of M. marinum.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tim P. Ofman
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Joey G. C. Vlaming
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Ivan A. Gagarinov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jessey van Beek
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Tessa A. Goté
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jacoba M. Tichem
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Gijs Ruijgrok
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
41
|
Gómez-Redondo M, Ardá A, Gimeno A, Jiménez-Barbero J. Bacterial polysaccharides: conformation, dynamics and molecular recognition by antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 35-36:1-11. [PMID: 33388123 DOI: 10.1016/j.ddtec.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the cause of different severe health conditions and new therapies to combat these pathogens have been widely investigated. Carbohydrates, being complex structures covering the surface of bacteria, are considered relevant targets for antibody and vaccine development. The biological activities in pathogenesis of bacterial capsular polysaccharides and lipopolisaccharides and their unique structures have boosted the study of the minimal antigenic binding epitopes and the structural details of antibody-carbohydrate recognition. This review describes the most recent advances on the field, examining the structure, conformation and dynamics of relevant bacterial carbohydrates and their complexes with antibodies. The understanding of key factors governing the recognition process is fundamental for the progress toward the development of specific and efficient bacterial therapeutics.
Collapse
Affiliation(s)
- Marcos Gómez-Redondo
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Department Organic Chemistry II, Faculty of Science and technology, UPV-EHU, 48940 Leioa, Spain
| |
Collapse
|
42
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
43
|
Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. Proc Natl Acad Sci U S A 2020; 117:29795-29802. [PMID: 33158970 PMCID: PMC7703565 DOI: 10.1073/pnas.2011385117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meningococcal meningitis remains a substantial cause of mortality and morbidity worldwide. Until recently, countries in the African meningitis belt were susceptible to devastating outbreaks, largely attributed to serogroup A Neisseria meningitidis (MenA). Vaccination with glycoconjugates of MenA capsular polysaccharide led to an almost complete elimination of MenA clinical cases. To understand the molecular basis of vaccine-induced protection, we generated a panel of oligosaccharide fragments of different lengths and tested them with polyclonal and monoclonal antibodies by inhibition enzyme-linked immunosorbent assay, surface plasmon resonance, and competitive human serum bactericidal assay, which is a surrogate for protection. The epitope was shown to optimize between three and six repeating units and to be O-acetylated. The molecular interactions between a protective monoclonal antibody and a MenA capsular polysaccharide fragment were further elucidated at the atomic level by saturation transfer difference NMR spectroscopy and X-ray crystallography. The epitope consists of a trisaccharide anchored to the antibody via the O- and N-acetyl moieties through either H-bonding or CH-π interactions. In silico docking showed that 3-O-acetylation of the upstream residue is essential for antibody binding, while O-acetate could be equally accommodated at three and four positions of the other two residues. These results shed light on the mechanism of action of current MenA vaccines and provide a foundation for the rational design of improved therapies.
Collapse
|
44
|
Hansen T, Ofman TP, Vlaming JGC, Gagarinov IA, Beek J, Goté TA, Tichem JM, Ruijgrok G, Overkleeft HS, Filippov DV, Marel GA, Codée JDC. Reactivity–Stereoselectivity Mapping for the Assembly of
Mycobacterium marinum
Lipooligosaccharides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas Hansen
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tim P. Ofman
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joey G. C. Vlaming
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Ivan A. Gagarinov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jessey Beek
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tessa A. Goté
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jacoba M. Tichem
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijs Ruijgrok
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dmitri V. Filippov
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. Marel
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden University Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
45
|
Li R, Yu H, Chen X. Recent progress in chemical synthesis of bacterial surface glycans. Curr Opin Chem Biol 2020; 58:121-136. [PMID: 32920523 DOI: 10.1016/j.cbpa.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections. They are also important probes for investigating glycan-protein interactions. Glycosylation strategies applied for the formation of some challenging glycosidic bonds of various uncommon sugars in a number of recently synthesized bacterial surface glycans are highlighted.
Collapse
Affiliation(s)
- Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
46
|
Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nat Commun 2020; 11:4142. [PMID: 32811831 PMCID: PMC7434892 DOI: 10.1038/s41467-020-17992-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Glycans are involved in various life processes and represent critical targets of biomedical developments. Nevertheless, the accessibility to long glycans with precise structures remains challenging. Here we report on the synthesis of glycans consisting of [→4)-α-Rha-(1 → 3)-β-Man-(1 → ] repeating unit, which are relevant to the O-antigen of Bacteroides vulgatus, a common component of gut microbiota. The optimal combination of assembly strategy, protecting group arrangement, and glycosylation reaction has enabled us to synthesize up to a 128-mer glycan. The synthetic glycans are accurately characterized by advanced NMR and MS approaches, the 3D structures are defined, and their potent binding activity with human DC-SIGN, a receptor associated with the gut lymphoid tissue, is disclosed.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhengnan Shen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai, 201210, China
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, De Boelelaan 1108, 1081HZ, Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
47
|
Abstract
The conformation of a molecule strongly affects its function, as demonstrated for peptides and nucleic acids. This correlation is much less established for carbohydrates, the most abundant organic materials in nature. Recent advances in synthetic and analytical techniques have enabled the study of carbohydrates at the molecular level. Recurrent structural features were identified as responsible for particular biological activities or material properties. In this Minireview, recent achievements in the structural characterization of carbohydrates, enabled by systematic studies of chemically defined oligosaccharides, are discussed. These findings can guide the development of more potent glycomimetics. Synthetic carbohydrate materials by design can be envisioned.
Collapse
Affiliation(s)
- Yang Yu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
48
|
Labrada KP, Strobl S, Eckmair B, Blaukopf M, Dutkiewicz Z, Hykollari A, Malzl D, Paschinger K, Yan S, Wilson IBH, Kosma P. Zwitterionic Phosphodiester-Substituted Neoglycoconjugates as Ligands for Antibodies and Acute Phase Proteins. ACS Chem Biol 2020; 15:369-377. [PMID: 31935056 PMCID: PMC7046318 DOI: 10.1021/acschembio.9b00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zwitterionic modifications of glycans, such as phosphorylcholine and phosphoethanolamine, are known from a range of prokaryotic and eukaryotic species and are recognized by mammalian antibodies and pentraxins; however, defined saccharide ligands modified with these zwitterionic moieties for high-throughput studies are lacking. In this study, we prepared and tested example mono- and disaccharides 6-substituted with either phosphorylcholine or phosphoethanolamine as bovine serum albumin neoglycoconjugates or printed in a microarray format for subsequent assessment of their binding to lectins, pentraxins, and antibodies. C-Reactive protein and anti-phosphorylcholine antibodies bound specifically to ligands with phosphorylcholine, but recognition by concanavalin A was abolished or decreased as compared with that to the corresponding nonzwitterionic compounds. Furthermore, in array format, the phosphorylcholine-modified ligands were recognized by IgG and IgM in sera of either non-infected or nematode-infected dogs and pigs. Thereby, these new compounds are defined ligands which allow the assessment of glycan-bound phosphorylcholine as a target of both the innate and adaptive immune systems in mammals.
Collapse
Affiliation(s)
- Karell Pérez Labrada
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sebastian Strobl
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Barbara Eckmair
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Zuzanna Dutkiewicz
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Alba Hykollari
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Malzl
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina Paschinger
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
49
|
Ghotekar BK, Podilapu AR, Kulkarni SS. Total Synthesis of the Lipid-Anchor-Attached Core Trisaccharides of Lipoteichoic Acids of Streptococcus pneumoniae and Streptococcus oralis Uo5. Org Lett 2020; 22:537-541. [PMID: 31887057 DOI: 10.1021/acs.orglett.9b04264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report an efficient total synthesis of lipid-anchor-appended core trisaccharides of lipoteichoic acids of Streptococcus pneumoniae and Streptococcus oralis Uo5. The key features include the expedient synthesis of the rare sugar 2,4,6-trideoxy-2-acetamido-4-amino-d-Galp building block via one-pot sequential SN2 reactions and the α-selective coupling of d-thioglucoside with the diacyl glycerol acceptor to construct a common disaccharide acceptor, which was utilized in the total synthesis of target molecules 1 and 2.
Collapse
Affiliation(s)
- Balasaheb K Ghotekar
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
50
|
Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104:1905-1914. [DOI: 10.1007/s00253-020-10368-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|