1
|
Baryakova TH, Hsu CC, Segatori L, McHugh KJ. Novel Approaches to Label the Surface of S. aureus with DBCO for Click Chemistry-Mediated Deposition of Sensitive Cargo. Bioconjug Chem 2025. [PMID: 40398634 DOI: 10.1021/acs.bioconjchem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction can be used to modify the surface of bacteria for a variety of applications including drug delivery, biosensing, and imaging. This is usually accomplished by first installing a small azide group within the peptidoglycan and then delivering exogenous cargo (e.g., a protein or nanoparticle) modified with a cyclooctyne group, such as dibenzocyclooctyne (DBCO), for in situ conjugation. However, DBCO is comparatively bulky and hydrophobic, increasing the propensity of some payloads to aggregate. In this study, we sought to invert this paradigm by exploring two novel strategies for incorporating DBCO into the peptidoglycan of Staphylococcus aureus and compared them to an established approach using DBCO-vancomycin. We demonstrate that DBCO-modified small molecules belonging to all three classes─a sortase peptide substrate (LPETG), two d-alanine derivatives, and vancomycin─can selectively label the S. aureus surface to varying degrees. In contrast to DBCO-vancomycin, the DBCO-d-alanine variants do not adversely affect the growth of S. aureus or lead to off-target labeling or toxicity in HEK293T or RAW 264.7 cells. Finally, we show that, unlike IgG3-Fc labeled with DBCO groups, IgG3-Fc labeled with azide groups is stable (i.e., remains water-soluble) under normal storage conditions, retains its ability to bind the immune receptor CD64, and can be successfully attached to the surface of DBCO-modified S. aureus. We believe that the labeling strategies explored herein will expand the paradigm of specific, nontoxic SPAAC-mediated labeling of the surface of S. aureus and other Gram-positive bacteria, opening the door for new applications using azide-modified cargo.
Collapse
Affiliation(s)
| | - Chia-Chien Hsu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Laura Segatori
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of BioSciences, Rice University, Houston, Texas 77030, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Dash R, Liu Z, Lepori I, Chordia MD, Ocius K, Holsinger K, Zhang H, Kenyon R, Im W, Siegrist MS, Pires MM. Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633618. [PMID: 39868157 PMCID: PMC11760776 DOI: 10.1101/2025.01.17.633618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Understanding the factors that influence the accumulation of molecules beyond the mycomembrane of Mycobacterium tuberculosis ( Mtb ) - the main barrier to accumulation - is essential for developing effective antimycobacterial agents. In this study, we investigated two design principles commonly observed in natural products and mammalian cell-permeable peptides: backbone N -alkylation and macrocyclization. To assess how these structural edits impact molecule accumulation beyond the mycomembrane, we utilized our recently developed Peptidoglycan Accessibility Click-Mediated Assessment (PAC-MAN) assay for live-cell analysis. Our findings provide the first empirical evidence that peptide macrocyclization generally enhances accumulation in mycobacteria, while N -alkylation influences accumulation in a context-dependent manner. We examined these design principles in the context of two peptide antibiotics, tridecaptin A1 and griselimycin, which revealed the roles of N -alkylation and macrocyclization in improving both accumulation and antimicrobial activity against mycobacteria in specific contexts. Together, we present a working model for strategic structural modifications aimed at enhancing the accumulation of molecules past the mycomembrane. More broadly, our results also challenge the prevailing belief in the field that large and hydrophilic molecules, such as peptides, cannot readily traverse the mycomembrane.
Collapse
|
3
|
Lin H, Zheng X, Lin L, Yang C, Wang W. Revealing NOD1-Activating Gram-Positive Gut Microbiota via in Vivo Labeling with a meso-Diaminopimelic Acid Probe. ACS Chem Biol 2025; 20:62-68. [PMID: 39745661 DOI: 10.1021/acschembio.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having meso-diaminopimelic acid (m-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain m-DAP in their PGN, giving them the potential to activate NOD1. The prevalence of m-DAP-type Gram-positive bacteria in the gut, however, remains largely unknown. Here, we report a stem-peptide-based m-DAP-containing tetrapeptide probe for labeling and identifying m-DAP-type Gram-positive microbiota. The probe was synthesized via a five-step convergent approach and demonstrated moderate selectivity toward m-DAP-type bacteria in vitro. In vivo labeling revealed that ∼13.7% of the mouse gut microbiota (mostly Gram-positive) was selectively labeled. We then identified Oscillibacter and several other Gram-positive genera in this population, most of which were previously unknown m-DAP-type bacteria. The following functional assay showed that Oscillibacter's PGN could indeed activate NOD1, suggesting an overlooked NOD1-activating role for these Gram-positive bacteria. These findings deepen our understanding of the structural diversity of gut microbes and their interactions with the host's immune system.
Collapse
Affiliation(s)
- Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, China
| | - Xinying Zheng
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Yang Y, Yao Z, Zhang J, Shao W, Li B, Wu H, Tang W, Zhang J. Inhibiting Peptidoglycan Hydrolase Alleviates MRSA Pneumonia Through Autolysin-Mediated MDP-NOD2 Pathway. Infect Drug Resist 2024; 17:1231-1242. [PMID: 38560705 PMCID: PMC10981453 DOI: 10.2147/idr.s455339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a cause of staph infection that is difficult to treat because of resistance to some antibiotics. A recent study indicated that diarylurea ZJ-2 is a novel antibacterial agent against multi-drug resistant Enterococcus faecium. In this work, we refined the bactericidal mechanism of ZJ-2 as a peptidoglycan (PG) hydrolase by affecting AtlA-mediated PG homeostasis. Methods A wild-type strain (WT) and a mutant strain (ΔatlA) were used to investigate the effects of ZJ-2 on the cell wall, PG, and autolysin regulatory system by antimicrobial susceptibility testing, hemolytic toxin assay, microanalysis, autolysis assay, qRT-PCR, ELISA and mouse model of pneumonia. Results The results revealed that ZJ-2 down-regulated the expression of genes related to peptidoglycan hydrolase (PGH) (sprX, walR, atlA, and lytM), and reduced the levels of PG, muramyl dipeptide (MDP), cytokines, and hemolytic toxin, while ΔatlA interfered with the genes regulation and PG homeostasis. In the mouse MRSA pneumonia model, the same trend was observed in the nucleotide oligomerization domain protein 2 (NOD2) and relative proinflammatory factors. Conclusion ZJ-2 may act as a novel inhibitor of PG hydrolyse, disrupting autolysin-mediated PG homeostasis, and reducing inflammation by down-regulating the MDP-NOD2 pathway.
Collapse
Affiliation(s)
- Yang Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, People’s Republic of China
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, People’s Republic of China
| | - Zongze Yao
- School of Medicine, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Jiazhen Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, People’s Republic of China
| | - Huihui Wu
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, People’s Republic of China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People’s Hospital, Hefei, People’s Republic of China
| |
Collapse
|
5
|
Kwan JMC, Liang Y, Ng EWL, Sviriaeva E, Li C, Zhao Y, Zhang XL, Liu XW, Wong SH, Qiao Y. In silico MS/MS prediction for peptidoglycan profiling uncovers novel anti-inflammatory peptidoglycan fragments of the gut microbiota. Chem Sci 2024; 15:1846-1859. [PMID: 38303944 PMCID: PMC10829024 DOI: 10.1039/d3sc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Peptidoglycan is an essential exoskeletal polymer across all bacteria. Gut microbiota-derived peptidoglycan fragments (PGNs) are increasingly recognized as key effector molecules that impact host biology. However, the current peptidoglycan analysis workflow relies on laborious manual identification from tandem mass spectrometry (MS/MS) data, impeding the discovery of novel bioactive PGNs in the gut microbiota. In this work, we built a computational tool PGN_MS2 that reliably simulates MS/MS spectra of PGNs and integrated it into the user-defined MS library of in silico PGN search space, facilitating automated PGN identification. Empowered by PGN_MS2, we comprehensively profiled gut bacterial peptidoglycan composition. Strikingly, the probiotic Bifidobacterium spp. manifests an abundant amount of the 1,6-anhydro-MurNAc moiety that is distinct from Gram-positive bacteria. In addition to biochemical characterization of three putative lytic transglycosylases (LTs) that are responsible for anhydro-PGN production in Bifidobacterium, we established that these 1,6-anhydro-PGNs exhibit potent anti-inflammatory activity in vitro, offering novel insights into Bifidobacterium-derived PGNs as molecular signals in gut microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Evan Wei Long Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Chenyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
6
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. Angew Chem Int Ed Engl 2024; 63:e202313870. [PMID: 38051128 PMCID: PMC10799677 DOI: 10.1002/anie.202313870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Staphylococcus aureus (S. aureus) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus, thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
Affiliation(s)
| | | | - Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
7
|
Liang L, Zhong LL, Wang L, Zhou D, Li Y, Li J, Chen Y, Liang W, Wei W, Zhang C, Zhao H, Lyu L, Stoesser N, Doi Y, Bai F, Feng S, Tian GB. A new variant of the colistin resistance gene MCR-1 with co-resistance to β-lactam antibiotics reveals a potential novel antimicrobial peptide. PLoS Biol 2023; 21:e3002433. [PMID: 38091366 PMCID: PMC10786390 DOI: 10.1371/journal.pbio.3002433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The emerging and global spread of a novel plasmid-mediated colistin resistance gene, mcr-1, threatens human health. Expression of the MCR-1 protein affects bacterial fitness and this cost correlates with lipid A perturbation. However, the exact molecular mechanism remains unclear. Here, we identified the MCR-1 M6 variant carrying two-point mutations that conferred co-resistance to β-lactam antibiotics. Compared to wild-type (WT) MCR-1, this variant caused severe disturbance in lipid A, resulting in up-regulation of L, D-transpeptidases (LDTs) pathway, which explains co-resistance to β-lactams. Moreover, we show that a lipid A loading pocket is localized at the linker domain of MCR-1 where these 2 mutations are located. This pocket governs colistin resistance and bacterial membrane permeability, and the mutated pocket in M6 enhances the binding affinity towards lipid A. Based on this new information, we also designed synthetic peptides derived from M6 that exhibit broad-spectrum antimicrobial activity, exposing a potential vulnerability that could be exploited for future antimicrobial drug design.
Collapse
Affiliation(s)
- Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lan-Lan Zhong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yong Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanfei Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lingxuan Lyu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
8
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528196. [PMID: 36824967 PMCID: PMC9949086 DOI: 10.1101/2023.02.13.528196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Staphylococcus aureus ( S. aureus ) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus , thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
|
9
|
Liu Z, Lepori I, Chordia MD, Dalesandro BE, Guo T, Dong J, Siegrist MS, Pires MM. A Metabolic-Tag-Based Method for Assessing the Permeation of Small Molecules Across the Mycomembrane in Live Mycobacteria. Angew Chem Int Ed Engl 2023; 62:e202217777. [PMID: 36700874 PMCID: PMC10159989 DOI: 10.1002/anie.202217777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The general lack of permeability of small molecules observed for Mycobacterium tuberculosis (Mtb) is most ascribed to its unique cell envelope. More specifically, the outer mycomembrane is hypothesized to be the principal determinant for access of antibiotics to their molecular targets. We describe a novel assay that combines metabolic tagging of the peptidoglycan, which sits directly beneath the mycomembrane, click chemistry of test molecules, and a fluorescent labeling chase step, to measure the permeation of small molecules. We showed that the assay workflow was robust and compatible with high-throughput analysis in mycobacteria by testing a small panel of azide-tagged molecules. The general trend is similar across the two types of mycobacteria with some notable exceptions. We anticipate that this assay platform will lay the foundation for medicinal chemistry efforts to understand and improve uptake of both existing drugs and newly-discovered compounds into mycobacteria.
Collapse
Affiliation(s)
- Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | - Irene Lepori
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, United States
| | | | - Taijie Guo
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200232, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200232, China
| | - M. Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
- Department of Microbiology, University of Massachusetts, Amherst, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, United States
| |
Collapse
|
10
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
11
|
Apostolos AJ, Chordia MD, Kolli SH, Dalesandro BE, Rutkowski MR, Pires MM. Real-time non-invasive fluorescence imaging of gut commensal bacteria to detect dynamic changes in the microbiome of live mice. Cell Chem Biol 2022; 29:S2451-9456(22)00416-0. [PMID: 36516833 PMCID: PMC10239791 DOI: 10.1016/j.chembiol.2022.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
In mammals, gut commensal microbiota interact extensively with the host, and the same interactions can be dysregulated in diseased states. Animal imaging is a powerful technique that is widely used to diagnose, measure, and track biological changes in model organisms such as laboratory mice. Several imaging techniques have been discovered and adopted by the research community that provide dynamic, non-invasive assessment of live animals, but these gains have not been universal across all fields of biology. Herein, we describe a method to non-invasively image commensal bacteria based on the specific metabolic labeling of bacterial cell walls to illuminate the gut bacteria of live mice. This tagging strategy may additionally provide unprecedented insight into cell wall turnover of gut commensals, which has implications for bacterial cellular growth and division, in a live animal.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sree H Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Melanie R Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
12
|
Apostolos AJ, Kelly JJ, Ongwae GM, Pires MM. Structure Activity Relationship of the Stem Peptide in Sortase A Mediated Ligation from Staphylococcus aureus. Chembiochem 2022; 23:e202200412. [PMID: 36018606 PMCID: PMC9632411 DOI: 10.1002/cbic.202200412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.
Collapse
Affiliation(s)
| | - Joey J. Kelly
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - George M. Ongwae
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| |
Collapse
|
13
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Ferraro NJ, Pires MM. Genetic Determinants of Surface Accessibility in Staphylococcus aureus. Bioconjug Chem 2022; 33:767-772. [PMID: 35499914 DOI: 10.1021/acs.bioconjchem.2c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial cell walls represent one of the most prominent targets of antibacterial agents. These agents include natural products (e.g., vancomycin) and proteins stemming from the innate immune system (e.g., peptidoglycan-recognition proteins and lysostaphin). Among bacterial pathogens that infect humans, Staphylococcus aureus (S. aureus) continues to impose a tremendous healthcare burden across the globe. S. aureus has evolved countermeasures that can directly restrict the accessibility of innate immune proteins, effectively protecting itself from threats that target key cell well components. We recently described a novel assay that directly reports on the accessibility of molecules to the peptidoglycan layer within the bacterial cell wall of S. aureus. The assay relies on site-specific chemical remodeling of the peptidoglycan with a biorthogonal handle. Here, we disclose the application of our assay to a screen of a nonredundant transposon mutant library for susceptibility of the peptidoglycan layer with the goal of identifying genes that contribute to the control of cell surface accessibility. We discovered several genes that resulted in higher accessibility levels to the peptidoglycan layer and showed that these genes modulate sensitivity to lysostaphin. These results indicate that this assay platform can be leveraged to gain further insight into the biology of bacterial cell surfaces.
Collapse
Affiliation(s)
- Noel J Ferraro
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Impact of crossbridge structure on peptidoglycan crosslinking: A synthetic stem peptide approach. Methods Enzymol 2022; 665:259-279. [PMID: 35379437 DOI: 10.1016/bs.mie.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall, whose main component is peptidoglycan (PG), provides cellular rigidity and prevents lysis from osmotic pressure. Moreover, the cell wall is the main interface between the external environment and internal cellular components. Given its essentiality, many antibiotics target enzymes related to the biosynthesis of cell wall. Of these enzymes, transpeptidases (TPs) are central to proper cell wall assembly and their inactivation is the mechanism of action of many antibiotics including β-lactams. TPs are responsible for stitching together strands of PG to make the crosslinked meshwork of the cell wall. This chapter focuses on the use of solid-phase peptide synthesis to build PG analogs that become site-selectively incorporated into the cell wall of live bacterial cells. This method allows for the design of fluorescent handles on PG probes that will enable the interrogation of substrate preferences of TPs (e.g., amidation at the glutamic acid residue, crossbridge presence) by analyzing the level of probe incorporation within the native cell wall of live bacterial cells.
Collapse
|
16
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
17
|
Lin H, Yang C, Wang W. Imitate to illuminate: labeling of bacterial peptidoglycan with fluorescent and bio-orthogonal stem peptide-mimicking probes. RSC Chem Biol 2022; 3:1198-1208. [PMID: 36320889 PMCID: PMC9533424 DOI: 10.1039/d2cb00086e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Because of its high involvement in antibiotic therapy and the emergence of drug-resistance, the chemical structure and biosynthesis of bacterial peptidoglycan (PGN) have been some of the key topics in bacteriology for several decades. Recent advances in the development of fluorescent or bio-orthogonal stem peptide-mimicking probes for PGN-labeling have rekindled the interest of chemical biologists and microbiologists in this area. The structural designs, bio-orthogonal features and flexible uses of these peptide-based probes allow directly assessing, not only the presence of PGN in different biological systems, but also specific steps in PGN biosynthesis. In this review, we summarize the design rationales, functioning mechanisms, and microbial processes/questions involved in these PGN-targeting probes. Our perspectives on the limitations and future development of these tools are also presented. By imitating the structures of stem peptide, many fluorescent and bio-orthogonal labeling probes have been designed and used in illuminating the peptidoglycan biosynthesis processes.![]()
Collapse
Affiliation(s)
- Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
18
|
Ferraro NJ, Kim S, Im W, Pires MM. Systematic Assessment of Accessibility to the Surface of Staphylococcus aureus. ACS Chem Biol 2021; 16:2527-2536. [PMID: 34609132 DOI: 10.1021/acschembio.1c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins from bacterial foes, antimicrobial peptides, and host immune proteins must navigate past a dense layer of bacterial surface biomacromolecules to reach the peptidoglycan (PG) layer of Gram-positive bacteria. A subclass of molecules (e.g., antibiotics with intracellular targets) also must permeate through the PG (in a molecular sieving manner) to reach the cytoplasmic membrane. Despite the biological and therapeutic importance of surface accessibility, systematic analyses in live bacterial cells have been lacking. We describe a live cell fluorescence assay that is robust, shows a high level of reproducibility, and reports on the permeability of molecules to and within the PG scaffold. Moreover, our study shows that teichoic acids impede the permeability of molecules of a wide range of sizes and chemical composition.
Collapse
Affiliation(s)
- Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
19
|
Brown AR, Wodzanowski KA, Santiago CC, Hyland SN, Follmar JL, Asare-Okai P, Grimes CL. Protected N-Acetyl Muramic Acid Probes Improve Bacterial Peptidoglycan Incorporation via Metabolic Labeling. ACS Chem Biol 2021; 16:1908-1916. [PMID: 34506714 DOI: 10.1021/acschembio.1c00268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic glycan probes have emerged as an excellent tool to investigate vital questions in biology. Recently, methodology to incorporate metabolic bacterial glycan probes into the cell wall of a variety of bacterial species has been developed. In order to improve this method, a scalable synthesis of the peptidoglycan precursors is developed here, allowing for access to essential peptidoglycan immunological fragments and cell wall building blocks. The question was asked if masking polar groups of the glycan probe would increase overall incorporation, a common strategy exploited in mammalian glycobiology. Here, we show, through cellular assays, that E. coli do not utilize peracetylated peptidoglycan substrates but do employ methyl esters. The 10-fold improvement of probe utilization indicates that (i) masking the carboxylic acid is favorable for transport and (ii) bacterial esterases are capable of removing the methyl ester for use in peptidoglycan biosynthesis. This investigation advances bacterial cell wall biology, offering a prescription on how to best deliver and utilize bacterial metabolic glycan probes.
Collapse
Affiliation(s)
- Ashley R. Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julianna L. Follmar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - PapaNii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Apostolos AJ, Ferraro NJ, Dalesandro BE, Pires MM. SaccuFlow: A High-Throughput Analysis Platform to Investigate Bacterial Cell Wall Interactions. ACS Infect Dis 2021; 7:2483-2491. [PMID: 34291914 DOI: 10.1021/acsinfecdis.1c00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bacterial cell walls are formidable barriers that protect bacterial cells against external insults and oppose internal turgor pressure. While cell wall composition is variable across species, peptidoglycan is the principal component of all cell walls. Peptidoglycan is a mesh-like scaffold composed of cross-linked strands that can be heavily decorated with anchored proteins. The biosynthesis and remodeling of peptidoglycan must be tightly regulated by cells because disruption to this biomacromolecule is lethal. This essentiality is exploited by the human innate immune system in resisting colonization and by a number of clinically relevant antibiotics that target peptidoglycan biosynthesis. Evaluation of molecules or proteins that interact with peptidoglycan can be a complicated and, typically, qualitative effort. We have developed a novel assay platform (SaccuFlow) that preserves the native structure of bacterial peptidoglycan and is compatible with high-throughput flow cytometry analysis. We show that the assay is facile and versatile as demonstrated by its compatibility with sacculi from Gram-positive bacteria, Gram-negative bacteria, and mycobacteria. Finally, we highlight the utility of this assay to assess the activity of sortase A from Staphylococcus aureus against potential antivirulence agents.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brianna E. Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Dalesandro BE, Pires MM. Induction of Endogenous Antibody Recruitment to the Surface of the Pathogen Enterococcus faecium. ACS Infect Dis 2021; 7:1116-1125. [PMID: 33179504 DOI: 10.1021/acsinfecdis.0c00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the foreseeable future, conventional small molecule antibiotics will continue to be the predominant treatment option due to wide patient coverage and low costs. Today, however, there is already a significant portion of patients that fail to respond to small molecule antibiotics and, according to the Centers for Disease Control and Prevention, this number is poised to increase in the coming years. Therefore, this rise in drug resistant bacteria must be countered with the development of nontraditional therapies. We propose a measure based on the re-engagement of the immune system toward pathogenic bacteria by grafting bacterial cell surfaces with immunogenic agents. Herein, we describe a class of cell wall analogues that selectively graft bacterial cell surfaces with epitopes that promote their opsonization. More specifically, synthetic analogues of peptidoglycan conjugated to haptens were designed to be incorporated by the cell wall biosynthetic machinery into live Enterococcus faecium. E. faecium is a formidable human pathogen that poses a considerable burden to healthcare and often results in fatalities. We showed that treatment of E. faecium and vancomycin-resistant strains with the cell wall analogues led to the display of haptens on the cell surface, which induced the recruitment of antibodies existing in the serum of humans. These results demonstrate the feasibility in using cell wall analogues as the basis of a class of bacterial immunotherapies against dangerous pathogens.
Collapse
Affiliation(s)
- Brianna E. Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
22
|
Apostolos AJ, Nelson JM, Silva JRA, Lameira J, Achimovich AM, Gahlmann A, Alves CN, Pires MM. Facile Synthesis and Metabolic Incorporation of m-DAP Bioisosteres Into Cell Walls of Live Bacteria. ACS Chem Biol 2020; 15:2966-2975. [PMID: 33078931 DOI: 10.1021/acschembio.0c00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cell walls contain peptidoglycan (PG), a scaffold that provides proper rigidity to resist lysis from internal osmotic pressure and a barrier to protect cells against external stressors. It consists of repeating sugar units with a linkage to a stem peptide that becomes cross-linked by cell wall transpeptidases (TP). While synthetic PG fragments containing l-lysine in the third position on the stem peptide are easier to access, those with meso-diaminopimelic acid (m-DAP) pose a severe synthetic challenge. Herein, we describe a solid phase synthetic scheme based on widely available building blocks to assemble meso-cystine (m-CYT), which mimics key structural features of m-DAP. To demonstrate proper mimicry of m-DAP, cell wall probes were synthesized with m-CYT in place of m-DAP and evaluated for their metabolic processing in live bacterial cells. We found that m-CYT-based cell wall probes were properly processed by TPs in various bacterial species that endogenously contain m-DAP in their PG. Additionally, we have used hybrid quantum mechanical/molecular mechanical (QM/MM) and molecular dynamics (MD) simulations to explore the influence of m-DAP analogs on the PG cross-linking. The results showed that the cross-linking mechanism of transpeptidases occurred through a concerted process. We anticipate that this strategy, which is based on the use of inexpensive and commercially available building blocks, can be widely adopted to provide greater accessibility of PG mimics for m-DAP containing organisms.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Julia M. Nelson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Alecia M. Achimovich
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andreas Gahlmann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Cláudio N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
23
|
Mashayekh S, Bersch KL, Ramsey J, Harmon T, Prather B, Genova LA, Grimes CL. Synthesis of Bacterial-Derived Peptidoglycan Cross-Linked Fragments. J Org Chem 2020; 85:16243-16253. [PMID: 33108204 DOI: 10.1021/acs.joc.0c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptidoglycan (PG) is the core structural motif of the bacterial cell wall. Fragments released from the PG serve as fundamental recognition elements for the immune system. The structure of the PG, however, encompasses a variety of chemical modifications among different bacterial species. Here, the applicability of organic synthetic methods to address this chemical diversity is explored, and the synthesis of cross-linked PG fragments, carrying biologically relevant amino acid modifications and peptide cross-linkages, is presented using solution and solid phase approaches.
Collapse
Affiliation(s)
- Siavash Mashayekh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Klare L Bersch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jared Ramsey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas Harmon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Benjamin Prather
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lauren A Genova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|